8860-50 8861-50 8860-51 8861-51 HIOKI 4

Analysis and Communication Supplement

MEMORY HICORDER

This supplement describes the procedures for analyzing data using numerical calculations, waveform calculations and FFT functions, and how to communicate with the instrument using a computer.

EN

Contents

Introdu	ıction	1
	erical Calculation Functions	3
1.1	Numerical Value Calculation Workflow	4
1.2	Settings for Numerical Value Calculation	6
1.3	Judging Calculation Results	
1.4	Saving Numerical Calculation Results	
	 1.4.1 Automatically Saving Numerical Calculation Results 1.4.2 Optionally Selecting Numerical Calculation Results & Saving (SAVE Key) 	14
	1.4.3 Example of Saving Numerical Calculation Results	
1.5	Reading Numerical Calculation Results on a PC	17
1.6	Numerical Value Calculation Expressions	19
_	ter 2 form Calculation Functions	23
2.1	Waveform Calculation Workflow	24
2.2	Settings for Waveform Calculation	26
2.3	Calculation Waveform Display	
2.4	Waveform Processing Calculation Operators and Res	
	ter 3 function	37
3.1	Overview and Features	 37
3.2	Screen Organization (FFT Function)	38
	3.2.1 Waveform Screen	38
	3.2.2 Settings Screen	40
3.3	Operation Workflow	45
3.4	Setting FFT Analysis Conditions	51
	3.4.1 Selecting the FFT Function	51
	3.4.2 Selecting the Data Source for Analysis	
	3.4.3 Setting the Frequency Range and Number of Analysis Po	
	3.4.4 Setting the Window Function	
	3.4.6 Averaging Waveforms	
	3.4.6 Averaging Waveforms	5888

	3.4.7 Emphasizing Analysis Results (phase spectra only) 3.4.8 Analysis Mode Settings	
	3.4.9 Setting the Display Range of the Vertical Axis (Scaling3.4.10 Setting and Changing Analysis Conditions on the	•
3.5	Waveform Screen Selecting Channels	
3.6		
	Setting the Screen Layout of the Waveform Screen	
3.7	Saving Analysis Results	
3.8	Printing Analysis Results	76
3.9	Analysis with the Waveform Screen	78
	3.9.1 Selecting the Display Method	
	3.9.2 Selecting Gauges and Values	
	3.9.3 Analyzing after Specifying an Analysis Starting Point .	
3.10	FFT Analysis Modes	
	3.10.1 Analysis Modes and Display Examples	
0.44	3.10.2 Analysis Mode Functions	
3.11	FFT Definitions	103
Chapt	ter 4	
_	unications Settings	117
4.1	Connection Configurations	118
4.1 4.2	Connection Configurations Controlling the Instrument over the LAN Interface	
	•	120
	Controlling the Instrument over the LAN Interface	120
	Controlling the Instrument over the LAN Interface 4.2.1 Settings and Connection Procedure	120 120 121
4.2	Controlling the Instrument over the LAN Interface 4.2.1 Settings and Connection Procedure	120 120 121 127
4.2	Controlling the Instrument over the LAN Interface 4.2.1 Settings and Connection Procedure	120 120 121 127
4.2	Controlling the Instrument over the LAN Interface 4.2.1 Settings and Connection Procedure	120 120 121 127 127 129
4.2	Controlling the Instrument over the LAN Interface 4.2.1 Settings and Connection Procedure 4.2.2 Making Settings on the Instrument Using FTP to Access Instrument Files (FTP Server) 4.3.1 Making Settings on the Instrument 4.3.2 Operate on the PC Performing Remote Operations on the Instrument from an Internet Browser (Web Server)	120 120 121 127 127 129
4.2	Controlling the Instrument over the LAN Interface 4.2.1 Settings and Connection Procedure 4.2.2 Making Settings on the Instrument Using FTP to Access Instrument Files (FTP Server) 4.3.1 Making Settings on the Instrument 4.3.2 Operate on the PC Performing Remote Operations on the Instrument from an Internet Browser (Web Server) 4.4.1 Making Settings on the Instrument	120 120 121 127 129 132
4.2 4.3 4.4	Controlling the Instrument over the LAN Interface 4.2.1 Settings and Connection Procedure 4.2.2 Making Settings on the Instrument Using FTP to Access Instrument Files (FTP Server) 4.3.1 Making Settings on the Instrument 4.3.2 Operate on the PC Performing Remote Operations on the Instrument from an Internet Browser (Web Server) 4.4.1 Making Settings on the Instrument 4.4.2 Operate on the PC	120 120 121 127 129 132 132
4.24.34.44.5	Controlling the Instrument over the LAN Interface 4.2.1 Settings and Connection Procedure 4.2.2 Making Settings on the Instrument Using FTP to Access Instrument Files (FTP Server) 4.3.1 Making Settings on the Instrument 4.3.2 Operate on the PC Performing Remote Operations on the Instrument from an Internet Browser (Web Server) 4.4.1 Making Settings on the Instrument 4.4.2 Operate on the PC E-Mail Notifications	120121127127129132132134
4.2 4.3 4.4	Controlling the Instrument over the LAN Interface 4.2.1 Settings and Connection Procedure 4.2.2 Making Settings on the Instrument Using FTP to Access Instrument Files (FTP Server) 4.3.1 Making Settings on the Instrument 4.3.2 Operate on the PC Performing Remote Operations on the Instrument from an Internet Browser (Web Server) 4.4.1 Making Settings on the Instrument 4.4.2 Operate on the PC	120121127127129132132134
4.24.34.44.5	Controlling the Instrument over the LAN Interface 4.2.1 Settings and Connection Procedure 4.2.2 Making Settings on the Instrument Using FTP to Access Instrument Files (FTP Server) 4.3.1 Making Settings on the Instrument 4.3.2 Operate on the PC Performing Remote Operations on the Instrument from an Internet Browser (Web Server) 4.4.1 Making Settings on the Instrument 4.4.2 Operate on the PC E-Mail Notifications Using an Interface Card Controlling the Instrument with Command	120120121127129132134138
4.2 4.3 4.4 4.5 4.6	Controlling the Instrument over the LAN Interface 4.2.1 Settings and Connection Procedure 4.2.2 Making Settings on the Instrument Using FTP to Access Instrument Files (FTP Server) 4.3.1 Making Settings on the Instrument 4.3.2 Operate on the PC Performing Remote Operations on the Instrument from an Internet Browser (Web Server) 4.4.1 Making Settings on the Instrument 4.4.2 Operate on the PC E-Mail Notifications Using an Interface Card Controlling the Instrument with Command Communications	120121127129132132134138141
4.2 4.3 4.4 4.5 4.6	Controlling the Instrument over the LAN Interface 4.2.1 Settings and Connection Procedure	120121127127129132134138141
4.2 4.3 4.4 4.5 4.6	Controlling the Instrument over the LAN Interface 4.2.1 Settings and Connection Procedure 4.2.2 Making Settings on the Instrument Using FTP to Access Instrument Files (FTP Server) 4.3.1 Making Settings on the Instrument 4.3.2 Operate on the PC Performing Remote Operations on the Instrument from an Internet Browser (Web Server) 4.4.1 Making Settings on the Instrument 4.4.2 Operate on the PC E-Mail Notifications Using an Interface Card Controlling the Instrument with Command Communications	120121127127129132134138141

Introduction

In this manual, "the instrument" means the Model 8860-50, the 8861-50, the 8860-51 or the 8861-51 Memory HiCorder.

- * Unless otherwise noted in this manual, information provided for the 8860-50 also applies to the 8860-51, and information provided for the 8861-50 also applies to the 8861-51.
- * The 8860-51 and 8861-51 do not have a PC CARD slot.

The following documents are provided with this instrument. Refer to them as appropriate for your application.

Doo	cument	Description	
1 Quick Start Manual		Read this first. It describes preparations for use, basic operating procedures and usage methods.	
2	Input Module Guide	To connect input modules and measurement cables, and when making input channel settings; this Guide describes the optional input modules, related cable connection procedures, and their settings and specifications.	
3 Instruction Manual		To obtain setting details; this Manual describes details of the functions and op- erations of the instrument, and its specifications.	
4	Analysis and Communication Supplement (This document)	To analyze measurement data using the calculation functions, and to communicate with the instrument; this supplement describes the procedures for analyzing data using numerical calculations, waveform calculations and FFT functions, and how to communicate with the instrument using a computer.	

Before Use

Be sure to read the safety precautions in the *Quick Start Manual*. Also read the precautions regarding input modules and connection cables in the chapter about connections in the *Input Module Guide*.

Registered trademarks

Windows is a registered trademark of Microsoft Corporation in the United States and/or other countries.

Symbols and Indicators in This Manual

The following symbols in this manual indicate the relative importance of cautions and warnings.

CAUTION Indicates that incorrect operation presents a possibility of injury to the user or damage to the instrument.

NOTE Indicates advisory items related to performance or correct operation of the instrument.

Other Indicators

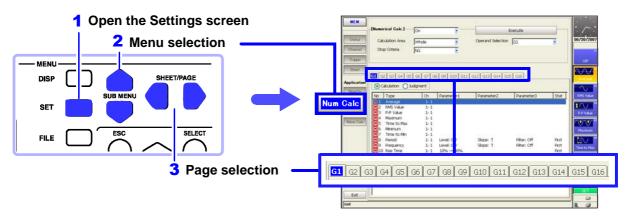
(p.)	Indicates the location of reference information.
*	Indicates that descriptive information is provided below.
$A{ o}B$	Indicates an operation sequence.
[]	Screen labels such as menu items, page titles, setting items, dialog titles and buttons are indicated by square brackets [].
CURSOR (Bold characters)	Bold characters within the text indicate operating key labels.

Accuracy

We define measurement tolerances in terms of f.s. (full scale) values, with the following meanings:

f.s.: maximum display value or scale length

In this instrument, the maximum displayable value is the range (V/div) times the number of divisions (20) on the vertical axis.


Example: For the 1 V/div range, f.s. = 20 V

Numerical Calculation Functions Chapter 1

Numerical calculations can only be used with the Memory function.

Results calculated from the acquired waveform are displayed as numerical values on the Waveform screen. Judgments can also be made based on calculation results.

Numerical calculation settings are made on the Numerical Calculations Setting screen (Num Calc).

Numerical Calculations

- · Average value
- RMS value
- Peak-to-Peak (p-p) value
- Maximum value
- · Time to maximum value
- Minimum value
- Time to minimum value
- Period
- Frequency

- Rise time
- Fall time
- Standard Deviation
- Area value
- X-Y Area value
- Time to specified level
- Pulse width
- Duty (%)
- · Pulse count

- Numerical results of four standard arithmetic operators
- (Total 19 types)
- Specified calculation between A/B cursors

Numerical calculations are available in the range specified by A/B cursors

Details of calculation expressions: "1.6 Numerical Value Calculation Expressions" (p. 19)

Judgments based on Numerical Calculation (p. 11)

Results of numerical calculations can be compared with a specified range for GO/NG judgments.

Saving and Printing Numerical Calculation Results

- · Automatic saving of numerical calculation results
- · Manual saving of existing numerical calculation results

See "1.4 Saving Numerical Calculation Results" (p. 14) in this manual, "Chapter 11 Saving/Loading Data & Managing Files" in the *Instruction Manual*

- · Automatic printing
- Manual printing

See "Chapter 12 Printing" in the Instruction Manual

Of the nineteen types of numerical calculation available, sixteen types can be applied at the same time.

Up to sixteen groups composed of multiple calculation types (operations) can be defined, with up to sixteen types of calculation per group. By setting up such groups of multiple calculations beforehand, they can be readily selected at calculation time.

See "1.6 Numerical Value Calculation Expressions" (p. 19)

When Scaling is enabled, numerical calculations are performed on scaled values.

Numerical calculation is also available when Memory Division is enabled.

1.1 Numerical Value Calculation Workflow

Before Setting

When specifying a waveform range for calculation: [A-B]

Before executing a calculation, specify the calculation range using the A/B cursors (Vertical or Trace cursors) on the Waveform screen. Set the calculation range on the Num Calc Settings screen to [A-B].

- Horizontal cursors cannot be used to specify the range.
- When one cursor is used, the calculation range is from the cursor to the end of the data.

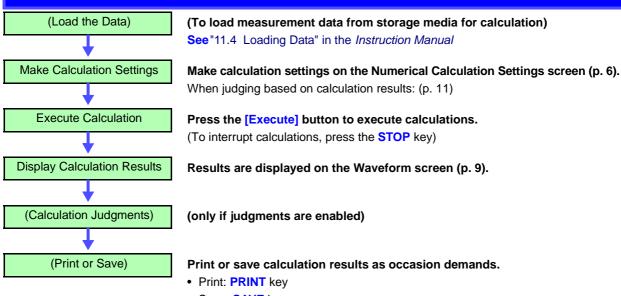
See "8.7 Specifying a Waveform Range" in the *Instruction Manual* "1.2 Settings for Numerical Value Calculation" (p. 6)

To change calculation settings and recalculate

You can make changes to calculation settings and resume calculations from the Waveform screen.

See "To recalculate after changing calculation type settings" (p. 9)

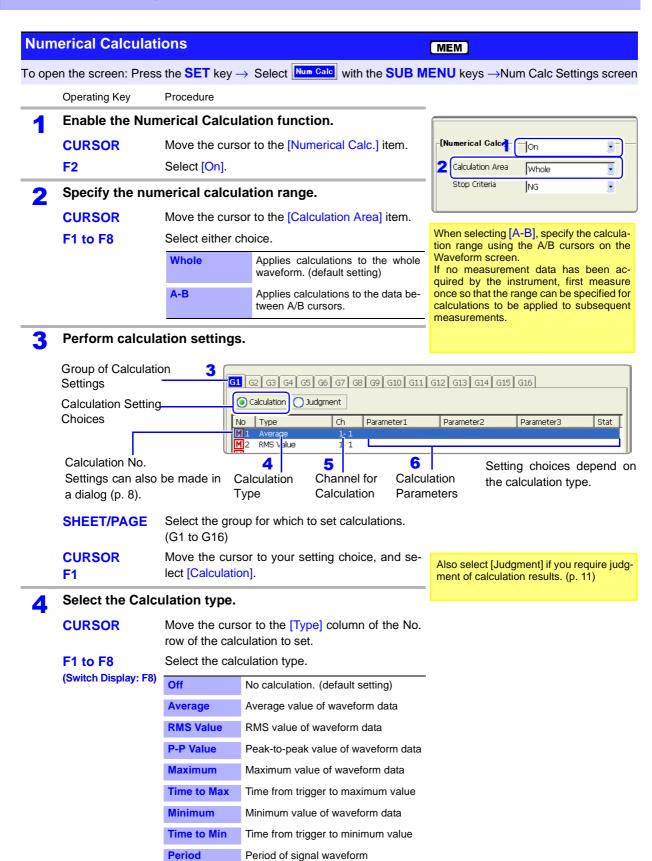
The following two calculation methods are available:


- Calculate while measuring Requires making numerical calculation settings beforehand.
- Apply calculations to existing data
 Calculations can be applied to data after waveforms are acquired, or after data has been saved to storage media.

Calculating While Measuring

Make Calculation Settings Make calculation settings on the Numerical Calculation Settings screen (p. 6). When judging based on calculation results: (p. 11) To automatically print or save calculation results: make printing and saving settings before measuring. Printing calculation results automatically ([Printer] page on the Print Settings screen: Calculation Results [On]) See "12.3 Making Auto Print Settings" in the Instruction Manual · Saving calculation results automatically ([Auto Save] page on the Save Settings screen: Auto Save [On], Calculation Results [On]) See "1.4.1 Automatically Saving Numerical Calculation Results" (p. 14) Start Measurement Acquire Data The instrument acquires data when the trigger criteria are met. (If triggering is not enabled, the instrument acquires data when you press the START Calculate "Calculating" appears on the screen's status bar. Calculations are performed sequentially from No. 1 to No. 16. (To interrupt calculations, press the **STOP** key to abort) **Display Calculation Results** Results are displayed on the Waveform screen (p. 9). (Calculation Judgments) (only if judgments are enabled) (Print or Save) (if auto printing or auto saving are enabled) Calculation results are automatically printed or saved.

Applying Calculations to Existing Data


Stop Measurement

Save: SAVE key

See "12.4 Making Manual Print (PRINT Key Output) Settings" in the *Instruction Manual* "1.4.2 Optionally Selecting Numerical Calculation Results & Saving (SAVE Key)" (p. 15)

1.2 Settings for Numerical Value Calculation

Frequency of signal waveform

Frequency

Operating Key

Procedure

F1 to F8

(Switch Display: F8)

Rise Time	Rise time of waveform data
Fall Time	Fall time of waveform data
Std Deviation	Standard deviation of waveform data
Area	Area enclosed by zero position and signal waveform
X-Y Area	Area of X-Y composite waveform
Time to Level*	Time from trigger to specified level
Pulse Width*	Pulse width of waveform data
Duty*	Duty of waveform data
Pulse Count*	Pulse count of waveform data
4 Operations	Four arithmetic operations on numerical calculation results

Select the channel for calculations.

CURSOR Move the cursor to the [Ch] item.

F1 to F8 Select a channel for calculations.

The waveform calculations (Zn) can be selected.

Set parameters.

(not required for some calculation types)

CURSOR Move the cursor to the [Parameter] item.

F1 to F8 Make appropriate parameter settings.

About setting choices (p. 19)

See "3.3.3 Entering Text and Numbers" in the Instruction Manual

Select a calculation group.

CURSOR Move the cursor to the [Operand Selection] item.

F1 to F8 Select a calculation group.

Execute the calculations. (when judging calculations (p. 12))

Applying Calculations to Existing Data

CURSOR Move the cursor to the [Execute] button.

F1 Select [Execute].

When calculating automatically after measurement

START Starts measurement.

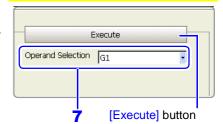
To print or save calculation results while measuring

Before measuring, enable Auto Save (p. 14) or Auto Print. Enable [Calc Results] on the Save Settings or Print Settings screen. See "11.3.4 Setting Auto Save",

"12.3 Making Auto Print Settings" in the *Instruction Manual*

To print or save existing data

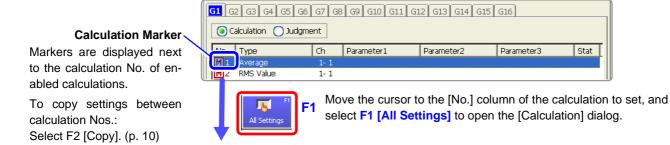
Press the PRINT or SAVE key (p. 15).


Manual Print Settings Manual Save Settings

See "12.4 Making Manual Print (PRINT

Key Output) Settings",

"11.3.5 Setting Manual Save (SAVE Key Output)" in the *Instruction*


Manual

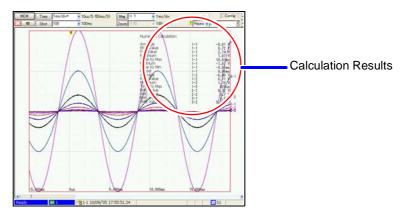
Execute calculation of the displayed group.

Changes made to calculation settings while measuring do not take effect until measurement has been stopped and restarted.

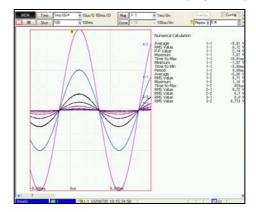
Making settings in the [Calculation] dialog

-Ch Type-▼ Analog ▼ Unit1 Ch1 Mode: Voltage Frequency Level Filter Stat Parameter Settings -0 V Off First 🕝 1 (Displayed as required for the [Judge] Lower -Upper selected calculation type) Off -1 1 Close

Calculation - No.9


Move the cursor to each item, and make the setting.

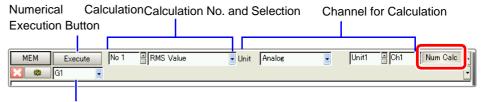
See Parameter setting: "1.6 Numerical Value Calculation Expressions" (p. 19)


After making the appropriate settings, press the **ENTER** key or move the cursor to the **[Close]** button and press the **F1 [Close]** key to accept your settings.

Numerical Calculation Results

Numerical calculation results are displayed on the Waveform screen.

If the display is hard to view because of overlapping numerical values and waveforms Press the **DISP** key. Numerical values and waveforms are displayed separately.



To recalculate after changing calculation type settings

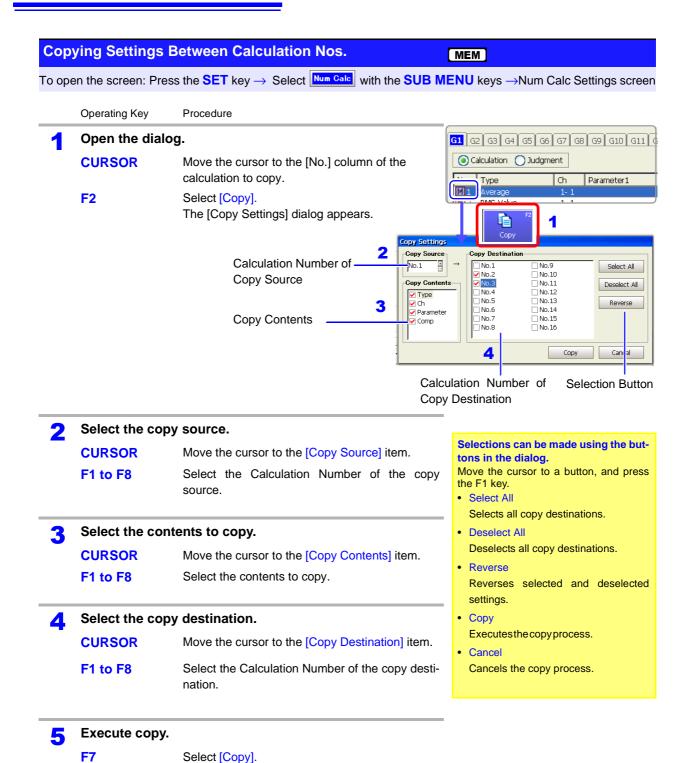
Select your choices for the calculation setting items on the Waveform screen, and execute calculation.

Press the **SUB MENU** keys to switch to the [Num Calc] settings.

Group No. of Numerical Calculation

Select a Group No. for calculation or change your choices, and select the **[Execute]** button.

All calculations specified for the selected Group No. are performed.

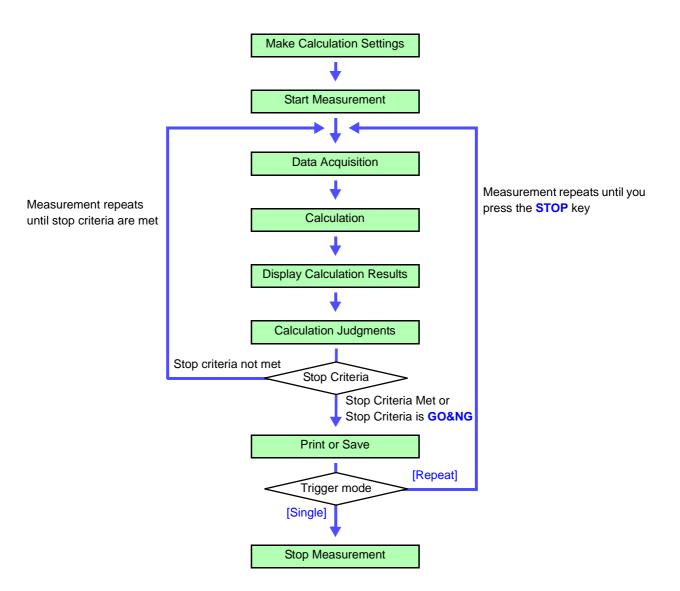


To save or print calculation results after measuring

When Selection Save (default setting) is enabled, press the **SAVE** key and select [Calc Results] for the Save Type.

When Selection Print (default setting) is enabled, press the **PRINT** key and select **F6** [Calc Results].

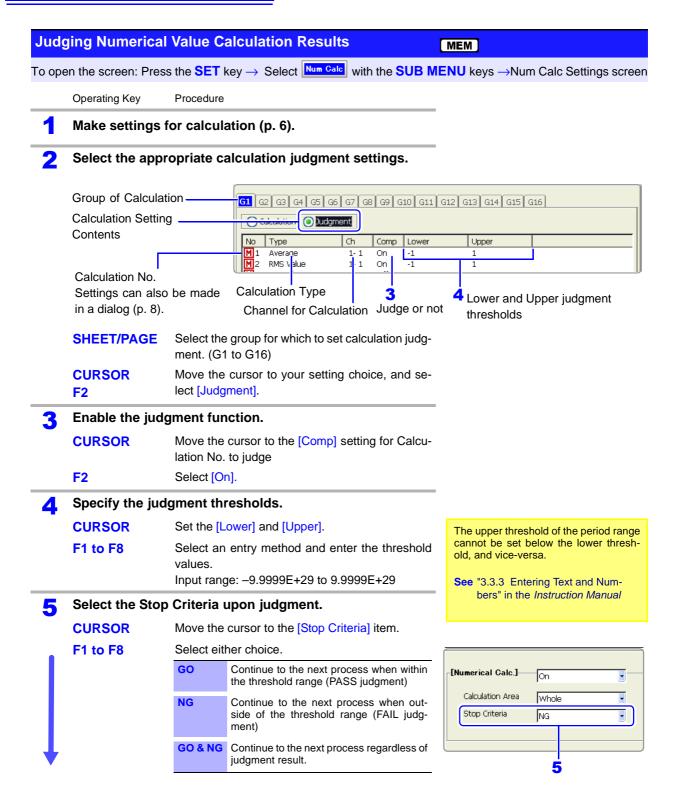
1.2 Settings for Numerical Value Calculation



The selected contents are copied.

1.3 Judging Calculation Results

Set the judgment criteria (upper and lower threshold values) by which to judge numerical calculation results. Judgment criteria can be set for every numerical calculation.


Waveform acquisition processing depends on the trigger mode setting (Single or Repeat) and the criteria specified to stop measuring upon judgment (GO, NG or GO & NG).

NOTE Judgment when memory division is enabled

When memory division is enabled, waveform data is retained in the measured block only when stop criteria are met.

When stop criteria are not met, measurement continues to repeat within the same block.

Execute calculation.

Judging Existing Data

CURSOR Move the cursor to the [Execute] button.

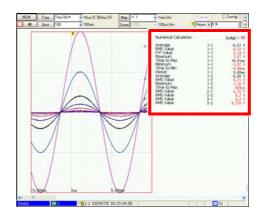
F1 Select [Execute].

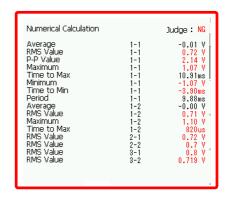
When judging automatically after measurement

START Starts measurement.

Processing depends on the Trigger Mode setting.

If calculating while acquiring waveforms, measurement is repeated until the Stop Criteria are met.


Description


About judgment results

Judgment results of numerical calculations are displayed on the Waveform screen.

Within the judgment threshold range: GO judgment

Out of the judgment threshold range: NG judgment (displayed in red)

When printing, judgment results for each parameter are also printed.

When performing external control

When the external I/O terminals are enabled, the signal is output from the next sampling period.

See "14.2.5 GO/ NG Evaluation Output (GO/EXT OUT1)/ (NG/EXT OUT2)" in the Instruction Manual

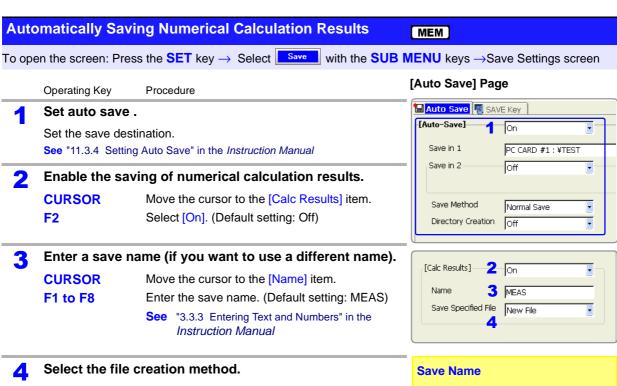
When the judgment result is GO

• The GO signal is output at the GO/EXT OUT1 external I/O terminal.

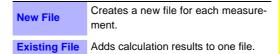
When the judgment result is NG

- The NG signal is output at the NG/EXT OUT2 external I/O terminal. The NG judgment is asserted when any channel is judged as NG.
- Channels judged as NG are indicated by an "x" in printouts.
- When the beeper is enabled, a beep sounds when a result is out of the threshold range.

1.4 Saving Numerical Calculation Results


1.4.1 Automatically Saving Numerical Calculation Results

Calculate and automatically save during data acquisition.


Before measurement begins, the calculation settings need to be set.

!CAUTION

When using auto save during measurement, do not remove the storage media specified as the save destination until the measurement operation is completely finished. Doing so may damage data on the storage media.

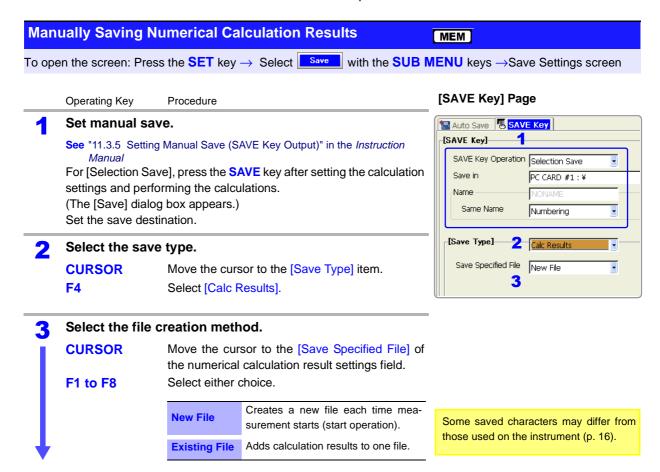
CURSOR F1 to F8 Move the cursor to the [Save Specified File] item. Select either choice.

Confirm the measurement configuration and numerical calculation result settings, then start measurement (START key).

After the data is acquired and the numerical calculation process completes, the numerical calculation results (text) are saved automatically to the specified storage media.

Up to 40 characters (single byte and double byte) can be used for the save name. A sequential number starting from 0001 is added after save names (if [New File] is selected).

Note that a PC will not be able to handle the following characters if they are used.


- ASCII:
- + = [] \ / | : * ? " < > ; ,
- White space characters

Some saved characters may differ from those used on the instrument. (p. 16)

1.4.2 Optionally Selecting Numerical Calculation Results & Saving (SAVE Key)

Perform calculations on data saved to storage media and internal memory and save the calculation results by pressing the **SAVE** key.

Before calculation results can be saved, the calculation settings needs to be set and the calculations need to be performed.

For [Quick Save]:

Press the SAVE key

The calculation results (text) are saved to the specified storage media upon pressing the key.

For [Selection Save]:

Select the [OK] button.

The calculation results (text) are saved to the specified storage media upon selecting the button.

Example of Saving Numerical Calculation 1.4.3 Results

NOTE

If you save numerical calculation results or data in text format, characters or display items used on the instrument are converted as shown below.

tion settings of line 1.

(Characters used on the instrument \rightarrow Saved characters)

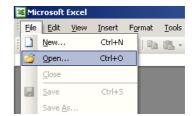
$$^{2} \rightarrow ^{2}, ^{3} \rightarrow ^{3}, ^{n} \rightarrow ^{n}, \mu \rightarrow ^{u}, \Omega \rightarrow ^{o}, \varepsilon \rightarrow ^{e}, ^{o} \rightarrow ^{c},$$

 $\pm \!\!\!\! \to \!\!\! \sim \!\!\!\! +, \, \mu\epsilon$ (display only) $\to u E, \, ^{\circ}C$ (display only) $\to C$

Calculation No. 1: Maximum value of analog channel 1-1 Calculation No. 2: Minimum value of analog channel 1-1 Calculation No. 3: Maximum value of analog channel 1-2 Calculation No. 4: Minimum value of analog channel 1-2

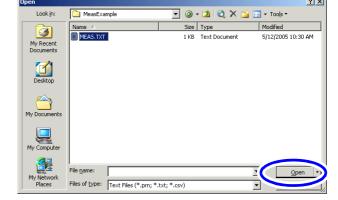
"Trig Time","No1 Maximum A1_1","No2 Minimum A1_1","No3 Maximum A1_2","No4 Minimum A1_2" "","V","V","V","V" Line 1: Calculation Settings "'04-12-14 11:29:12.530",143,-143,0.0038124997,-0.0038124997 Line 2: Calculation Result Unit "'04-12-14 11:29:15.570",143,-143,0.0038124997,-0.0038124997 From Line 3: Calculation Results "'04-12-14 11:29:18.790",143,-142.75,0.0038749997,-0.0038124997 "'04-12-14 11:29:21.940",143.25,-143.25,0.0038124997,-0.0038124997 Recorded in the order of the calcula-

1.5 Reading Numerical Calculation Results on a PC


The following explains how to import data into Excel on Windows.

The capacity of Excel to import data from a text file is limited to 256 columns and 65,536 rows.

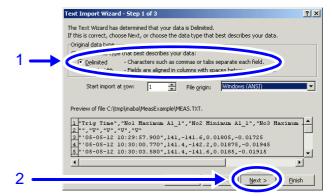
Text files containing data that exceeds these limits cannot be imported into Excel. To avoid exceeding these limits when saving text data, select [Displayed Ch] as the channels to save, or specify the saving range as that between A/B cursors.


Start Excel and click [Open] from the [File] menu.

The [Open] dialog box appears.

Select the file to import.

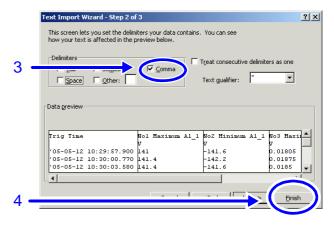
Select the file and click [Open].

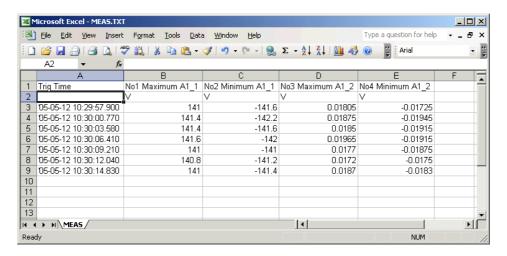


The Text Import Wizard appears.

Select the text processing method.

[Text Import Wizard Step 1 of 3]


- Select [Characters such as commas or tabs separate each field].
- 2. Click [Next].


[Text Import Wizard Step 2 of 3]

3. Select [Comma] only for the delimiters.

4. Click [Finish].

Numerical Calculation Results Data Imported into Excel

1.6 Numerical Value Calculation Expressions

Numerical Calculation Type	Description
Average	Obtains the average value of waveform data. $Avg = \frac{1}{n} \sum_{i=1}^{n} di$ $i = 1$ Avg: Average value n: Data count di: Data on channel number i
RMS (Root-Mean-Square) value	Obtains the RMS value of waveform data. If Scaling is enabled, calculations are applied to the waveform after scaling. $RMS = \sqrt{\frac{1}{n} \sum_{i=1}^{n} d_i^2} \text{RMS: RMS value} $ n: Data count di: Data on channel number i
Peak-to-Peak (P-P) value	Obtains the value of the difference (peak-to-peak value) between maximum and minimum values of waveform data. Maximum value Minimum value
Maximum Value	Obtains the maximum value of waveform da- ta. Maximum value
Time to Maximum Value (Time to Max)	Obtains the time (in seconds) from the last trigger point to the maximum value. If the maximum value occurs in two or more instances, the first instance is treated as the maximum value. Maximum value
Minimum Value	Obtains the minimum value of waveform data. Minimum value
Time to Minimum Value (Time to Min)	Obtains the time (in seconds) from the last trigger point to the minimum value. If the minimum value occurs in two or more instances, the first instance is treated as the minimum value.
Period and Frequency	Displays the period (in seconds) and frequency (Hz) of the signal waveform. The calculation is based on the interval between two sequential points where the waveform crosses the same level (amplitude) in the same direction (slope). Setting Choices: Level, Slope (↑ or ↓) Filter and Statistics (p. 21)

1.6 Numerical Value Calculation Expressions

Numerical Calculation Type	Description
Rise Time and Fall Time	The rise time of the acquired waveform from A% to B% (or fall time from B% to A%) is obtained by calculation using a histogram (frequency distribution) of the 0 and 100% levels of the acquired waveform. As waveform data is acquired, the rise time (or fall time) is obtained from the first rising (or falling) edge. When calculation of the range specified by the A/B cursors is selected, the obtained rise time (or fall time) is the first rising (or falling) edge between the cursors. Setting Choices: Numerical percentage (%) of rise time (A% \rightarrow B%) or fall time (B% \rightarrow A%), Statistics (p. 21)
Standard Deviation (Std Deviation)	Obtains the standard deviation of the waveform data. $\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (di - Avg)^2} $ $\sigma = \sqrt{\frac{1}{n$
Area	Obtains the area value (V•s) enclosed by the zero position (point of zero potential) and the signal waveform. When calculation of the range specified by the A/B cursors is selected, the calculated area is constrained to the waveform between the cursors. S: Area $S = \sum_{i=1}^{n} di \bullet h$ $S = \sum_{i=1}^{n} di \bullet h$ S: Area $S = \sum_{i=1}^{n} di \bullet h$ $S = \sum_{i=1}^{n} di \bullet h$ Cursor B
X-Y Area	Obtains the area (V^2) of an X-Y composite waveform. In the following figures, the areas within the lines are calculated. The calculation is available even if the X-Y composite waveform is not intended for display. To enable area calculation, specify the calculation range using the A/B cursors (Vertical or Trace) on the waveform of each channel for X-Y composition. (The area cannot be specified directly by A/B cursors on the X-Y waveform.) See About A/B cursors: "8.8 Cursor Values" in the <i>Instruction Manual</i> When the trace consists of multiple loops S = $n \times s_0$ S: Area n: Number of loops Start/end point When the trace is a figure-8 When the trace is a spiral S = $s_0 \times s_0 \times s_0$ S: Area (Area enclosed by the curve and line connecting start and end points) S = $s_0 \times s_0 \times s_0 \times s_0$ S: Area (The number of overlapping regions increases with the number of loops) Start point Start point S = $s_0 \times s_0 \times s_0 \times s_0$ S: Area (The number of overlapping regions increases with the number of loops) Start point End point Point Start point Start point End point Start and Start point End point Start and Start point End point Start point End point Start point Start point End point Start point

Numerical Calculation Type	Description	
Time to Level	Finds the point where the signal crosses a specified level from the start of the calculation range, and obtains the time elapsed from the last trigger event. Setting Choices: Level, Slope (↑ or ↓) and Filter	
Pulse Width	Obtains pulse width as the time difference between one rising or falling intersection of the waveform through a specified level to the next intersection (with opposite slope). Setting Choices: Level, Slope (↑ or ↓), Filter and Statistics (see Table below)	
Duty (%)	Obtains the duty percentage based upon the ratio of the time from a rising intersection to the next falling intersection at a specified level, to the time from the same falling intersection to the next rising intersection at the same level. Duty (%) = \[\frac{Tu-d}{Tu-d + Td-u} \times \frac{100 (%)}{Tu-d + Td-u} \] Tu-d: Time (seconds) after rising intersection to falling intersection Td-u: Time (seconds) after falling intersection to the next rising intersection Setting Choices: Level, Filter and Statistics (see Table below)	
Pulse Count	Obtains the count of pulses from the number of rising or falling intersections with a specified level. One pulse is counted when the signal falls back below the specified level after rising through it (or vice versa) Setting Choices: Level, Slope (↑ or ↓) and Filter	
Four Arithmetic Operations (4 Operations)	Performs arithmetic operations $(+, -, \times, \div)$ upon arbitrarily selected results of numerical calculations. Setting Choices: Numerical Calculation No., arithmetic operator	

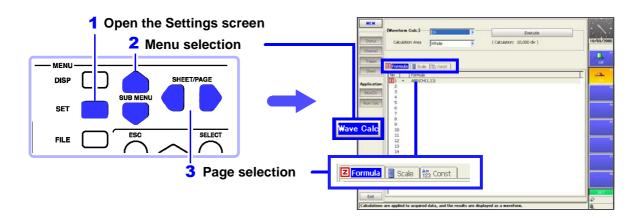
NOTE

- Depending on the signal waveform for parameters of period, frequency, rise time and fall time, calculated values may not be displayed.
- When Scaling is enabled, calculations are performed after waveform data has been scaled. Also, the units of parameter values should match the scaling units.

See About Scaling:

"5.4 Converting Input Values (Scaling Function)" in the Instruction Manual

Setting Choices: Pertaining to the operation for which [Stat] (statistics) is selected (Period and Frequency, Rise Time and Fall Time, Pulse Width or Duty)


[Stat] Selection	Setting Choices
First	Obtains the first calculation result within the calculation area.
Ave	Obtains the average value of multiple calculation results within the calculation area
Max	Obtains the largest value of multiple calculation results within the calculation area.
Min	Obtains the smallest value of ultiple calculation result within the calculation area.

Waveform Calculation Functions Chapter 2

Waveform calculations can only be used with the Memory function.

A pre-specified calculation equation is applied to acquired waveform data, and the calculation results are displayed as a waveform on the Waveform screen.

Waveform calculation settings are made on the Waveform Calculations Setting screen (Wave Calc).

Numerical Calculations

- Four Arithmetic Operators (+, -, *, /)
- Absolute Value (ABS)
- Exponent (EXP)
- Common Logarithm (LOG)
- Square Root (SQR)
- Moving Average (MOV)
- Slide along the time axis
- Differential Calculus: 1st derivative (DIF), 2nd derivative (DIF2)
- Integral Calculus: 1st integral (INT), 2nd integral (INT2)
- Trigonometric functions (SIN, COS TAN)
- Inverse Trigonometric functions (ASIN, ACOS ATAN)

(Total 11 types)

 Specified calculation between A/ B cursors

Waveform calculations can be limited to data within the range specified by A/B cursors.

Calculation operator details:

"2.4 Waveform Processing Calculation Operators and Results" (p. 34)

Of the eleven types of waveform calculation available, sixteen types can be applied at the same time.

When Scaling is enabled, numerical calculations are performed on scaled values.

2.1 Waveform Calculation Workflow

Before Setting

When specifying a waveform range for calculation: [A-B]

Before executing a calculation, specify the calculation range using the A/B cursors (Vertical or Trace cursors) on the Waveform screen. Set the calculation range on the Wave Calc Settings screen to [A-B].

- · Horizontal cursors cannot be used to specify the range.
- When one cursor is used, the calculation range is from the cursor to the end of the data.

See "8.7 Specifying a Waveform Range" in the *Instruction Manual* "2.2 Settings for Waveform Calculation" (p. 26) in this manual

Changing calculation settings while measuring

Changes made to calculation settings while measuring are applied after measurement is finished.

To change calculation settings and recalculate

Make changes to calculation contents on the Waveform Calculation Settings screen, and execute the calculation.

See "2.2 Settings for Waveform Calculation" (p. 26)

To not display a calculation waveform, or to display only the desired waveform

The displayed sheet and calculation waveform to be displayed can be selected on the Sheet Settings screen.

See "2.3 Calculation Waveform Display" (p. 33)

The following two calculation methods are available (p. 25)

- · Calculate while measuring
 - Requires making waveform calculation settings beforehand.
- · Apply calculations to existing data

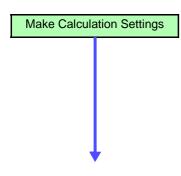
Calculations can be applied to data after waveforms are acquired, or after data has been saved to storage media.

· Maximum recording length available for waveform calculations

NOTE

Installed Memory (Word)		Maximum recording length	*1 Half of Maximum
8860-50	8861-50	(Divisions)	Recording Length
32M	64M	2,500	1,250
128M	256M	10,000	5,000
512M	1G	40,000	20,000
1G	2G	80,000	40,000

^{*1.} When using a single timebase with [16CH] and logic channels selected (on the [Use Ch] page of the Status setting screen)


When using two timebases with [16CH] (Timebase 1) and [8CH] (Timebase 2) (on the [Use Ch] page of the Status setting screen)

When calculating measured waveforms with the REC&MEM function

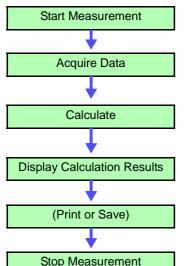
If the recording length is set longer than the above maximum, waveform calculation is not performed. In this case, reset the recording length so that it is below the maximum, or after performing a partial or divided save, reload a portion of the data into the instrument and apply the calculation.

- Waveform calculation is not available when using Roll Mode and Memory Division.
- When Memory Division is disabled, up to 16 past waveforms can be used for reference. However, waveforms other than the currently referring block (that which includes data for calculation) are deleted when waveform calculation executes.
- Waveform averaging calculations can be performed after measurement is finished.
- If a waveform calculation is interrupted when loading data, the incomplete calculation result is displayed. To repeat the calculation, select the [Execute] button on the Waveform Calculation Settings screen.

Calculating While Measuring

Make calculation settings on the Waveform Calculation Settings screen (p. 26).

Make display settings for waveform calculation results on the Sheet Settings screen. (p. 33)


To automatically print or save calculation results: make printing and saving settings before measuring.

 Printing calculation results automatically ([Printer] page on the Print Settings screen: Auto Print [On])

See "12.3 Making Auto Print Settings" in the Instruction Manual

• Saving calculation results automatically ([Auto Save] page on the Save Settings screen: Auto Save [On])

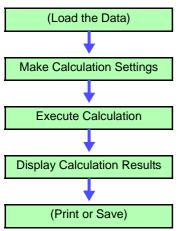
See "11.3.7 Automatically Saving Waveforms" in the Instruction Manual

The instrument acquires data when the trigger criteria are met.

(If triggering is not enabled, the instrument acquires data when you press the **START** key.)

"Calculating" appears on the screen's status bar.

Calculations are performed sequentially from No. 1 to No. 16.


(To interrupt calculations, press the **STOP** key to abort)

Results are displayed on the Waveform screen (p. 27).

(if auto printing or auto saving are enabled)

Calculation results are automatically printed or saved.

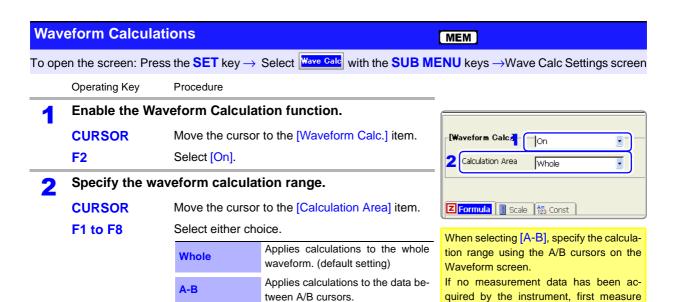
Applying Calculations to Existing Data

(To load measurement data from storage media for calculation)

See "11.4 Loading Data" in the Instruction Manual

Make calculation settings on the Waveform Calculation Settings screen (p. 26).

Press the [Execute] button to execute calculations.


(To interrupt calculations, press the **STOP** key)

Results are displayed on the Waveform screen (p. 27).

Print or save calculation results as occasion demands.

Print: PRINT keySave: SAVE key

2.2 Settings for Waveform Calculation

Perform calculation settings.

CURSOR Move the cursor to your setting choice on the

[Formula] page.

F1 Select [Set].

A dialog is displayed for entering a calculation

Z Formula Scale 123 Const Formula Calculation No 2 Selecting the channel for calculation After selecting the unit and channel number, select the [Set] button. Enter calculation operators EXP LOG SQR BS Del 2 3 Ch1 Set Enter numerical 5 6 + SLI DIF INT INT2 7 8 9 SIN COS Home End values and symbols Enter constants

i = 0

j = 0

k = 273.15

CURSOR Select a calculation equation.

Constants must have been previ-

ously entered on the [Const]

page. (p. 29)

F1 to F8 Example of calculation equation entry:(p. 32)

a = 0

b = 1

d = 0

F7 When finished entry, select [OK].

The entered equation is displayed in the [Formu-

e = 2.7183

f = 2.0678e-015

la] field.

The default setting for calculation results display is [Auto]. To change the display, make settings on the [Scale] page.

See "Calculation Waveform Display Settings" (p. 30)

If "=" is displayed

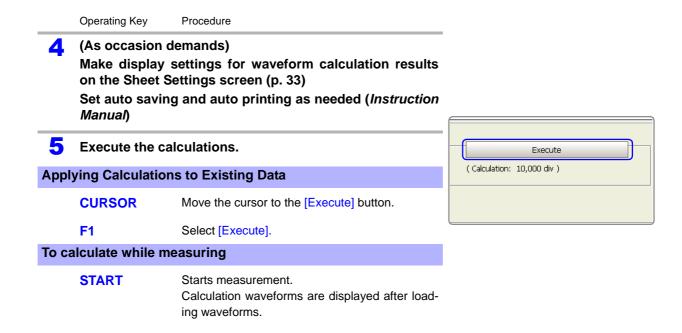
m = 1.2566e-006

n = 0

p = 3.1416

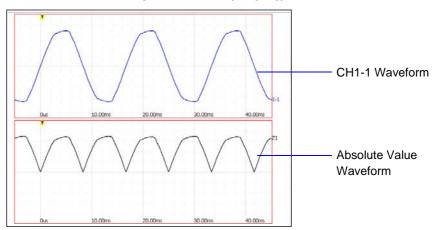
The entered calculation equation is syntactically correct.

once so that the range can be specified for calculations to be applied to subsequent


measurements.

If "?" is displayed

The equation has a syntax error.


The cursor is placed at the location of the error to facilitate correction.

- Are parentheses correctly matched?
- Has a multiplication operator "*" been omitted?

Waveform Calculation Results

Example: Waveform of the calculated absolute value of the waveform of CH1-1. Calculation equation = ABS(CH(1,1))

To copy settings from one calculation to another

The method is the same as for copying numerical value calculations.

See "Copying Settings Between Calculation Nos." (p. 10)

To distribute calculation results onto sheets, or to display in separate Graphs

Display/non-display of calculation waveforms and graph division can be set on the Sheet Settings screen.

See "2.3 Calculation Waveform Display" (p. 33)

Description

About calculation equations

Operators:

Operator	Name	Operator	Name
ABS	Absolute Value	DIF2	2 nd Derivative
EXP	Exponent	INT2	2 nd Integral
LOG	Common Logarithm	SIN	Sine
SQR	Square Root	cos	Cosine
MOV	Moving Average	TAN	Tangent
SLI	Movement parallel to the time axis	ASIN	Inverse Sine
DIF	1 st Derivative	ACOS	Inverse Cosine
INT	1 st Integral	ATAN	Inverse Tangent

See "2.4 Waveform Processing Calculation Operators and Results" (p. 34)

Entering Calculation Equations

- Each entered calculation equation may contain up to 80 characters.
- Each constant in a calculation equation may contain up to 30 digits.
- The multiplication operation (*) must always be explicitly entered.
- Each calculation expression may contain up to eight instances of the four arithmetic operators.

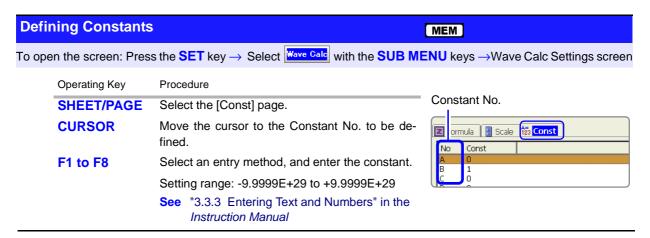
Multiplication and division or addition and subtraction of channels within parentheses [e.g., (CH(1,1)*CH(1,2)) or (CH(1,1)+CH(1,2))] each count as one operation.

$$\frac{\mathsf{ABS}(\mathsf{CH}(1,1)) + \mathsf{CH}(1,2) * \mathsf{CH}(2,1) - (\mathsf{CH}(2,2) + \mathsf{CH}(3,2))}{\mathbf{1}} * \frac{\mathsf{ABS}(\mathsf{CH}(4,1)) / \mathsf{DIF}(\mathsf{CH}(1,1),1)}{\mathbf{5}}$$

- Division by zero, such as 1/0 (1 ÷ 0), results in overflow output.
- Channel data is specified in the form CH(u,n), where u = the Unit (input module) number, and n = the number of the channel within input module u.
 (Example: To specify the data on Channel 2 of Unit 1, enter "CH(1,2)".)
- The result of calculation Z_i can be used in other calculation equations. However, the nth equation can only refer to the results of equations up to Z_{n-1}.
 (Example: Equation Z4 can include the results of equations Z1 through Z3.)

Using the MOV, SLI, DIF and DIF2 operators in an equation

The number # after a comma within parenthesis (_,#) for each operation is set to the calculation operator.


Operator	Setting Choice	Setting Examples
MOV (Moving Average) SLI (Parallel Movement)	Set the number of points to move. Setting Range MOV (Moving Average): 1 to 5000 SLI: -5000 to 5000	Calculate the 10-point moving average of CH1-1: MOV(CH(1,1),10)
DIF (Derivative) DIF2 (2nd Derivative)	Specify the sampling interval for differentiation. "1" is normally acceptable, but this should be set larger to capture fluctuation values of slowly changing waveforms. DIF and DIF2 Setting Range: 1 to 5000	20-point sampling interval:

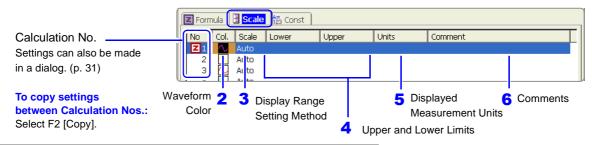
When calculation results overflow (OVER)

- The displayed A/B cursor values (and those printed when the printer recording type is set to [Numeric]) are incorrect.
- When [Scale] is set to [Auto], waveforms appear at the top or bottom edge of the screen. This makes calculation result overflow obvious.

Waveform calculations with Timebase 2 (measurements using sampling rate 2)

- Calculation equations Z1 to Z8 apply only to Timebase 1, and Z9 to Z16 apply only to Timebase 2.
- Channel data set to use Sampling Rate 1 can only be used in equations Z1 to Z8, and channel data set to use Sampling Rate 2 can only be used in equations Z9 to Z16.
- Inclusion of the results of one calculation (Zn) in another is also limited to only those calculations which apply to the same timebase.
 (Example: equation Z8 can include only the results of Z1 to Z7, and Z16 can include only the results of Z9 to Z15.)

Defined constants are shown in the constant display of the calculation equation setting dialog.



MEM

To open the screen: Press the SET key → Select Wave Calc with the SUB MENU keys →Wave Calc Settings screen

Operating Key Procedure

SHEET/PAGE Select the [Scale] page.

Enable waveform display, and display color

CURSOR Move the cursor to the [Color] column.

F1 to F8 Select whether to display the waveform, and its

color (when On)

Off The waveform is hidden. The waveform is displayed. On (default setting)

Select a method to set scaling

CURSOR Move the cursor to the [Scale] column for the Cal-

culation No. to be set.

F1 to F8 Set the display range for the calculation waveform.

> Automatically sets the display range of the vertical axis. (After calculation, the Auto upper and lower limits are obtained from the results, and set automatically.) Upper and lower limits of the vertical axis **Manual** display range are entered manually.

Depending on calculation results, automatic scaling settings may be unsatisfactory, in which case the limits must be entered manually.

Set the upper and lower limits of the display range (when

[Manual] is selected)

CURSOR Select [Lower] and [Upper].

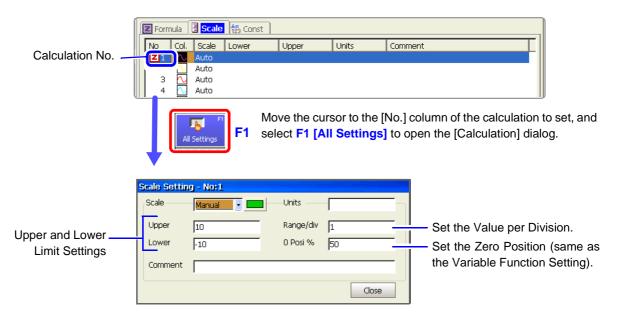
F1 to F8 Select an entry method and enter the limit values.

Entry range: -9.9999E+29 to +9.9999E+29

Specify the physical units

CURSOR Move the cursor to the [Units] column.

F1 to F8 Select an entry method and enter the physical

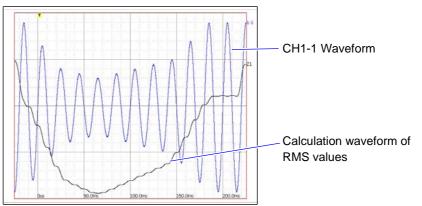

units.

Enter a comment (as occasion demands)

CURSOR Move the cursor to the [Comment] column.

F1 to F8 Enter your comment. See "3.3.3 Entering Text and Numbers" in the Instruction Manual

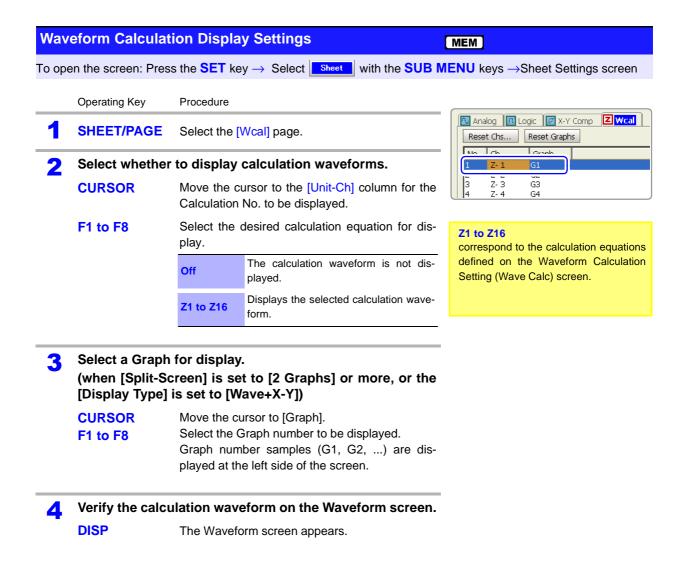
Making settings in the [Calculation] dialog



Waveform Calculation Example

Calculate the RMS waveform from the instantaneous waveform

The RMS values of the waveform input on Unit 1 Channel 1 are calculated and displayed. This example describes the calculation of waveform data measured for one cycle over two divisions.



To view the waveform calculated from the acquired data, press the [Execute] button on the Waveform Calculation Settings screen.

2.3 Calculation Waveform Display

Assignment of calculation results and split-screen graph display arrangement can be set.

These settings are effective when Waveform Calculation is enabled.

2.4 Waveform Processing Calculation Operators and Results

b_i: ith member of calculation result data, d_i: ith member of source channel data

Waveform Calculation Type	Description
Four Arithmetic Operators (+, -, *, /)	Executes the corresponding arithmetic operation.
Absolute Value (ABS)	$b_i = /d_i /$ (i = 1, 2, n)
Exponent (EXP)	$b_i = exp(d_i)$ (i = 1, 2, n)
Common Logarithm (LOG)	When $d_i>0$, $b_i=\log_{10}d_i$ When $d_i=0$, $b_i=-\infty$ (overflow value output) When $d_i<0$, $b_i=\log_{10}/d_i/(i=1,2,n)$ Note: Use the following equation to convert to natural logarithm calculations. $LnX=\log_e X=\log_{10} X/\log_{10} e$ $1/\log_{10} e\approx 2.30$
Square Root (SQR)	When $d_i \geq 0$, $b_i = \sqrt{d_i}$ When $d_i < 0$, $b_i = -\sqrt{ d_i }$ $(i$ = 1, 2, n)
Moving Average (MOV) Slides waveform data along the time axis (SLI)	When k is odd number: When k is even number: $bi = \frac{1}{k} \sum_{t=i-\frac{k}{2}}^{i+\frac{k}{2}} dt \qquad (i = 1, 2, n)$ $di = \frac{1}{k} \sum_{t=i-\frac{k}{2}}^{i+\frac{k}{2}} dt \qquad (i = 1, 2, n)$ $di = \frac{1}{k} \sum_{t=i-\frac{k}{2}}^{i+\frac{k}{2}} dt \qquad (i = 1, 2, n)$ $di = \frac{1}{k} \sum_{t=i-\frac{k}{2}}^{i+\frac{k}{2}} dt \qquad (i = 1, 2, n)$ $di = \frac{1}{k} \sum_{t=i-\frac{k}{2}}^{i+\frac{k}{2}} dt \qquad (i = 1, 2, n)$ $di = \frac{1}{k} \sum_{t=i-\frac{k}{2}}^{i+\frac{k}{2}} dt \qquad (i = 1, 2, n)$ $di = \frac{1}{k} \sum_{t=i-\frac{k}{2}}^{i+\frac{k}{2}} dt \qquad (i = 1, 2, n)$ $di = \frac{1}{k} \sum_{t=i-\frac{k}{2}}^{i+\frac{k}{2}} dt \qquad (i = 1, 2, n)$ $di = \frac{1}{k} \sum_{t=i-\frac{k}{2}}^{i+\frac{k}{2}} dt \qquad (i = 1, 2, n)$ $di = \frac{1}{k} \sum_{t=i-\frac{k}{2}}^{i+\frac{k}{2}} dt \qquad (i = 1, 2, n)$ $di = \frac{1}{k} \sum_{t=i-\frac{k}{2}}^{i+\frac{k}{2}} dt \qquad (i = 1, 2, n)$ $di = \frac{1}{k} \sum_{t=i-\frac{k}{2}}^{i+\frac{k}{2}} dt \qquad (i = 1, 2, n)$ $di = \frac{1}{k} \sum_{t=i-\frac{k}{2}}^{i+\frac{k}{2}} dt \qquad (i = 1, 2, n)$ $di = \frac{1}{k} \sum_{t=i-\frac{k}{2}}^{i+\frac{k}{2}} dt \qquad (i = 1, 2, n)$ $di = \frac{1}{k} \sum_{t=i-\frac{k}{2}}^{i+\frac{k}{2}} dt \qquad (i = 1, 2, n)$ $di = \frac{1}{k} \sum_{t=i-\frac{k}{2}}^{i+\frac{k}{2}} dt \qquad (i = 1, 2, n)$ $di = \frac{1}{k} \sum_{t=i-\frac{k}{2}}^{i+\frac{k}{2}} dt \qquad (i = 1, 2, n)$ $di = \frac{1}{k} \sum_{t=i-\frac{k}{2}}^{i+\frac{k}{2}} dt \qquad (i = 1, 2, n)$ $di = \frac{1}{k} \sum_{t=i-\frac{k}{2}}^{i+\frac{k}{2}} dt \qquad (i = 1, 2, n)$ $di = \frac{1}{k} \sum_{t=i-\frac{k}{2}}^{i+\frac{k}{2}} dt \qquad (i = 1, 2, n)$ $di = \frac{1}{k} \sum_{t=i-\frac{k}{2}}^{i+\frac{k}{2}} dt \qquad (i = 1, 2, n)$ $di = \frac{1}{k} \sum_{t=i-\frac{k}{2}}^{i+\frac{k}{2}} dt \qquad (i = 1, 2, n)$ $di = \frac{1}{k} \sum_{t=i-\frac{k}{2}}^{i+\frac{k}{2}} dt \qquad (i = 1, 2, n)$ $di = \frac{1}{k} \sum_{t=i-\frac{k}{2}}^{i+\frac{k}{2}} dt \qquad (i = 1, 2, n)$ $di = \frac{1}{k} \sum_{t=i-\frac{k}{2}}^{i+\frac{k}{2}} dt \qquad (i = 1, 2, n)$ $di = \frac{1}{k} \sum_{t=i-\frac{k}{2}}^{i+\frac{k}{2}} dt \qquad (i = 1, 2, n)$ $di = \frac{1}{k} \sum_{t=i-\frac{k}{2}}^{i+\frac{k}{2}} dt \qquad (i = 1, 2, n)$ $di = \frac{1}{k} \sum_{t=i-\frac{k}{2}}^{i+\frac{k}{2}} dt \qquad (i = 1, 2, n)$ $di = \frac{1}{k} \sum_{t=i-\frac{k}{2}}^{i+\frac{k}{2}} dt \qquad (i = 1, 2, n)$ $di = \frac{1}{k} \sum_{t=i-\frac{k}{2}}^{i+\frac{k}{2}} dt \qquad (i =$
Sine (SIN)	$b_i = sin(d_i)$ ($i = 1, 2,$ n) Trigonometric functions employ radian (rad) units.
Cosine (COS)	$b_i = cos(d_i)$ (i = 1, 2, n) Trigonometric functions employ radian (rad) units.
Tangent (TAN)	$b_i = tan(d_i)$ $(i = 1, 2, n)$ where $-10 \le b_i \le 10$ Trigonometric functions employ radian (rad) units.
Arcsine (ASIN)	When $d_i > l$, $b_i = \pi/2$ When $-l \le d_i \le l$, $b_i = asin(d_i)$ When $d_i < l$, $b_i = -\pi/2$ Trigonometric functions employ radian (rad) units.

2.4 Waveform Processing Calculation Operators and Results

 b_i : ith member of calculation result data, d_i : ith member of source channel data

Waveform Calculation Type	Description
Arccosine (ACOS)	When $d_i > I$, $b_i = 0$ When $-I \le d_i \le I$, $b_i = acos(d_i)$ When $d_i < -I$, $b_i = \pi$ $(i = 1, 2, n)$ Trigonometric functions employ radian (rad) units.
Arctangent (ATAN)	$b_i = atan(d_i)$ ($i = 1, 2, n$) Trigonometric functions employ radian (rad) units.
First derivative (DIF) Second derivative (DIF2)	The first and second derivative calculations use a fifth-order Lagrange interpolation polynomial to obtain a point data value from five sequential points. d_1 to d_n are the derivatives calculated for sample times t_1 to t_n . Note: Scattering of calculation results increases as input voltage level decreases. If scattering is excessive, apply the moving average (MOV). Calculation formulas for the first derivative Point t_1 $b_1 = (-25d_1 + 48d_2 - 36d_3 + 16d_4 - 3d_5)/12h$ Point t_2 $b_2 = (-3d_1 - 10d_2 + 18d_3 - 6d_4 + d_5)/12h$ Point t_3 $b_3 = (d_1 - 8d_2 + 8d_4 - d_5)/12h$ Point t_1 $b_1 = (d_1 - 8d_2 + 8d_4 - d_5)/12h$ Point t_1 $b_1 = (d_1 - 8d_2 + 8d_{11} - d_{1+2})/12h$ Point t_n b_n

2.4 Waveform Processing Calculation Operators and Results

 $\mathbf{b_{i}}$: ith member of calculation result data, $\mathbf{d_{i}}$: ith member of source channel data

Waveform Calculation Type	Description
First integral (INT) Second integral (INT2)	First and second integrals are calculated using the trapezoidal rule. d_1 to d_n are the integrals calculated for sample times t_1 to t_n . Calculation formulas for the first integral Point $t_1 I_1 = 0$ Point $t_2 I_2 = (d_1 + d_2)h/2$ Point $t_3 I_3 = (d_1 + d_2)h/2 + (d_2 + d_3)h/2 = I_2 + (d_2 + d_3)h/2$ \downarrow Point $t_n I_n = I_{n-1} + (d_{n-1} + d_n)h/2$ I_I to I_n : calculation results $h = \Delta t$: Sampling Period Calculation formulas for the second integral Point $t_1 II_1 = 0$ Point $t_2 II_2 = (I_1 + I_2)h/2$ Point $t_3 II_3 = (I_1 + I_2)h/2 + (I_2 + I_3)h/2 = II_2 + (I_2 + I_3)h/2$ \downarrow Point $t_n II_n = II_{n-1} + (I_{n-1} + I_n)h/2$
	II_I to II_n : calculation results

FFT Function

Chapter 3

3.1 Overview and Features

FFT analysis can only be used with the FFT function.

The FFT (Fast-Fourier Transform) functions provide frequency analysis of input signal data.

Use these functions for frequency analysis of rotating objects, vibrations, sounds and etc.

For details, refer to "3.11 FFT Definitions" (p. 103).

Analysis can be performed on data as it is being measured, on pre-existing analog waveform data previously acquired with the Memory function, and on data output from waveform calculations.

However, FFT analysis cannot be applied to data acquired with the Model 8958 16-Ch Scanner Unit. Also, FFT analysis cannot be applied to pre-existing waveform data acquired from channels that used Timebase 2 for sampling.

When using an input module equipped with an anti-aliasing filter, the cut-off frequency can be automatically set by linking with the frequency range setting. (Model 8938 FFT Analog Unit, 8947 Chargh Unit, 8957 High Resolution Unit, 8960 Strain Unit)

Major Features

- FFT analysis frequency range: 133 mHz to 8 MHz
- Frequency resolution: 1/400th, 1/800th, 1/2000th, 1/4000th or 1/8000th of the frequency range
- FFT Analysis Modes (16 types)
 - Storage Waveform
 - RMS Spectrum
 - Power Spectrum Density*
 - Auto-correlation Function
 - Transfer Function
 - Impulse Response
 - 1/1 Octave Analysis*
 - Phase Spectrum

- Linear Spectrum
- Power Spectrum
- Cross-power Spectrum
- Histogram
- Cross-correlation Function
- Coherence Function
- 1/3 Octave Analysis*
- Power Spectrum Density (LPC)*

For phase spectra, only the required phase information is highlighted and displayed.

See "3.4.7 Emphasizing Analysis Results (phase spectra only)" (p. 61)

Also, when performing FFT analysis with the instrument connected to a sound level or vibration meter, scaling by dB can be set from the Channel Settings screen if you want to read values directly in calibrated units of measurement.

See "Scaling" (p. 71)

NOTE

To suppress the effects of aliasing distortion

We recommend using input modules that are equipped with anti-aliasing filtering to suppress the effects of aliasing distortion when sampling.

See Aliasing Distortion and Anti-Aliasing Filters
"3.11 FFT Definitions" (p. 103)

Refer to the Instruction Manual for FFT function specifications.

^{*} Not available when using external sampling.

3.2 Screen Organization (FFT Function)

Measurement-related settings for FFT analysis are made on the Settings screens (Status, Channel, Trigger and Sheet); saving and printing settings are made on the Save Settings and Print Settings screens; and measurement data display settings are made on the Waveform screen. The Channel Settings, Trigger Settings, Save Settings and Print Settings screens are nearly the same as for the other operating functions.

3.2.1 Waveform Screen

To open the Waveform screen

Press the DISP key

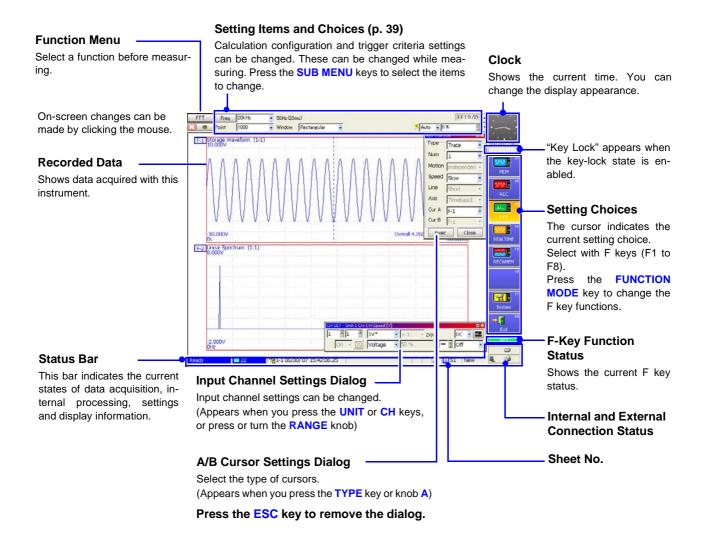
MENU
DISP
SUB MENU
SET
SUB MENU

Press the SUB MENU keys

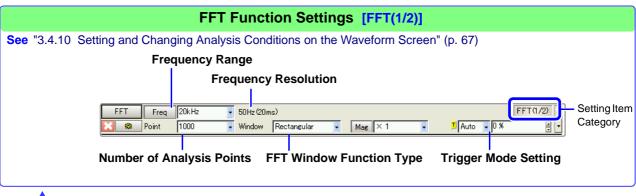
(The Waveform screen appears)

Press the SHEET/PAGE keys (To change sheets)

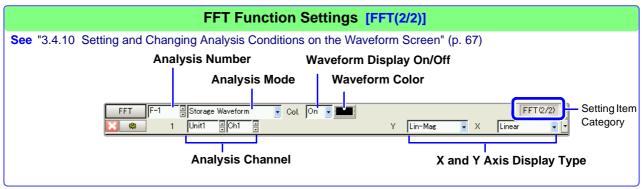
This is valid only when measurement data has been assigned to multiple sheets.

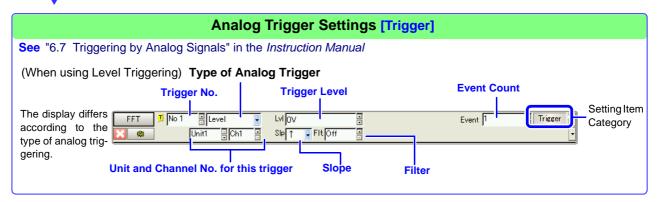

(To change choices of setting items)

Data acquired by the instrument can be displayed as any of the following types. The display type can be selected for each Sheet.

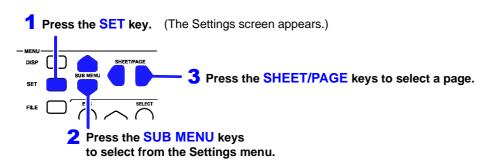

Display type:

- FFT
- Nyquist
- FFT+Nyquist
- Wave+FFT
- Wave+Nyquist


See "3.6 Setting the Screen Layout of the Waveform Screen" (p. 72)

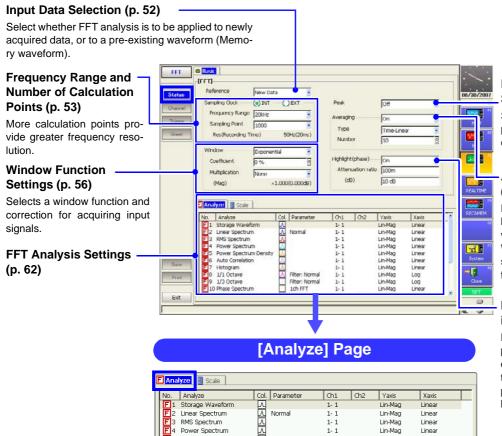

Setting Items and Choices

Switch with the SUB MENU keys



♠ Switch with the SUB MENU keys

3.2.2 Settings Screen


To open the Settings screen

Status

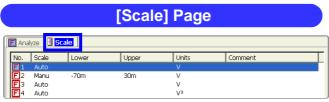
Status Settings Screen

Make settings here for FFT analysis.

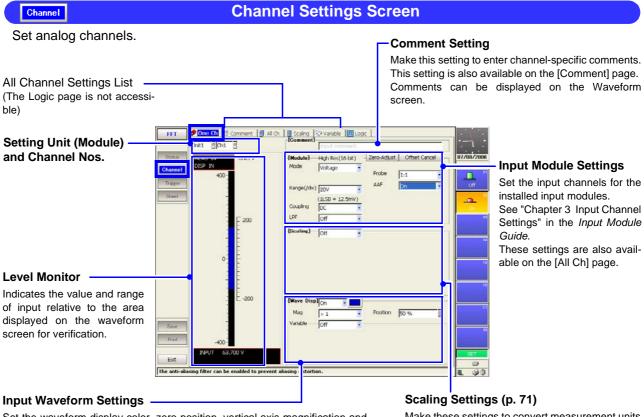
Peak Value Display Setting (p. 57)

Selects whether to display the peaks (maximal or maximum) of analysis results.

Averaging Settings (p. 58)

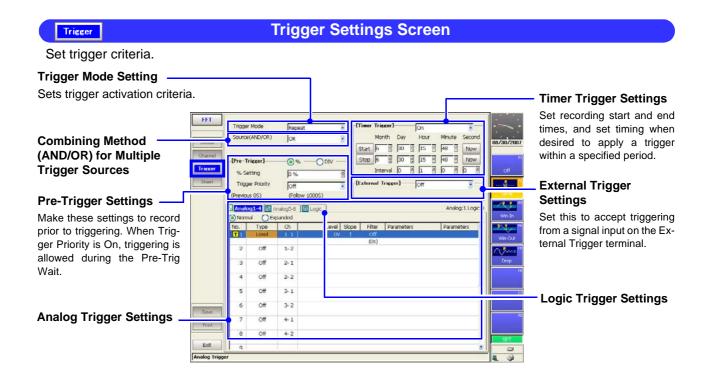

Noisy or unstable values can be averaged to clarify the waveform display.

When averaging is enabled, select the method and count for averaging.


Phase Spectra Highlighting

For the maximum value of a power spectrum or cross-power spectrum, data exceeding the specified ratio can be displayed with emphasis (highlighted).

Selects the analysis mode, analysis channels, \boldsymbol{x} and \boldsymbol{y} axes and display parameters. (p. 62)



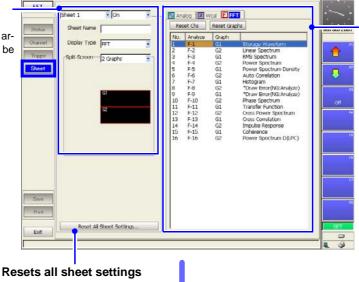
Sets the display scale of the vertical (y) axis. (p. 66)

Set the waveform display color, zero position, vertical axis magnification and display area. These settings are also available on the [All Ch] page.

Make these settings to convert measurement units for display as physical values when using a clamp or external sensor. These settings are also available on the [Scaling] page.

3.2 Screen Organization (FFT Function)

Settings on the [Analog] and [Wcal] pages are the same as for the Memory function.


Sheet Settings Screen

Set the display method for the Waveform screen.

Screen Layout Setting (p. 72)

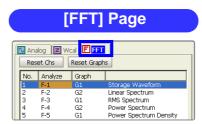
Set the data type and display arrangement for each sheet to be displayed.

- · Sheet Name setting
- Display type
- Split screen

Assigning Channels to Sheets

Assigns the channel, calculation results and waveform display position for each display sheet.

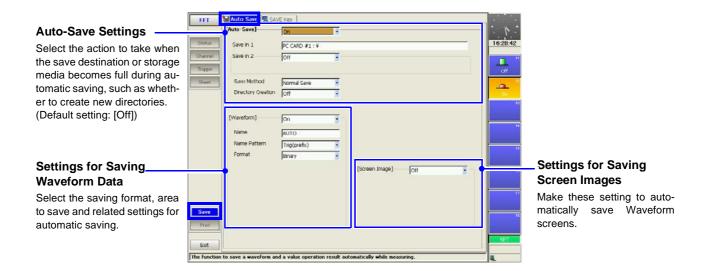
Assign analog channels.


See "7.2.6 Assigning Display Channels to Graphs (Analog Channels)" in the Instruction Manual

[Wcal] Page

Arrange waveform calculation results.

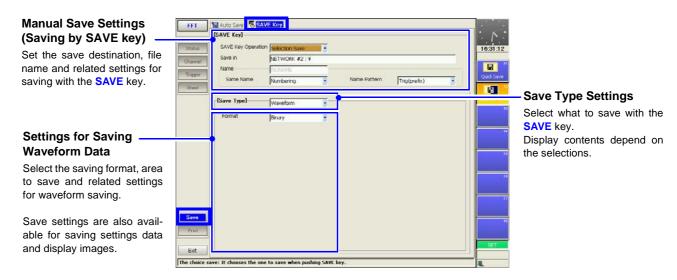
See "2.3 Calculation Waveform Display" (p. 33)


Assigns FFT analysis results and sets graph arrangement for split-screen display.

Setting procedures on the Save Settings screen are the same for all functions. See "Chapter 11 Saving/Loading Data & Managing Files" in the *Instruction Manual* for details.

Save

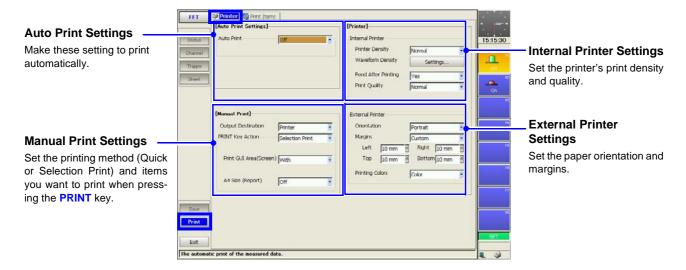
Save Settings Screen [Auto Save] Page


Make these settings to specify automatic saving. The factory default setting for auto save is [Off].

Save

Save Settings Screen [SAVE Key] Page

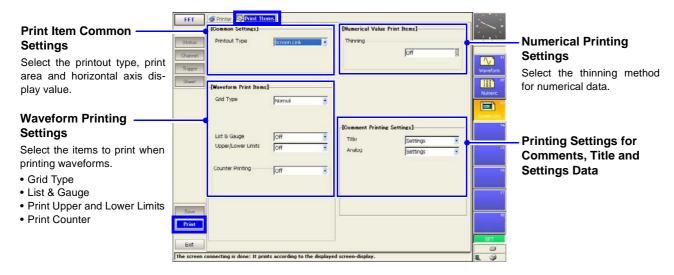
These settings determine the operation of the SAVE key.

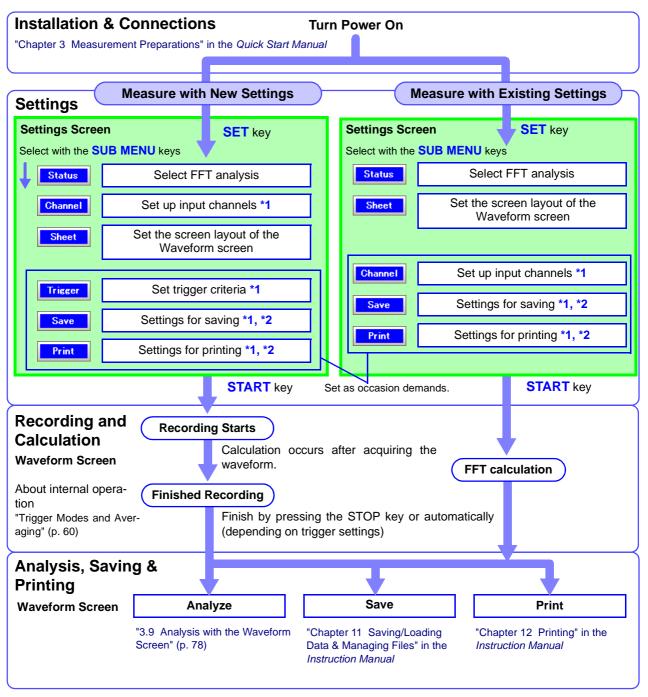

3.2 Screen Organization (FFT Function)

Setting procedures on the Print Settings screen are the same for all functions. See "Chapter 12 Printing" in the *Instruction Manual* for details.

Print

Print Settings Screen [Printer] Page


Select the printing method and printer for automatic or manual printing. The factory default setting for auto print is [Off].


Print

Print Settings Screen [Print Items] Page

Select the items to be printed (printout contents).

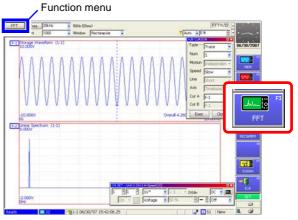
3.3 Operation Workflow

- *1. Settings are the same as for the Memory and Recorder functions. Refer to the *Instruction Manual* for details about each setting.
- *2. When saving or printing manually, settings can be changed after calculation.

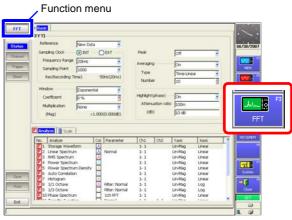
Settings Procedure for FFT Analysis

Function Selection

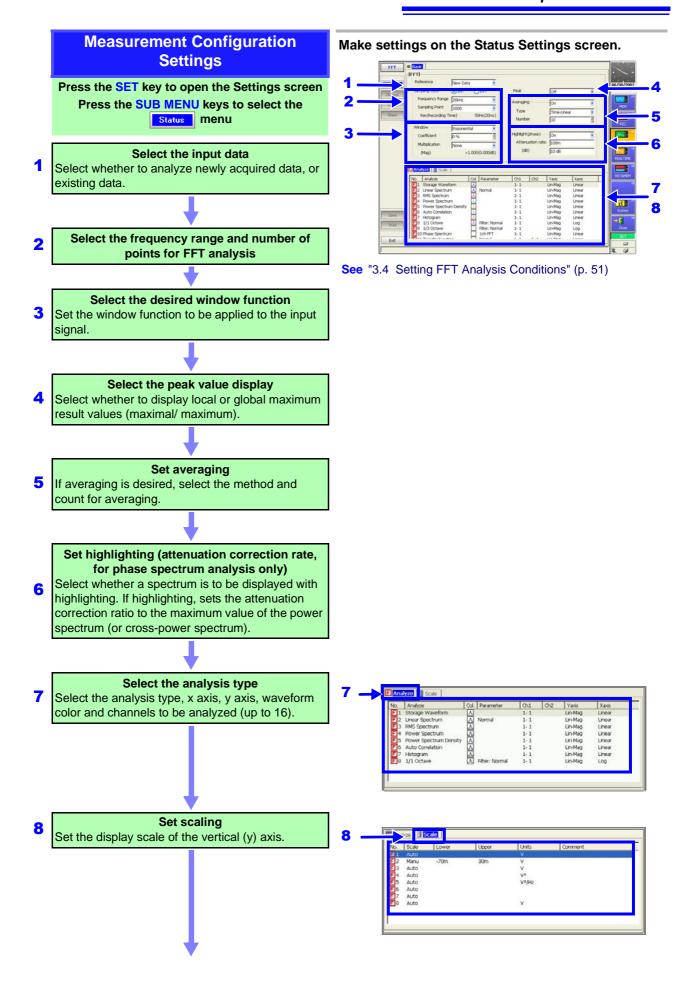
Select the FFT function (p. 51).

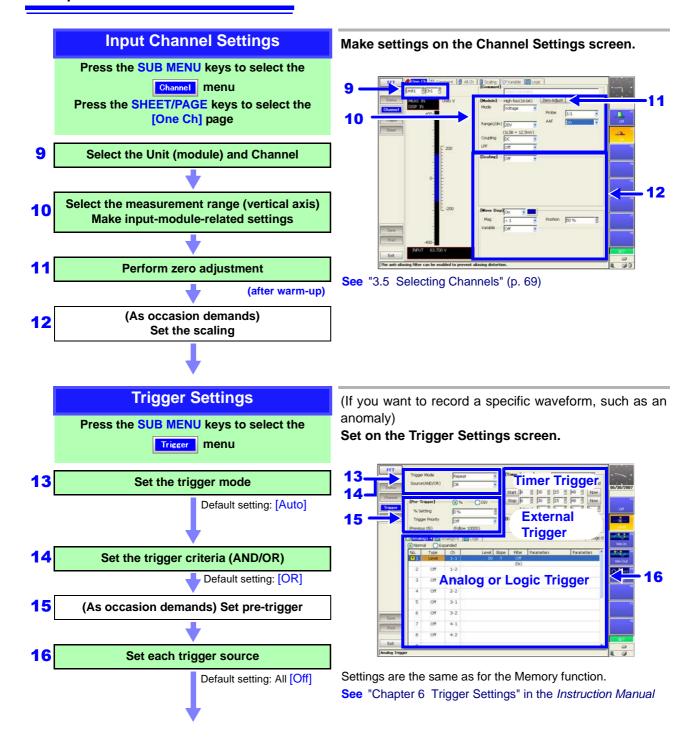

Opening screen:

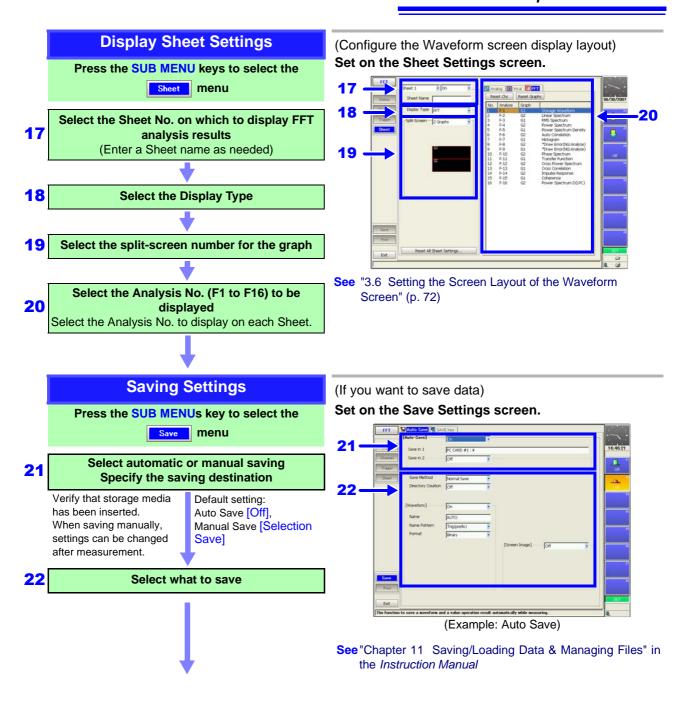
Press the F3 [FFT] key.



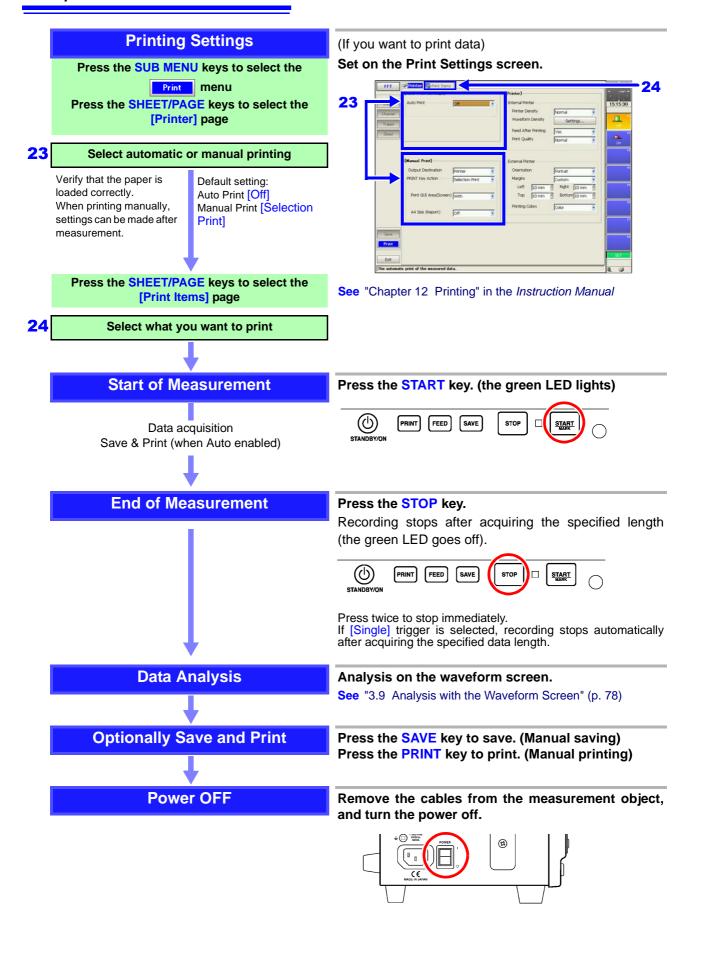
Waveform screen or Settings screen:


Using the CURSOR keys, move the cursor to the Function menu, and press the F3 [FFT] key.

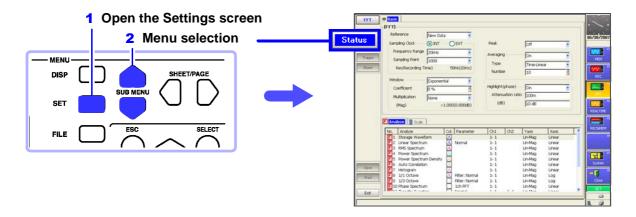

Waveform screen



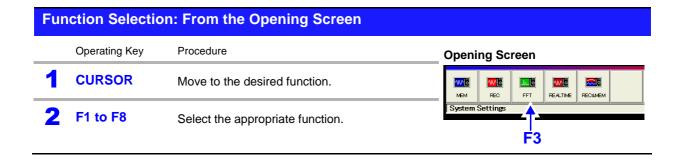
Settings screen

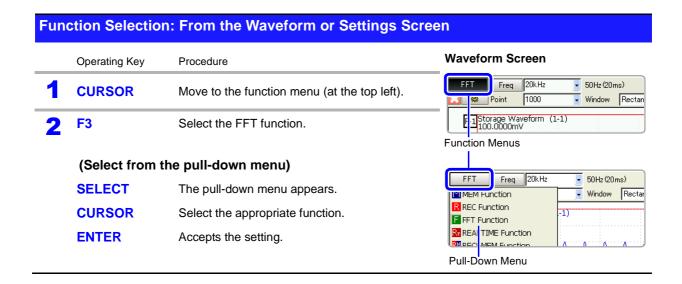


3.3 Operation Workflow



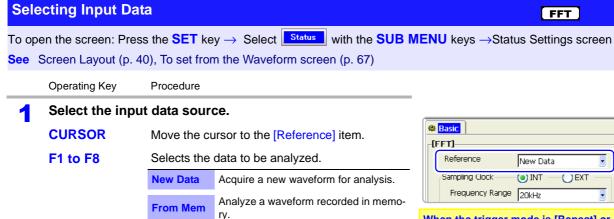
3.3 Operation Workflow


3.4 Setting FFT Analysis Conditions


Basic measurement configuration settings are performed on the Status Settings screen. Measurement configuration can be performed from the Waveform screen (p. 67).

3.4.1 Selecting the FFT Function

The FFT function can be selected from the Opening, Waveform or Settings screen.



Selecting the Data Source for Analysis

Select the data to be used for FFT analysis.

Analysis can be applied either to new data as it is measured, or to existing data (previously recorded to memory).

When finished making settings, press the START key

For the [New Data] case

Measurement starts to acquire data for the number of analysis points specified as the [Sampling Point], and FFT analysis is performed.

For the [From Mem] case

Analysis is performed on the number of specified points from data previously recorded in memory (Memory function data or memory waveform data in REC&MEM function).

The analysis starting point can also be specified.

See "3.9.3 Analyzing after Specifying an Analysis Starting Point" (p. 80)

The frequency range is selected automatically.

See "Relationship Between Frequency Range, Resolution and Number of Analysis Points" (p. 55)

FFT

When the trigger mode is [Repeat] or [Auto], and the input data [Reference] is [From Mem]

Analysis is performed until the specified number of FFT analysis points have been processed, then the data is shifted by that amount and analysis repeats until all of the previously acquired data has been processed. (If the amount of data is less than the specified number of FFT analysis points, no analysis occurs.)

See "Trigger Modes and Averaging" (p.

When no trace is displayed after pressing the START key

Analysis is impossible if [From Mem] is selected as the input data source and no recorded data exists in the instrument's memory.

Either select [New Data] as the input data source, or load the data to be analyzed before pressing the START key again.

3.4.3 Setting the Frequency Range and Number of Analysis Points

About the frequency range and number of analysis points

The settings for the frequency range and number of analysis points determine the input signal acquisition time and frequency resolution.

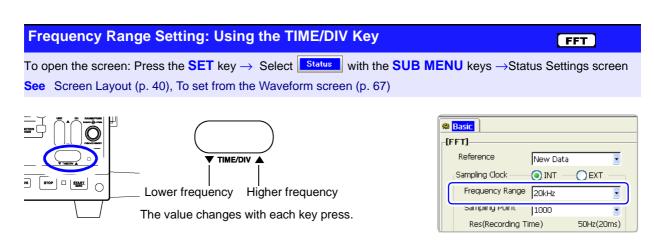
The frequency range setting for the FFT function corresponds to the timebase (time/division) setting of the Memory function. Changing the frequency range also changes the data sampling period.

See "Relationship Between Frequency Range, Resolution and Number of Analysis Points" (p. 55)

The cut-off frequency of the anti-aliasing filter is the same as the frequency range setting.

The set number of analysis points specifies the amount of data to be analyzed with each measurement. Increasing the number of analysis points increases the frequency resolution, but also increases the time required for calculations.

See "Number of Analysis Points" (p. 105)


When using the external sampling to calculate:

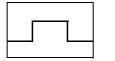
Set the Sampling Clock to [EXT] (External sampling).

In this case, octave analysis, power spectrum density and LPC power spectrum density are not available.

The following two methods are available for setting the frequency range:

- Using the operating keys
- Using the TIME/DIV key (settable regardless of cursor position)

Relationship Between Frequency Range, Resolution and Number of **Analysis Points**


	Sam-			Number of FFT Analysis Points									
Range	pling frequen- cy [Hz] IIMe- base [/div] (MEM)	Time- base	Sam-	1,0	000	2,0	000	5,000		10,0	000	20,000	
[Hz]		div] pling	Resolu- tion [Hz]	Acquisi- tion interval	Resolu- tion [Hz]	Acquisi- tion interval	Resolu- tion [Hz]	Acquisi- tion interval	Resolu- tion [Hz]	Acquisi- tion interval	Resolu- tion [Hz]	Acquisi- tion interval	
8 M *1	20 M	5 μs	50 ns	20 k	50 μs	10 k	100 μs	4 k	250 μs	2 k	500 μs	1 k	1 ms
4 M *1	10 M	10 μs	100 ns	10 k	100 μs	5 k	200 μs	2 k	500 μs	1 k	1 ms	500	2 ms
2 M *1	5 M	20 μs	200 ns	5 k	200 μs	2.5 k	400 μs	1 k	1 ms	500	2 ms	250	4 ms
800 k *1	2 M	50 μs	500 ns	2 k	500 μs	1 k	1 ms	400	2.5 ms	200	5 ms	100	10 ms
400 k *1	1 M	100 μs	1 μs	1 k	1 ms	500	2 ms	200	5 ms	100	10 ms	50	20 ms
200 k *1	500 k	200 μs	2 µs	500	2 ms	250	4 ms	100	10 ms	50	20 ms	25	40 ms
80 k *1	200 k	500 μs	5 μs	200	5 ms	100	10 ms	40	25 ms	20	50 ms	10	100 ms
40 k	100 k	1 ms	10 μs	100	10 ms	50	20 ms	20	50 ms	10	100 ms	5	200 ms
20 k	50 k	2 ms	20 μs	50	20 ms	25	50 ms	10	100 ms	5	200 ms	2.5	400 ms
8 k	20 k	5 ms	50 μs	20	50 ms	10	100 ms	4	250 ms	2	500 ms	1	1 s
4 k	10 k	10 ms	100 μs	10	100 ms	5	200 ms	2	500 ms	1	1 s	500 m	2 s
2 k	5 k	20 ms	200 μs	5	200 ms	2.5	400 ms	1	250 ms	500 m	2 s	250 m	4 s
800	2 k	50 ms	500 μs	2	500 ms	1	1 s	400 m	2.5 s	200 m	5 s	100 m	10 s
400	1 k	100 ms	1 ms	1	1 s	500 m	2 s	200 m	5 s	100 m	10 s	50 m	20 s
200	500	200 ms	2 ms	500 m	2 s	250 m	4 s	100 m	10 s	50 m	20 s	25 m	40 s
80	200	500 ms	5 ms	200 m	5 s	100 m	10 s	40 m	25 s	20 m	50 s	10 m	100 s
40	100	1 s	10 ms	100 m	10 s	50 m	20 s	20 m	50 s	10 m	100 s	5 m	200 s
20	50	2 s	20 ms	50 m	20 s	25 m	40 s	10 m	100 s	5 m	200 s	2.5 m	400 s
8 *2	20	5 s	50 ms	20 m	50 s	10 m	100 s	4 m	250 s	2 m	500 s	1 m	1 ks
4 *2	10	10 s	100 ms	10 m	100 s	5 m	200 s	2 m	500 s	1 m	1 ks	500 μ	2 ks
1.33 * ²	3.33	30 s	300 ms	3.33 m	300 s	1.66 m	600 s	666 µ	1.5 ks	333 μ	3 ks	166 µ	6 ks
800 m * ²	2	50 s	500 ms	2 m	500 s	1 m	1 ks	400 μ	2.5 ks	200 μ	5 ks	100 μ	10 ks
667 m * ²	1.67	60 s	600 ms	1.66 m	600 s	833 μ	1.2 ks	333 μ	3 ks	166 µ	6 ks	83.3 μ	12 ks
400 m * ²	1	100 s	1 s	1 m	1 ks	500 μ	2 ks	200 μ	5 ks	100 μ	10 ks	50 μ	20 ks
333 m * ²	833 m	120 s	1.2 s	833 μ	1.2 ks	416 µ	2.4 ks	166 µ	6 ks	83.3 μ	12 ks	41.6 μ	24 ks
133 m * ²	333 m	300 s	3 s	333 μ	3 ks	166 µ	6 ks	66.6 µ	15 ks	33.3 μ	30 ks	16.6 µ	60 ks

The cut-off frequency of the anti-aliasing filter is the same as the frequency range.

^{*1.} The anti-aliasing filter is turned off. *2. Cut-off frequency is 20 Hz.

3.4.4 Setting the Window Function

The window function defines the segment of the input signal to be analyzed. Use the window function to minimize leakage errors. There are three general types of window functions:

· Rectangular window

- Hann window
- Hamming window
- Blackman window
- · Blackman-Harris window
- · Flat top window

Exponential window

The non-rectangular window functions generally produce lower-level analysis results. By applying attenuation correction, the attenuation introduced by the non-rectangular window functions can be corrected to bring analysis results back to similar levels.

Selecting the Window Function and Correction

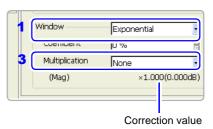
FFT

To open the screen: Press the **SET** key → Select Status with the **SUB MENU** keys → Status Settings screen See Screen Layout (p. 40), To set from the Waveform screen (p. 67)

Operating Key Procedure

Select the window function.

CURSOR


Move the cursor to the [Window] item.

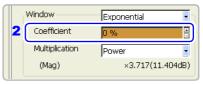
F1 to F8

Select the appropriate window function type.

Rectangular (default setting), Hanning, Exponential, Hamming, Blackman, BlackmanHarris, Flat-Top

See "Window Function" (p. 110)

If [Exponential] is the selected type


Set the attenuation coefficient (percentage).

CURSOR

Move the cursor to the [Coefficient] item.

F1 to F8

Set the attenuation coefficient as a percentage. Setting the attenuation coefficient to 0% results in the same processing as a setting of 0.1%.

For the exponential window function

Noise is suppressed in the attenuated waveform.

Set attenuation correction.

CURSOR

Move the cursor to the [Multiplication] item.

F1 to F8

Select the correction method.

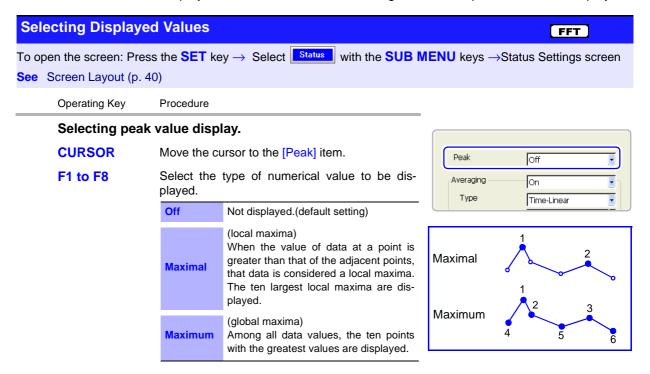
'		100%
M	\bigcirc	10%

When the attenuation rate is 10%

None

Attenuated window function values are not corrected. (default setting)

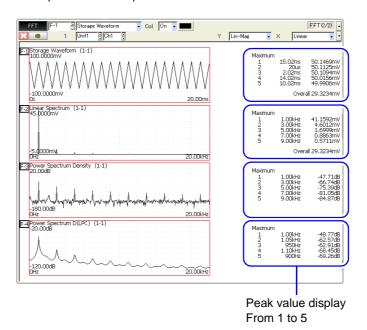
The window function multiplies the power levels of the time-domain waveform so that output levels are comparable to those of a rectangular window.


The window function multiplies the average value of the time-domain waveform so that output levels are comparable to those of a rectangular window.

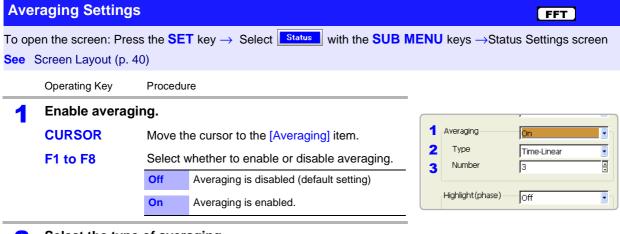
For the rectangular window function: The correction value is always 1 (0 dB). For the exponential window function: The correction value depends on the attenuation coefficient. $\sqrt{\frac{2 \ln (x/100)}{(x/100)^2 - 1}}$

Average correction $\frac{\sqrt{(x/100)^2 - 1}}{\sqrt{(x/100)^2 - 1}}$ Average correction $\frac{\ln(x/100)}{(x/100) - 1}$ *x*: Attenuation coefficient (%)

3.4.5 Setting Peak Values of Analysis Results


Either local or global maxima ([maximal]/ [maximum]) of the input signal and analysis results can be displayed on the Waveform screen. However, if Nyquist display is selected on the Sheet Settings screen, no peak values are displayed.

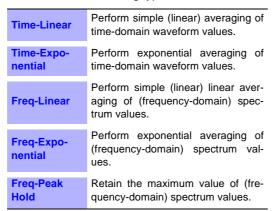
NOTE


- Peak values on the Waveform screen can be displayed and printed, but cannot be saved as peak values in text files.
- Depending on split-screen settings, there may be insufficient space to display all ten maxima. In this case, only the number of maxima that can be displayed are shown, from the largest.

Example: 4-Section Split-Screen

3.4.6 Averaging Waveforms

The averaging function calculates the average of the values obtained from multiple measurements of a periodic waveform. This can reduce noise and other nonperiodic signal components. Averaging can be applied to a time-domain waveform or to a spectrum.


Select the type of averaging.

CURSOR

Move the cursor to the [Type] item.

F1 to F8

Select from the following types:

About averaging calculation formulas See "Averaging" (p. 109)

When averaging and auto saving or auto printing are enabled at the same time

Data is saved or printed after the specified count of values have been averaged. After calculating the average, changing the analysis channel does not cause recalculation.

See "Trigger Modes and Averaging" (p. 60)

Select the count for averaging.

CURSOR

Move the cursor to the [Number] item.

F1 to F8

Select the number of measurements to be averaged.

Setting range: 2 to 10,000

NOTE

- After measuring with averaging enabled, display is not available when the channel is changed. Also, when the analysis mode is changed, the analysis modes that can be displayed are limited.
- When averaging is performed with the analysis mode disabled (Off), no trace is displayed when the analysis mode is changed after measurement.

Description

When averaging time-domain waveform values

Waveforms are acquired and averaged within the time domain. After averaging, FFT calculation is performed.

When the trigger mode is [Auto]: Data is acquired when the START key is pressed, even if trigger criteria are not met after a certain interval. So if averaging is applied to an asynchronous signal, the resulting data is meaningless.

Synchronous signals have better SNR (signal-to-noise ratio) and are more suitable for analysis.

When averaging spectrum values

Acquired data is first subject to FFT analysis. After analysis, averaging is performed within the frequency range, and the result is displayed. This differs from time-domain averaging in that averaging can be performed without trigger synchronization. However, if the characteristics of the input waveform allow triggering, using the trigger for synchronization is recommended.

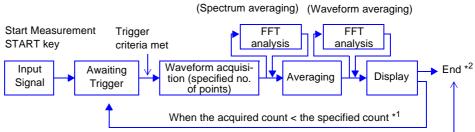
Spectrum peak hold

After performing FFT calculations on the acquired waveform, peak values are retained (held) and displayed within the frequency range.

FFT Analysis Modes and Averaging

: Settable, x: Unsettable, O: Partially settable

	Averaging						
Analysis Mode	Waveform	Averaging	Spectrum Averaging				
	Simple	Exponential	Simple	Exponential	Peak Hold		
OFF	×	×	×	×	×		
Storage Waveform	•	•	×	×	×		
Linear Spectrum	•	•	O *2	O *2	O *2		
RMS Spectrum	•	•	O *2	O *2	O *2		
Power Spectrum	•	•	•	•	•		
Power Spectrum Density *1	•	•	•	•	•		
Auto-correlation Function	•	•	•	•	•		
Histogram	•	•	×	×	×		
1/1 Octave Analysis *1	•	•	•	•	•		
1/3 Octave Analysis *1	•	•	•	•	•		
Transfer Function	•	•	O *2	O *2	O *2		
Cross Power Spectrum	•	•	O *2	O *2	O *2		
Cross-correlation Function	•	•	•	•	•		
Impulse Response	•	•	•	•	•		
Coherence Function	×	×	•	•	×		
Phase Spectrum	•	•	×	×	×		
Power Spectrum Density (LPC) *1	•	•	×	×	×		

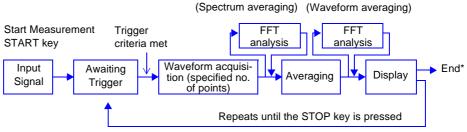

^{*1.} Not available for external sampling

^{*2.} Not available when the y axis is real (linear) or imaginary (linear), or for Nyquist plots

Trigger Modes and Averaging

When the trigger mode is [Single]

Measurements continue until the specified number of averaging points is acquired.

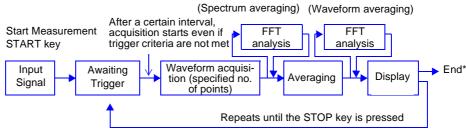


- *1. Awaiting trigger continues until the specified count is reached.
- *2. Measurement stops automatically when the specified count is reached. If measurement was interrupted by the STOP key, the averaging result up to that point is displayed.

When the acquired count = the specified count

When the trigger mode is [Repeat]

Measurement continues after the specified averaging count has been acquired. When the specified averaging count is exceeded, averaging is repeated and measurement continues until the STOP key is pressed.

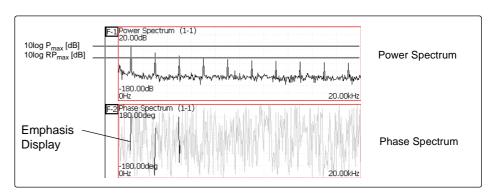

* When stopped before the specified count, the average up to that point is displayed.

When the trigger mode is [Auto]

- · For time-domain waveforms:
 - Data is acquired when the START key is pressed, even if trigger criteria are not met after a certain interval. So if averaging is applied to an asynchronous signal, the resulting data is meaningless.
- For spectrum values:

When the START key is pressed, measurement starts. Even if the trigger criteria are not met, the specified amount of data is acquired, and after FFT analysis, the results are averaged.

When the specified averaging count is exceeded, averaging is repeated and measurement continues until the STOP key is pressed.



When stopped before the specified count, the average up to that point is displayed.

3.4.7 Emphasizing Analysis Results (phase spectra only)

By specifying a setting factor (rate) to be applied to the input signal, the display of data exceeding the resulting threshold can be emphasized. This feature is useful for viewing waveforms that may otherwise be obscured by noise.

The reliability of phase spectrum values is poor when discrete Fourier transform values are extremely small. For example, in the case of a pure sine wave, almost all phase values at frequencies other than the input frequency result from calculation errors. By treating the maximum value of the power (or cross-power) spectrum of the input signal, P_{max} , as a reference value, data that exceeds that value multiplied by rate R can be displayed with emphasis.

Setting Phase Spectrum Highlighting

FFT

To open the screen: Press the **SET** key → Select with the **SUB MENU** keys → Status Settings screen **See** Screen Layout (p. 40)

Operating Key Procedure


Enable the highlighting function.

Enable the inglingiting function.

CURSOR Move the cursor to the [Highlight (phase)] item.

F1 to F8 Select whether to enable or disable the highlighting function.

Off Emphasis display disabled.(default setting)
On Emphasis display enabled.

Set the attenuation rate or attenuation value.

To set an attenuation rate

CURSOR Move the cursor to the [Attenuation ratio] item.

F1 to F8 Enter the attenuation rate.

To set an attenuation value [dB]

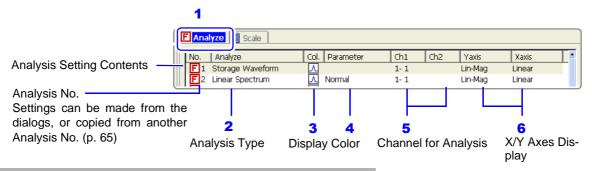
CURSOR Move the cursor to the [(dB)] item.

F1 to F8 Enter the attenuation value.

Attenuation Rate and Value

Attenuation value: A [dB] Attenuation rate: R

-A = $10\log_{10}R$ 1 x $10^{-6} \le R \le 1$ 0 $\le A \le 60$


3.4.8 Analysis Mode Settings

Select the type of FFT analysis, channel(s), waveform display color and x and y axes.

Open the [Analyze] page.

SHEET/PAGE Select the [Analyze] page.

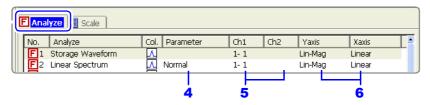
Select the FFT analysis mode.

CURSOR Move the cursor to the [Analyze] column of the

Analysis No. to set.

F1 to F8 (Switch Display: F8) Select the analysis mode.

OFF	No analysis.	1/1 Octave*	Example (p. 91)	
•	(default setting)	1/3 Octave*	Example (p. 91)	
Storage Waveform	Example (p. 85)	Phase Spectrum	Example (p. 95)	
Linear Spectrum	Example (p. 86)	Transfer Function	Example (p. 96)	
RMS Spectrum	Example (p. 87)	Cross Power Spec-	Example (p. 97)	
Power Spectrum	Example (p. 88)	trum		
Pow.Spectrum	(Power spectrum density)	Cross Correlation	Example (p. 98)	
Density*	Example (p. 89)	Impulse Response	Example (p. 99)	
Auto Correlation	Example (p. 90)	Coherence	Example (p. 100) (Power spectrum density LPC) Example (p. 101)	
Histogram	Example (p. 90)	Pow.Spectrum		
* Not available with e	xternal sampling enabled.	Density (LPC)*		


See "3.10.2 Analysis Mode Functions" (p. 102)

Select whether to display the waveform, and its color.

CURSOR Move the cursor to the [Col.] column.

F1 to F8 Select whether the waveform is to be displayed

(On) or not, and its color if displayed.

Operating Key Procedure

4 When [Parameter] setting contents are displayed

Set the parameter.

CURSOR Move the cursor to the [Parameter] column of the

Analysis No. to set.

F1 to F8 Select the desired type of analysis or display.

Analyze mode	Parameter	Setting Contents				
Linear Spectrum,	Normal	Analysis results are displayed as amplitude vs. frequency.				
Transfer Function, Cross Power Spectrum	Nyquist	Analysis results are displayed as imaginary vs. real components.				
1/1 Octave,	Filter: Normal	Enables the octave filter.				
1/3 Octave	Filter: Sharp	See "Octave Filter Setting" (p. 64)				
	1ch FFT	Calculates the phase of [Channel 1].				
Phase Spectrum	2ch FFT	Calculates the phase difference between [Channel 1] and [Channel 2].				
Pow.Spectrum Density (LPC)	Order:2 to 64	Larger numerical values make finer spectrum components visible.				

Select the channel for analysis.

CURSOR Move the cursor to the [Ch1] item.

F1 to F8 Select which channel number to use.

Set the x and y axes for display of analysis results.

CURSOR F1 to F8 Move the cursor to the [X axis] or [Y axis] item.

Select the analysis result components to display on the x and y axes.

(Selectable display components depend on the analysis mode)

See "Analysis Modes and X/Y Axis Display" (p. 64)

Y-axis display

Lin-Mag	tude values.
Log-Mag	Analysis results are displayed as dB values.
Lin-Real	The real-number component of analysis results are displayed.
Lin-Imag	The imaginary component of analysis results are displayed.

X-axis display

Linear	Frequency is displayed linearly.
Log	Frequency is displayed logarithmically. This is convenient when the data of interest is at the lower end of the frequency range, such as for sound and vibration.

Analysis channel setting

For any of the following analysis modes, set both channels 1 and 2.

Transfer Function, Impulse Response, Cross-correlation Function, Cross Power Spectrum, Coherence Function, Phase Spectrum (2ch FFT)

To analyze without the influence of aliasing distortion

The following input modules are recommended for channels to be subject to FFT analysis:

- Model 8938 FFT Analog Unit
- Model 8947 Chargh Unit
- Model 8957 High Resolution Unit
- Model 8960 Strain Unit

To analyze using external sampling


The x axis displays the number of data points.

For Nyquist display

When the [Nyquist Display] parameter settings is selected, x- and y-axis display settings are not available.

Octave Filter Setting

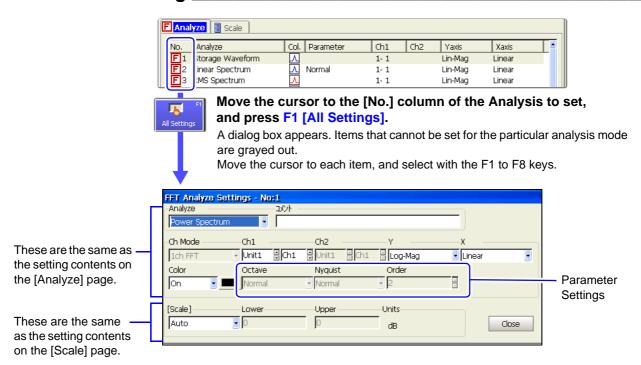
Filter characteristics comply with tolerance standards for IEC61260 filters.

Filter characteristics approximate those of an analog filter.

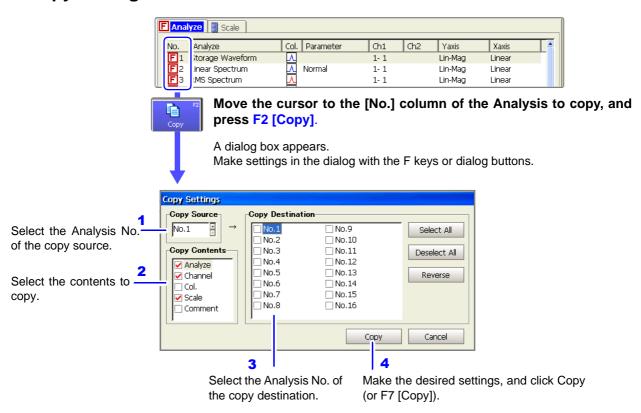
Only those spectral component within the octave band are used for analysis. Spectral components outside of the octave band are totally ignored.

After determining the entire power spectrum, the instrument performs octave analysis on the spectral bands defined by the above filter characteristics. Analog filtering is not used for analysis.

See "Octave Filter Characteristics" (p. 114)


Analysis Modes and X/Y Axis Display _____

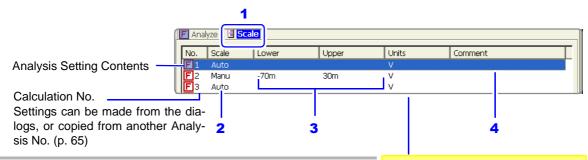
●: Settable, x: Unsettable


Analysis Made	Χa	axis	Y axis				Nyquist
Analysis Mode	Linear	Log	Lin-Mag	Log-Mag	Lin-Real	Lin-Imag	display
OFF	×	×	×	×	×	×	×
Storage Waveform	•	×	•	×	×	×	×
Linear Spectrum	•	•	•	•	•	•	•
RMS Spectrum	•	•	•	•	•	•	×
Power Spectrum	•	•	•	•	×	×	×
Power Spectrum Density	•	•	•	•	×	×	×
Auto-correlation Function	•	×	•	×	×	×	×
Histogram	•	×	•	×	×	×	×
1/1 Octave	•	•	•	•	×	×	×
1/3 Octave	•	•	•	•	×	×	×
Transfer Function	•	•	•	•	•	•	•
Cross Power Spectrum	•	•	•	•	•	•	•
Cross-correlation Function	•	×	•	×	×	×	×
Impulse Response	•	×	•	×	×	×	×
Coherence Function	•	•	•	×	×	×	×
Phase Spectrum	•	•	•	×	×	×	×
Power Spectrum Density (LPC)	•	•	•	•	×	×	×

The x/y axes cannot be set when Nyquist Display is selected.

To Set from a Dialog

To copy settings between Calculation Nos. _


3.4.9 Setting the Display Range of the Vertical Axis (Scaling)

The display range of the vertical (y) axis can be set to automatically suit analysis results, and can be freely expanded and compressed.

Open the [Scale] page.

SHEET/PAGE Select the [Scale] page.

2 Select automatic or manual scaling of the y-axis display.

CURSOR Move the cursor to the [Scale] column of the Analysis No. to set.

F1 to F8 Select the scaling display type.

Auto Scaling of the vertical (y) axis is automatically set according to analysis results. (default setting)

Manu (manual) Scaling of the vertical (y) axis can be set as desired, to suit the purpose of the measurement.

This is useful for magnifying or reducing the displayed amplitude, and for shifting the displayed waveform up or down.

About displayed units (y axis)

The selected units for the scaled channel are displayed. When scaling is disabled [Off], the measurement range units are displayed.

To convert to other units, set the scaling units on the Channel Settings screen.

See "5.4 Converting Input Values (Scaling Function)" in the *Instruction*Manual

Input values can be converted to dB. See "Scaling" (p. 71)

When [Manu] is selected

Set the upper and lower limits to display.

CURSOR Move the cursor to the [Lower] or [Upper] item.

F1 to F8 Set the upper and lower limits to display the anal-

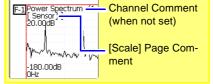
ysis results.

Setting range: -9.9999E+29 to +9.9999E+29 (with exponent from E-29 to E+29)

To enter a comment for an analysis result

CURSOR Move the cursor to the [Comment] item.

F1 Enter your comment.


The entry method is the same as for channel comments.

See "5.2.2 Adding Channel Comments";"Comment Entry Example" in the *Instruction Manual*

To display comments on the Waveform screen

Enable the [Comment] setting on the System Settings screen.

When comments are entered on both the Channel Settings screen and the [Analyze] page, both comments are displayed. When no channel comment has been entered, unit (module) and channel number are displayed.

3.4.10 Setting and Changing Analysis Conditions on the Waveform Screen

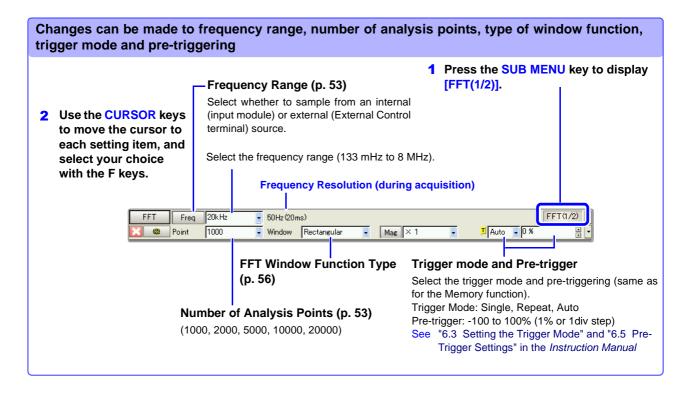
The following settings can be made on the Waveform screen.

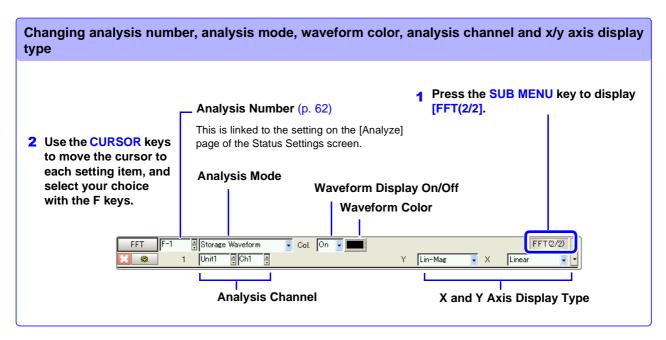
Press the **SUB MENU** keys to switch the displayed measurement items.

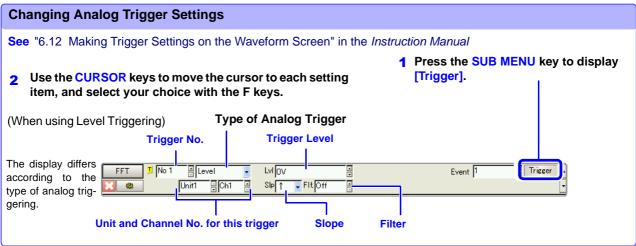
Changes to the displayed analysis results become effective when the settings are changed.

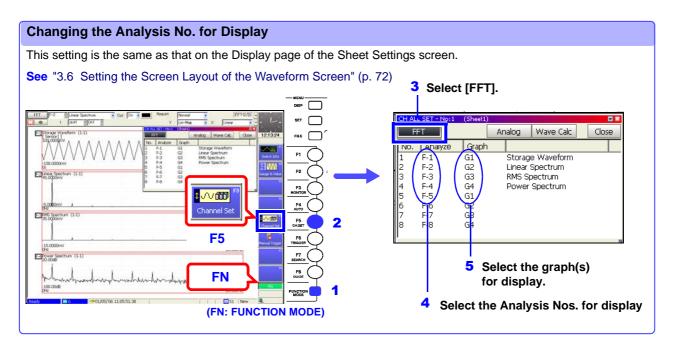
• [FFT(1/2)]

Available settings are frequency range, number of analysis points, type of window function, trigger mode and pre-triggering

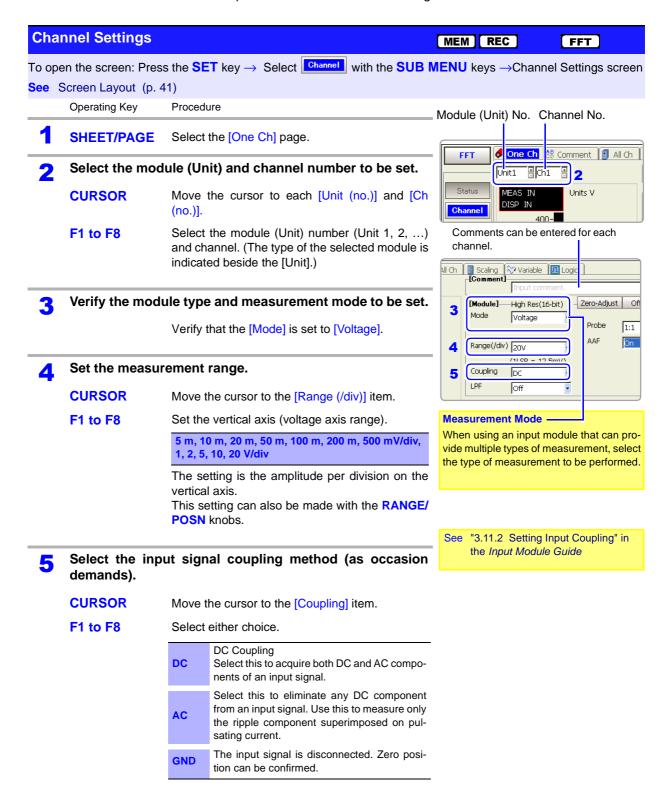

• [FFT(2/2)]


Available settings are analysis number, analysis mode, waveform color, analysis channel and x/y axis display type


[Trigger]


Available settings are trigger number and analog trigger settings

To change the analysis number to be displayed on the current Sheet, press the F5 [Channel Set] key in the FN mode, and make settings in the dialog (p. 68).



3.5 Selecting Channels

Channel selection is the same for all functions. The setting examples here describe operation with the Model 8957 High Resolution Unit.

3.5 Selecting Channels

Operating Key Procedure

Set low-pass filtering (as occasion demands).

CURSOR Move the cursor to the [LPF] item.

F1 to F8 Set the low-pass filter in the input module.

(For Model 8957) OFF, 5Hz, 50Hz, 500Hz, 5kHz, 50Hz

Select the probe attenuation.

CURSOR Move the cursor to the [Probe] item.

F1 to F8 Select according to the connection cables being used.

Select when measuring using Model L9197, 9197, L9198 or L9217 Connection Cords.

Select when measuring using the Model 9665 10:1 Probe.

Select when measuring using the Model 9666 100:1 Probe.

Select when measuring using the Model 9322 Differential Probe.

Set the anti-aliasing filter.

CURSOR Move the cursor to the [AAF] item.

F1 to F8 Select either choice.

Off
The anti-aliasing filter is disabled.
(default setting)
The anti-aliasing filter is enabled. (When the external sampling is used, the anti-aliasing filter (AAF) is not available.)

Perform zero adjustment (after warm-up).

CURSOR Move the cursor to the [Zero-Adjust] button.

F1 Select [Execute].

When executed, all channels are zero adjusted. (Except in the Model 8958 16-Ch Scanner Unit)

Perform Offset Cancel (as occasion demands).

CURSOR Move the cursor to the [Offset Cancel] button.

F1 Select [Execute].

When executed, only the selected channel is cor-

rected.

About low-pass filtering

See "3.11.3 Low-Pass Filter (LPF) Settings" in the *Input Module Guide*

About probe attenuation

Matching the probe attenuation setting to that of the input channel's probe enables automatic conversion of voltage axis range measurements for direct reading of numerical values.

See "3.11.15 Probe Attenuation Selection" in the *Input Module Guide*

Anti-Aliasing Filter

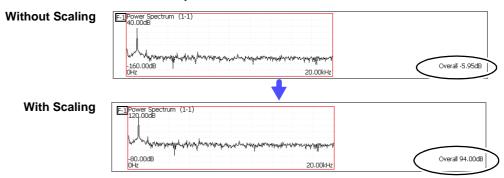
Enable to prevent aliasing distortion.

See "Anti-Aliasing Filters" (p. 107)

About zero adjustment

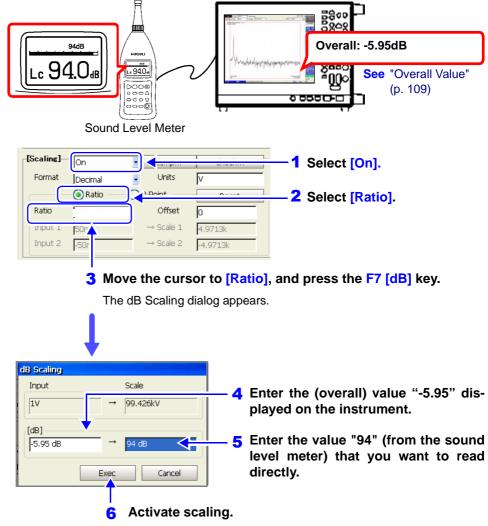
Adjusts the zero position of an input module. Warm-up time depends on the type of input module.

See "3.11.17 Executing Zero Adjustment" in the *Input Module Guide*


About offset canceling

Executing Offset Cancel when using a sensor corrects for external signal bias.

See "3.11.18 Executing Offset Cancellation" in the *Input Module Guide*


Scaling

The scaling setting allows values displayed on this instrument to match the actual values read directly on a sound level meter or vibration meter.

Setting example: To display measurement data on this instrument so that it corresponds to that on a sound level meter.

In a case where a sound level meter displays 94 dB and the overall value displayed on the Waveform screen of this instrument is -5.95 dB.

Scaling is performed automatically, and the corresponding values appear in the conversion ratio fields.

3.6 Setting the Screen Layout of the Waveform Screen

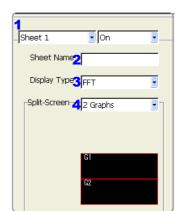
Measurement data can be split and displayed on up to 16 sheets on the Waveform screen.

Assigning the Results of FFT Analysis to a Sheet

To open the screen: Press the **SET** key \rightarrow Select \fbox{Sheet} with the **SUB MENU** keys \rightarrow Sheet Settings screen

Operating Key Procedure

Sheet Assignment.


See Screen Layout (p. 42)

CURSOR
F1 to F8
Select the number of the Sheet 1] item.
Select the number of the Sheet to set.

CURSOR
Move the cursor to the [On] or [Off] item.
Select whether to display the selected sheet on the Waveform screen.

Off
The selected sheet is not displayed.

On
The selected sheet is displayed.

FFT

Enter a Sheet Name (if you want to change it).

CURSOR F1 to F8 Move the cursor to the [Sheet Name] item.

Enter a name. (up to 8 characters)

(When you enter a sheet name other than the default, it is displayed to the right of the waveform.)

Select the Display Type.

CURSOR

Move the cursor to the [Display Type] item.

F1 to F8

Select the type of data to be displayed.

The display type depends on the input data selected for analysis.

looted for driaryole:						
FFT	Displays a plot of FFT analysis results.					
Nyquist	(When the analysis mode is Linear Spectrum, Transfer Function or Cross-Power Spectrum) The real-number part is displayed on the x axis, and the imaginary part on the y axis.					
FFT+Nyquist	Analysis results and the Nyquist plot are displayed at the same time.					
Wave+FFT *	A memory waveform and FFT analysis results are displayed.					
Wave+Nyquist *	The Memory waveform and Nyquist plot are displayed at the same time.					

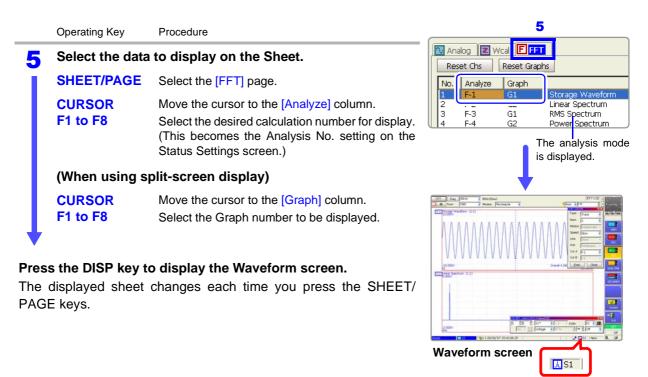
 ^{*} Input data source [Reference]: selectable only when [From Mem] is selected.

Select split-screen display (as occasion demands).

The number of possible screen partitions depends on the selected display type.

See "Display Types and Split-Screen Settings" (p. 74)

To use an existing memory waveform for analysis


Select [From Mem] as the input data source [Reference].

See "3.4.2 Selecting the Data Source for Analysis" (p. 52)

To specify the analysis starting point

Specify the starting point on the memory waveform.

See "3.9.3 Analyzing after Specifying an Analysis Starting Point" (p. 80)

The sheet number is displayed.

When "Drawing failed"

• NG: Nyquist Display

There is a mismatch between the display type setting on the Sheet Settings screen and a parameter setting on the Status Settings screen. The normal display and Nyquist display cannot be combined. To display both, set the display type to [FFT+Nyquist].

NG: X-Axis Setting

Increase the number of split screen sections, or change the x-axis display. Linear x-axis and logarithmic displays cannot be combined in the same graph.

• NG: Analysis Mode Error

Octave analysis (1/1 or 1/3) cannot be overlaid with another analysis. Increase the number of split screen sections, or set display on another sheet.

Display Types and Split-Screen Settings _____

Fourteen display arrangements are available.

	1 Graph	2 Graphs	4 Graphs	4 (Print 8)
FFT	G1	G1 G2	G1 G2 G3 G4	G1 G2 G3 G4
Nyquist	G1	G1 G2	G1 G2 G3 G4	G1 G2 G3 G4
FFT+Nyquist	FFT Nyquist G1	FFT Nyquist G1 G2		
Wave+FFT *	ANALOG FFT G1	ANALOG FFT G1 FFT G2		
Wave+Nyquist*	ANALOG Nyquist G1	ANALOG Nyquist G1 G2		

^{*} Selectable only when the [Reference] setting on the Status Settings screen is [From Mem].

3.7 Saving Analysis Results

The saving procedure is the same as for the Memory and Recorder functions.

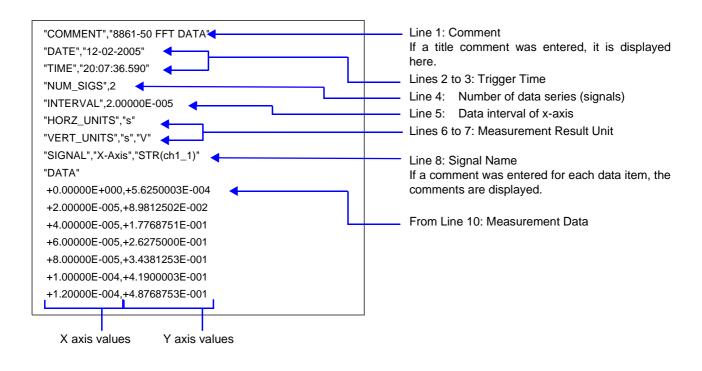
See "Chapter 11 Saving/Loading Data & Managing Files" in the Instruction Manual

The size of saved files depends on the file format.

See "Appendix 2.2 Waveform File Sizes" in the Instruction Manual

When FFT Analysis Results are Saved as Text _____

A file is created for each analysis mode. One of the following text strings is appended to the file name.

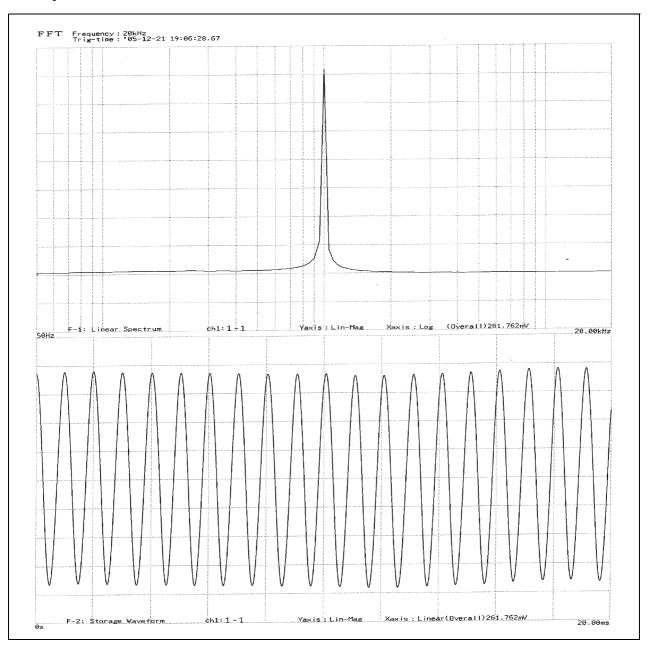

Example: When the Name Pattern setting is [Trig (prefix)] and the save name is "TEST"

150000_051201_TEST_LIN.TXT

(15:00:00, Dec. 1, 2005, "TEST" Linear Spectrum text data)

Analysis Mode	Save Name	Analysis Mode	Save Name
Storage Waveform	STR	Cross Power Spectrum	CSP
Linear Spectrum	LIN	Cross-correlation Function	CCR
RMS Spectrum	RMS	Impulse Response	IMP
Power Spectrum	PSP	Coherence Function	СОН
Power Spectrum Density	PSD	Phase Spectrum (1ch / 2ch)	PHASE
Auto-correlation Function	ACR	Power Spectrum (LPC)	LPC
Histogram	HIS	1/1 Octave	1_1_OCT
Transfer Function	TRF	1/3 Octave	1_3_OCT

Text Saving Example_



3.8 Printing Analysis Results

The printing procedure is the same as for the Memory and Recorder functions.

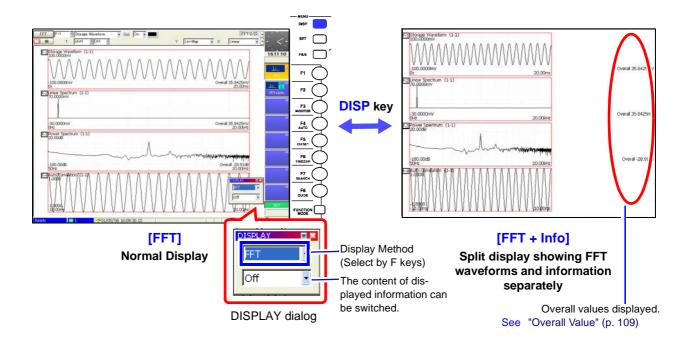
See "Chapter 12 Printing" in the Instruction Manual

Example of Waveform Printout

Example of Numerical Value Printout

1 Linear	Soectrum	w1:1-1		Yaxis: Lin-Mag	Xaxis:l	on (Dun-	all)261.762m	λı	-						
8Hz	0.553mW	56Hz	4.317mV	100Hz	4.851mV	150Hz		200Hz	5.247mV	250Hz	6.366mV	300Hz	5.270mW	350Hz	5.736mV
499Hz	5.585mV	450Hz	6.029mV	500Hz	6.080mV	550Hz	6.698nW	600Hz	7.217mV	650Hz	8.203mV	799Hz	9.355eV	750Hz	11.066mV
809Hz	13.587mV	850H2	18.098mV	900Hz	27.135mV		57.346eV		358.934mV	1.05kHz	42.153mV	1.10kHz	22.056nV	1.15kHz	14.742mV
1.20kHz	11.054mV	1.25kHz	8.785mV	1.30kHz	7.251mV	1.35kHz	6.153mV	1.40kHz	5.435mV	1.45kHz	4.764mV	1.50kHz	4.282mV	1.55kHz	3.821mV
1.60kHz	3.470mV	1.65kHz	3.110mV	1.79kHz	2.870mV	1.75kHz	2.749mV	1.80kHz	2.442mV	1.85kHz	2.365mV	1.90kHz	2.168mV	1.95kHz	2.855mV
2.00kHz	1.948mV	2.05kHz	1.836mV	2.10kHz	1.761πV	2 · 15kHz	1.665mV	2.20kHz	1.632mV	2.25kHz	1.545mV	2.30kHz	1.471mV	2.35kHz	1.404mV
2.40kHz	1.325mV	2.45kHz	1.292mV	2.50kHz	1.261mV	2.55kHz	1.205mV	2.68kHz	1.131mV	2.65kHz	1.974mV	2.70kHz	1.206mV	2.75kHz	1.083mV
2.88kHz 3.28kHz	1.041mV 0.836mV	2.85kHz 3.25kHz	1.043mV 0.825mV	2.90kHz	0.967mV	2.95kHz	0.940mV	3.00kHz	0.933mV	3.05kHz	0.984mV	3.10kHz 3.50kHz	0.884mV 0.707mV	3.15kHz 3.55kHz	0.885mV 0.702mV
3.60kHz	0.678mV	3.25kHz 3.65kHz	0.825mV 8.685mV	3.30kHz	0.791mV	3 . 35kHz	0.734mV	3.40kHz	9.740mV	3.45kHz	8.769mV 8.521mV	3.56kHz 3.96kHz	0.707mV 0.586mV	3.55kHz 3.95kHz	0.620mV
4.00kHz	0.636mV	4.05kHz	9.567mV	3.70kHz 4.18kHz	0.689mV 0.557mV	3.75kHz	0.647mV 0.571mV	3.80kHz 4.26kHz	0.617mV 0.586mV	3.85kHz 4.25kHz	0.552mV	4.30kHz	0.518mV	4.35kHz	0.538mV
4.49kHz	8.546mV	4 · 45kHz	0.538mV	4.10kHz	9.543mV	4 · 15kHz 4 · 55kHz	0.521mV	4.26kHz	0.486mV	4 - 65kHz	0.505mV	4.76kHz	6.489mV	4.75kHz	6.461mV
4.80kHz	0.460mV	4.85kHz	8.472mV	4.98kHz	0.479mV	4.95kHz	8.447mV	5.00kHz	8.448mV	5.05kHz	9.443mV	5.19kHz	0.439mV	S. 15kHz	9.460mV
5.20kHz	0.411mV	5.25kHz	9.425mV	5.30kHz	0.437mV	5.35kHz	0.405mV	5.40kHz	0.421mV	5.45kHz	0.403mV	5.50kHz	0.384mV	5.55kHz	0.413mV
5.60kHz	9.426mV	5.65kHz	0.382mV	5.70kHz	0.370mV	5.75kHz	8 - 469mV	5.80kHz	0.384mV	5.85kHz	0.358mV	5.90kHz	0.374mV	5.95kHz	0.379mV
6.88kHz	0.382mV	6.05kHz	0.353mV	6.19kHz	9.349mV	6.15kHz	9.352mV	6.20kHz	0.346mV	6,25kHz	0.320mV	6.39kHz	8.356mV	6.35kHz	6.343mV
6.40kHz	0.283mV	6.45kHz	8.362mV	6.58kHz	0.359mV	6.55kHz	0.285mV	6.60kHz	0.359mV	6.65kHz	0.344mV	6.70kHz	9.267mV	6.75kHz	9.332mV
6.80kHz	0.334mV	6.85kHz	0.311mV 0.278mV	6.90kHz	0.371mV	6.95kHz	0.277stV	7.00kHz	0.313mV	7.05kHz	8.362mV	7.18kHz	0.268mV	7.15kHz	0.310mV
7.20kHz	0.298mV	7,25kHz	0.278mV	7.30kHz	0.352mV	7.35kHz	0.282mV	7.49kHz	8.265mV	7.45kHz	0.319mV	7.50kHz	6.287mV	7.55kHz	9.288mN
7.60kHz	9.398mV	7.65kHz	6.281mV	7.70kHz	0.275mV	7.75kHz	0.257mV	7.88kHz	0.330mV	7.85kHz	0.293mV	7.90kHz	0.219mV	7.95kHz	0.274mV
8.09kHz	0.276mV	8.05kHz	6.245mV	8.10kHz	0.244nN	8 · 15kHz	0.246mV	8.20kHz	0.301mW	8.25kHz	9.281mV	8.30kHz	0.226mV	8.35kHz	0.269m
8.40kHz	8.254mV	8.45kHz	0.245mV	8.50kHz	9.253mV	8.55kHz	0.313mV	8.60kHz	0.266mV	8.65kHz	0.282mV	8.70kHz	0.235mV	8.75kHz	9.286m
8.88kHz	0.277mV	8.85kHz	0.213mV	8.90kHz	0.264mV	8.95kHz	0.265mV	9.00kHz	0.259mV	9.05kHz	0.228mV	9.10kHz	0.216eW	9.15kHz	0.294mV
9.20kHz 9.60kHz	8.289mV	9.25kHz	0.224mV	9.30kHz	0.226mV	9.35kHz	8.199mV	9.40kHz	0.281mV	9.45kHz	0.270nW	9.50kHz	9.188mV	9.55kHz	0.269mV
10.00kHz	0.136mV 0.219mV	9.65kHz 10.05kHz	0.167mV 0.224mV	9.70kHz	8.248mV	9.75kHz	8.213mV	9.80kHz	0.235mV	9.85kHz	0.206mV	9.98kHz	0.133mV	9.95kHz 10.35kHz	0.161ml 0.189ml
10.00kHz	6.211mV	10.45kHz	0.224mV 0.179mV	10.10kHz	0.214mV	10 . 15kHz	0.160mV	10.20kHz	0.115mV	10.25kHz	6.183mV	10.39kHz 10.79kHz	8.224mV	10.35kHz	0.184m
18.80kHz	0.211mV 0.175mV	10.45kHz	0.179mV 0.171mV	10.50kHz 10.90kHz	0.173mV	10.55kHz	9.213mV	18.60kHz	0.192mV	10 - 65kHz	0.178mV	10.78kHz	0.188mV 0.173mV	11.15kHz	0.176m
11.20kHz	0.179mV	11.25kHz	0.171mV 0.168mV	10.90kHz	0.189mV 0.196mV	10.95kHz 11.35kHz	0.157mV 0.226mV	11.00kHz 11.40kHz	0.143mV 0.182mV	11.05kHz 11.45kHz	0.186mV 0.131mV	11.10kHz	0.175mV 0.196mV	11.15kHz	0.176mk
11.69kHz	0.188aV	11.65kHz	8.219mV	11.70kHz	0.196mV	11.75kHz	0.220mV 0.133mV	11.46kHz	0.162mV 0.204mV	11.45kHz	0.131mV 0.198mV	11.90kHz	8.293mV	11.95kHz	8.178m
12.00kHz	0.159mV	12.05kHz	0 · 182mV	12.19kHz	0.154mV	12.15kHz	0.183mV	12.20kHz	6.227mV	12.25kHz	0.222mV	12.30kHz	0.185mV	12.35kHz	9.159m
12.48kHz	0.196mV	12.45kHz	Ø . 181πV	12.50kHz	0.195mV	12.55kHz	0.210mV	12.60kHz	6.134mV	12.65kHz	0.165mV	12.70kHz	0.186mV	12.75kHz	9.150m
12.88kHz	0.186mV	12.85kHz	0.190mV	12.90kHz	0.126mV	12 . 95kHz	0.158mV	13.00kHz	0.196mV	13.05kHz	0.182mV	13.10kHz	0.134mV	13.15kHz	0.164m
13.29kHz	0.148mV	13 · 25kHz	0.140mV	13.36kHz	0.197mV	13.35kHz	0.181mV	13.40kHz	0.166mV	13.45kHz	9.147mV	13.50kHz	0.160mV	13.55kHz	0.182m
13.60kHz	8.209mV	13.65kHz	0.169mV	13.70kHz	0.148mV	13.75kHz	0.162mV	13.80kHz	0.165mV	13.85kHz	0.180mV	13.90kHz	6.176mV	13.95kHz	0.127m
14.00kHz	0.131mV	14.05kHz	8.179mV	14.10kHz	0.155mV	14 - 15kHz	9.174mV	14.20kHz	9.143mV	14.25kHz	0.154mV	14.30kHz	0.145mV	14.35kHz	9.149m
14.48kHz	9.201mV	14.45kHz	0.150mV	14.50kHz	0.110mV	14.55kHz	0.169mV	14.60kHz	0.170mV	14.65kHz	8.155mV	14.70kHz	0.142mV	14.75kHz	0.145m
14.80kHz	0.169mV	14.85kHz	0.164mV	14.90kHz	0.149mV	14.95kHz	0.130mV	15.98kHz	0.164mV	15.95kHz	9.176mV	15 10LHz	9.161mW	15.15kHz	8.139m
15.20kHz 15.60kHz	0.137mV	15.25kHz	0.185mV	15.30kHz	8.165mV	15.35kHz	9-114nV	15.48kHz	0.132mV	15.45kHz	0.193eV	15.50kHz 15.90kHz	0.139mV	15.55kHz	0.152m
15.60kHz	8.171mV	15.65kHz	0.120mV	15.79kHz	9.159mV	15.75kHz	8 · 183mV	15.80kHz 16.20kHz	8.112mV	15.85kHz	0.141mV	15.90kHz	8.179mV	15.95kHz	0.174m
16.00kHz	0.178mV	16.05kHz	0.092mV	16.10kHz	0.188mV	16.15kHz	0.200mV	16.20kHz	6.097mV	16.25kHz	0.175mV	16.30kHz	9.177mV	16.35kHz	0.097m
16.40kHz	0.159mV	16.45kHz	6.137mV	16.50kHz	0.141mV	16 55kHz	0.163mV	16.60kHz	0.104mV	16 . 65kHz	9.167mV	16.70kHz	0.175mV	16 . 75kHz	0.091
16.86kHz 17.20kHz	0.146mV 0.138mV	16 · 85kHz	0.180mV 0.165mV	16.90kHz	9.17emV	16.95kHz	0.135mV	17.00kHz	0.168mV	17.05kHz	0.156mV	17.10kHz	0.138mV	17.15kHz 17.55kHz	0.162m 9.120m
17.68kHz	0.152mV	17.25kHz 17.65kHz	8.157mV	17.30kHz 17.70kHz	0.183mV 0.128mV	17.35kHz 17.75kHz	0.142mV 0.142mV	17.40kHz 17.80kHz	0 - 129mV 9 - 124mV	17.45kHz 17.85kHz	0.174mV 0.159mV	17.50kHz 17.90kHz	9.159mV 9.159mV	17.95kHz	0.120m
18.00kHz	0.132mV	18.05kHz	0.15/mV	17.76KHZ 18.10kHz	0.128mV 0.120mV	17.75kHz 18.15kHz	0.142mV 0.148mV	17.86kHz 18.29kHz	9.124mV 9.102mV	17.85kHz 18.25kHz	8.163mV	18.30kHz	0.159mV 0.199mV	18.35kHz	8.891n
18.40kHz	0.134nV	18.45kHz	8.189mV	18.50kHz		18.55kHz	6.124mV	18.60kHz	0.162mV 0.145mV	18.65kHz	9.115mV	18.70kHz	8.194mV	18.75kHz	0.172m
18.86kHz	8.166aV	18.85kHz	9 193mV	18.98kHz		18.95kHz	0.124mV	19.00kHz	9.133mV	19.05kHz	0.155mV	19.10kHz	6.122mV	19.15kHz	8.146n
19.28kHz	6.129mV	19.25kHz 19.65kHz	0.133mV	19.30kHz		19.35kHz 19.75kHz	8.887mV	19.48kHz	0.163mV	19.45kHz	0.140mV	19.58kHz	0.117mV	19.55kHz	0.164n
19.60kHz	0.077mV	19.65kHz	0.138mV	19.70kHz	0.183mV	19 751,42	8.087mV 0.128mV	19.80kHz	0.125mV	19.85kHz	0.091mV	19.50kHz 19.90kHz	9.131mW	19.95kHz	0.122n

3.9 Analysis with the Waveform Screen


3.9.1 Selecting the Display Method

The display of FFT analysis data can be switched between waveform and numerical views.

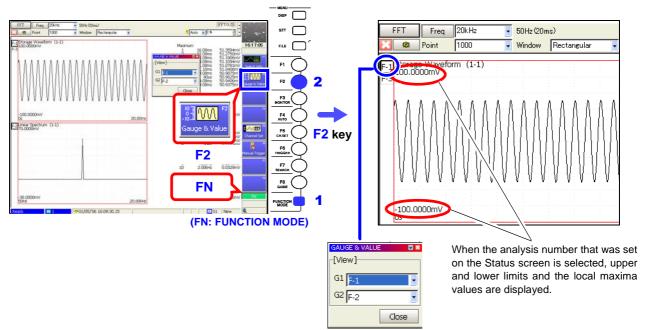
Press the **DISP** key repeatedly to change the display method.

Pressing the **DISP** key opens the Display dialog in which to select a display method. Selections in this dialog are available using the F keys.

Press the ESC key or an F key to close the dialog.

NOTE

When the display type on the Sheet Settings screen is [Nyquist], [FFT+Nyquist] or [Wave+Nyquist], the display cannot be switched.


3.9.2 Selecting Gauges and Values

Display of upper and lower limits and peak values [maximal/ maximum] can be selected by analysis number. However, selection is not possible when Nyquist display is enabled.

Press the **FUNCTION MODE** key to enable the FN mode, then press **F2** [Gauge & Value]. The Gauge dialog appears.

Select an analysis number as occasion demands to display gauge and measurement values.

Press the **ESC** key or the **F8** [Close] key to close the dialog.

GAUGE&VALUE dialog

Using the CURSOR keys, move the cursor into the dialog and select the channels for which to display a gauge.

3.9.3 Analyzing after Specifying an Analysis Starting Point

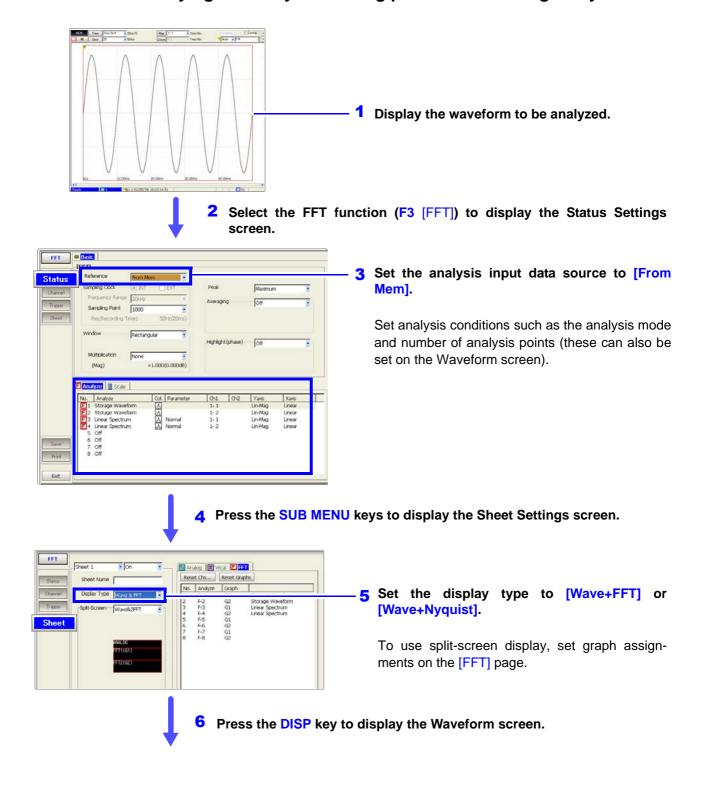
A starting point for FFT analysis can be specified on an existing memory waveform before analyzing.

The procedure depends on the Trigger Mode setting.

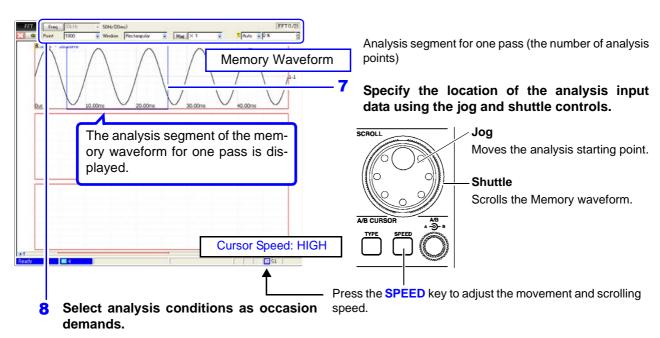
See "Trigger Modes and Averaging" (p. 60)

- When the Trigger Mode is [Single]
 Analysis is performed once on the specified number of analysis points beginning with the specified starting point, and analysis results are displayed.
 This is convenient for analyzing only a specific range. However, if averaging is enabled, analysis repeats for the specified averaging count.
- When the Trigger Mode is [Auto] or [Repeat]
 Analysis is performed repeatedly on the specified number of analysis points
 beginning with the specified starting point and ending with end of waveform
 data, and final analysis results are displayed (because analysis is only per formed on the specified number of analysis points, final analysis results may
 be determined and become available before the end of the waveform data).

The starting point can be specified by one of the following methods:

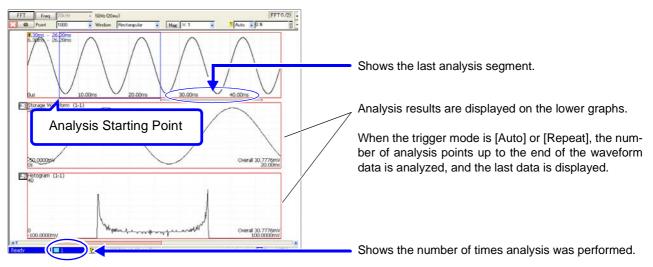

(1) Verifying the analysis starting point while viewing analysis data (p. 81)

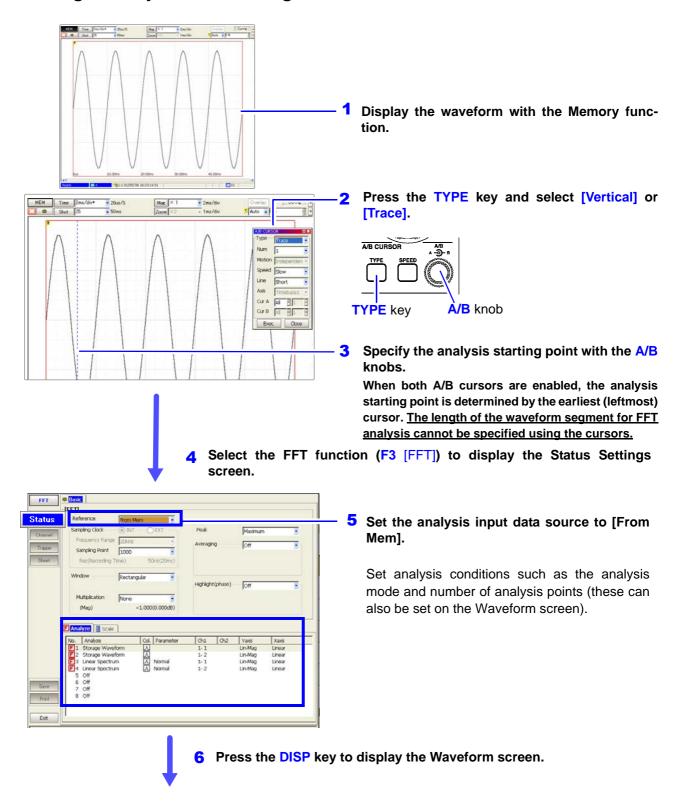
The memory waveform and analysis results are displayed at the same time on the Waveform screen (Sheet Settings screen: Display type [Wave+FFT] or [Wave+Nyquist]) and the analysis starting point is specified on the memory waveform.


(2) Performing FFT analysis after specifying a starting point on an existing memory waveform using the A/B cursors (p. 83)

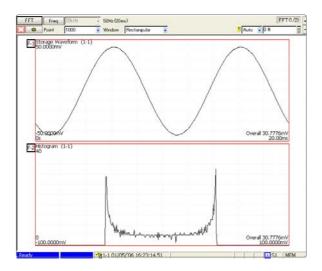
The analysis starting point is specified using the A/B cursors with the Memory function. If the cursors are not displayed, analysis begins at the start of the data. The starting position cannot be verified while the FFT function is enabled.

Procedure 1. Verifying the analysis starting point while viewing analysis data


3.9 Analysis with the Waveform Screen


The setting can be changed at the top of the Waveform screen. The range is determined by the number of analysis points. If the analysis range (number of points) is larger than the memory waveform as To change the number of shown below, analysis is not performed. analysis points Analysis Segment Display At the top of the Waveform screen, set the trigger mode to [Single], so that only the currently displayed analysis segment will be analyzed. To analyze only a certain When the trigger mode is other than [Single], analysis continues for the specified portion number of analysis points, or to the end of data. To interrupt analysis in progress, press the STOP key. To change analysis condi- Press the SUB MENU keys to select [FFT (1/2)] or [FFT (2/2)], and change the settions tings.

1


9 Press the START key to begin analyzing.

Procedure 2. Performing FFT analysis after specifying a starting point on an existing memory waveform using the A/B cursors

3.9 Analysis with the Waveform Screen

7 Make other settings as occasion demands, then press the START key to begin analyzing.

3.10 FFT Analysis Modes

3.10.1 Analysis Modes and Display Examples

For the functions of each analysis mode, see "3.10.2 Analysis Mode Functions" (p. 102).


Storage STR

Displays the time axis waveform of the input signal.

When the window function setting is other than rectangular, the window function is applied to the waveform and displayed.

Axis	Display Type	Description
X axis	Linear	Time-domain display Displays the value of the time-domain waveform corresponding to the set frequency range. See "Relationship Between Frequency Range, Resolution and Number of Analysis Points" (p. 55)
Y axis	Lin-Mag	Displays the input module waveform.

Waveform Example

Window: Rectangular X axis: Linear Y axis: Lin-Mag

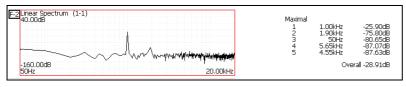
Linear Spectrum

LIN

The linear spectrum plots the input signal frequency. It can be displayed as a Nyquist plot. Main uses:

- To inspect the peak frequency contents of a waveform
- To inspect signal amplitudes at each frequency

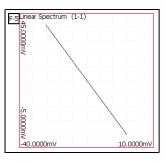
See About the Functions "3.10.2 Analysis Mode Functions" (p. 102)


Axis	Display Type	Description
	Linear	Frequency is displayed with equal spacing Display Range: DC to the top of the frequency range
	Log	Frequency is displayed logarithmically Display Range: 1/400 th to 1/8000 th (depending on the number of analysis points) to the top of the frequency range
	Nyquist display	The real-number component of analysis values are displayed linearly.
	Lin-Mag	Analysis values are displayed linearly.
	Log-Mag	Analysis values are displayed as dB values. (0 dB reference value: 1eu)*
Y axis	Lin-Real	The real-number component of analysis values are displayed.
	Lin-Imag	The imaginary component of analysis values are displayed.
	Nyquist display	The imaginary component of analysis values are displayed.

^{*} eu: engineering units that are currently set are the standard (e.g., when the unit settings is volts, 0 dB = 1 V)

Waveform Example

Normal display X axis: Log Y axis: Lin-Mag


Normal display X axis: Log Y axis: Log-Mag

Normal display X axis: Log Y axis: Lin-Real

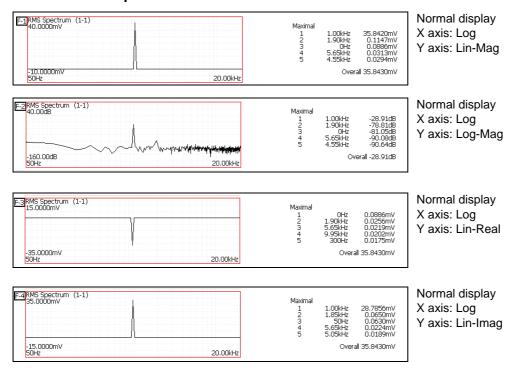
Normal display X axis: Log Y axis: Lin-Imag

Nyquist display

RMS Spectrum RMS

Amplitudes (RMS values) are calculated along the frequency axis from the input signal waveform. RMS and power spectra displays use the same analysis results displayed logarithmically (amplitude in dB).

Main uses:


- To inspect the peak frequency contents of a waveform
- To inspect the RMS value at each frequency

See About the Functions "3.10.2 Analysis Mode Functions" (p. 102)

Axis	Display Type	Description
	Linear	Frequency is displayed with equal spacing Display Range: DC to the top of the frequency range
X axis	Log	Frequency is displayed logarithmically Display Range: 1/400 th to 1/8000 th (depending on the number of analysis points) to the top of the frequency range
	Lin-Mag	Analysis values are displayed linearly.
Y axis	Log-Mag	Analysis values are displayed as dB values. (0 dB reference value: 1eu)*
	Lin-Real	The real-number component of analysis values are displayed.
	Lin-Imag	The imaginary component of analysis values are displayed.

^{*} eu: engineering units that are currently set are the standard (e.g., when the unit settings is volts, 0 dB = 1 V)

Waveform Example

Power Spectrum

PSP

Displays input signal power as the amplitude component.

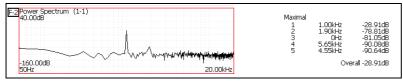
Main uses:

- To inspect the peak frequency contents of a waveform
- To inspect the power level at each frequency

See About the Functions "3.10.2 Analysis Mode Functions" (p. 102)

Axis	Display Type	Description
	Linear	Frequency is displayed with equal spacing Display Range: DC to the top of the frequency range
X axis	Log	Frequency is displayed logarithmically Display Range: 1/400 th to 1/8000 th (depending on the number of analysis points) to the top of the frequency range
Y axis	Lin-Mag	Analysis data is displayed linearly as squared values. Indicates the power component.
	Log-Mag (logarithm)	Analysis values are displayed as dB values. (0 dB reference value: 1eu ²)*

^{*} eu: engineering units that are currently set are the standard (e.g., when the unit settings is volts, 0 dB = 1 V2)


Waveform Example

X axis: Log Y axis: Log-Mag

Normal display X axis: Log Y axis: Lin-Mag

Power Spectrum Density

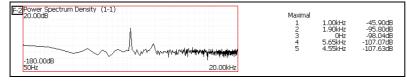
PSD

Indicates the power spectrum density of the input signal with only the amplitude component included. This is the power spectrum divided by the frequency resolution.

Not available with external sampling enabled.

Main uses:

To acquire a power spectrum with 1-Hz resolution for highly irregular waveforms such as white noise **See** About the Functions "3.10.2 Analysis Mode Functions" (p. 102)


Axis	Display Type	Description
	Linear	Frequency is displayed with equal spacing Display Range: DC to the top of the frequency range
X axis	Log	Frequency is displayed logarithmically Display Range: 1/400 th to 1/8000 th (depending on the number of analysis points) to the top of the frequency range
Y axis	Lin-Mag	Analysis values are displayed linearly.
I axis	Log-Mag (logarithm)	Analysis values are displayed as dB values. (0 dB reference value: 1eu²/Hz)*

^{*} eu: engineering units that are currently set are the standard (e.g., when the unit settings is volts, $0 \text{ dB} = 1 \text{ V}^2/\text{Hz}$)

Waveform Example

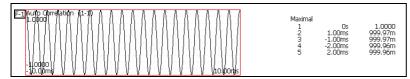
Normal display X axis: Log Y axis: Lin-Mag

Normal display X axis: Log Y axis: Log-Mag

Auto Correlation Function

ACR

Shows the correlation of two points on the input signal at time differential t.


Main uses:

- To detect periodicy in irregular signals (improving and detecting SNR)
- To inspect periodic components in a noisy waveform.

See About the Functions "3.10.2 Analysis Mode Functions" (p. 102)

Axis	Display Type	Description
X axis	Linear	Time display The center $(t = 0)$ is the reference. To the right is lag time $(+t)$, and to the left is lead time $(-t)$
Y axis	Lin-Mag	+1 to -1 (dimensionless units) The closest correlation at time differential t is +1, and the least correlation is 01 indicates completely reversed polarity. Because of the characteristics of the function, t = 0 becomes +1.

Waveform Example

This instrument provides a circular auto-correlation function.

Analysis results are normalized to the maximum value.

Histogram HIS

Acquires the amplitude distribution of the input signal.

Main uses:

- To inspect deviations in the amplitude range of a waveform
- With analysis point distribution, to ascertain whether a waveform is artificial or natural (natural forms exhibiting regular distribution)

See About the Functions "3.10.2 Analysis Mode Functions" (p. 102)

Axis	Display Type	Description
X axis	Linear	Displays input level of the input signal.
Y axis	Lin-Mag	Displays analysis data distribution.

Waveform Example

Normal display X axis: Log Y axis: Lin-Mag

X axis: Linear Y axis: Lin-Mag

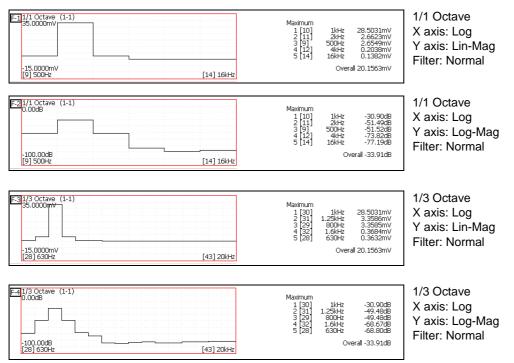
1/1 and 1/3 Octave Analysis

OCT

The sound pressure level of the spectrum of a signal such as noise is displayed through a fixed-width one- or one-third octave band-pass filter.

Not available with external sampling enabled.

Main uses:


To analyze frequency components of noise

See About the Functions "3.10.2 Analysis Mode Functions" (p. 102), "Octave Filter Characteristics" (p. 114)

Axis	Display Type	Description
X axis	Log	Displays the center frequency of each band.
Y axis	Lin-Mag	Octave analysis values are displayed linearly.
I dais	Log-Mag (logarithm)	Octave analysis values are displayed as dB values. (0 dB reference value: 1eu)*

^{*} eu: engineering units that are currently set are the standard (e.g., when the unit settings is volts, 0 dB = 1 V)

Waveform Example

Octave Analysis

Octave analysis consists of frequency analysis of the signal passed through a constant-width band-pass filter. The power spectrum displays the power level in each subband after dividing the spectrum into fixed-width segments (subbands), while octave analysis scales the spectrum logarithmically and displays each octave (subband) as a bar graph.

The center frequency of the octave bands and filter characteristics are determined according to IEC61260 standards. With this instrument, 1/1- and 1/3-octave analyses are calculated using power spectrum Analysis results.

1/1 Octave Analysis: 6 subbands1/3 Octave Analysis: 16 subbands

Measurable Ranges with Octave Analysis

(●: 1/1 OCT, ○: 1/3 OCT)

Timebase		2μ	10 д	20 H	70g	100 H	700 h	700s	\vdash	H		\vdash	-	\vdash		H	\vdash		5	10	30	20	09	100	120	300
Period [s]		20n	100n	200n	500n	14	2 µ						200 µ 50	500 µ 1						100m		200m	m009	-	1.2	r
Sampling 1	Sampling frequency [Hz]	X0M	10M	SM	2,11	11	500k	-	-	-		-		_	-	_	_		_	9	-	2	1.66	-	833m	333m
Frequency	Frequency range [Hz]		4M	2M	800k	400k	200k	Н	40k	20k	8k 4	4k	2k 8	800 40	400 200	08 0	40	20	Н	4	1.33	#008	m299	400m	333m	133m
1/1 0CT	1/3 Center frequency 0CT [Hz]	0 6	-	2	3	4	2	9	7		6	10	11	12 1	13 14		16	17	18	19	20	21	22	23	24	25
·	-	Ē					Ī			-			-			L										
L γ	-23 5	æ																								0
	-22 6.3m	Æ																								0
	_	Æ																						_	•	0 •
		m																							0	0
	H	m																								0
φ		im																					•			•
	-17 20m	m.																					0	0	0	0
	-16 25	Ē																				0	0	0	0	0
-5	-15 31.5m	m																			•	о •	0	0	0	0
	-14 40	E																			0	0	0	0	0	0
	-13 50m	E.																			0	0	0	0	0	0
4		, E																			•	•		1	L	•
		=																				С		С		С
l	ľ	Ę				Ī	T	l	t	ł	$\frac{1}{1}$	\mid	l		l	l	-	L	L	L) (0	C	0		0
Υ	+								+	-	-	-	-		+	-			1	•	•	•		- 1	- 1	
,	+									+		-			+	+	-				•	•	1			
	+					T	T	\dagger	ł	\dagger	+	+	+	ł	+	+	-	1	1							
	+					1			+	+	+	+	1		+	1	-	-		•	•	•			- 1	
7-	muc2 0-	E .				1			+	+	+	+	+		+	-	-	1		•		•	- 1			
	+	Ē					1	\dagger	\dagger	\dagger	$\frac{1}{1}$	+	+	\parallel	+	+	+	\downarrow) C	5	5	
	+	E							+	+	1	1	+	+	+	+	-			ŀ			0		1	
	+	<u></u>				1			+	+	+	+	+		+	+	+	•	•	•	•	•	•	•		
	-2 630m	E I								+	-	+	+		-	1								1		
	-1 800m	E .								+	+	+	+		-	+	-					•		1	†	
0	0								+	1	1	1	1		+	-	•	•	•	•	•	•				
		12								1	1	-	1	\parallel	-	-					0				1	
	2 1.6	9								1							- 1	ĺ								
		2								1		-				•	•	•	•	•						
		5															0									
	5 3.15	5														- 1		İ								
7	9	4								- Annual Control	-		-	-		•	•	•	•	•						
	+	20								+		-	+										Ì	1	1	
	9	m -							+	+	1	+			- 1											
m		∞ •													•	•	•	•	•							
	1	2					1		1	+	1	+	+	1	1			1						1		
-	12	5											+	-	- 1	- 1	- 1	- 1	0							
4		91							+	1	-	+		•	•	•	•	•						1	1	
1		20				1	1	1	1	1			$\frac{1}{1}$	-												
		2												0				_								
-2	31	5											•	•	•	•	•	_								
		9											-	0			0									
		20												0			0									
9	18	200							+	+	1	•		- 1	•	•	01.							1	1	
		00					1	$\frac{1}{2}$	1		$\left\ \cdot \right\ $	$\frac{1}{2}$						4			\rfloor		1	1	1	1

(●: 1/1 OCT, ○: 1/3 OCT)

2m Sam 10m 20m 100m 300m 500m 10 m 3 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2	Timebase		5μ	\vdash	\vdash	⊢	η001	200 µ	200 H		Zm	2m	10m	Z0m	20m	H	F	F	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	100	120	300
March Marc	Period [s]		50n		_	_		2μ			_	20 m	100 H	200 H	200 H	Jm	Zm	5m		_		_	_	_		1.2	3
No. 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	Sampling f	requency [Hz]	Z0M			⊢						20k	10k	5k	2k	1							⊢			833m	333m
	Frequency	range [Hz]	₩8	Н	Н	Н	Н	Н	Н	Н	Н	8	4k	2k	800	400	Н	Н	Н	Н		Н	Н	Н	Н	333m	133m
100 100	1/1 0CT			-	2		4	5	9	7	8	6	10	11	12	13	14	15							23	24	25
173 173			100			_								0	0	0	0			_							
100 100	7		125												0	0											
23 200	_		160										0	0	0	0	0										
2.00 2.00			700										0	0	0	0	0										
25 315	-		250										•		0	0											
1, 25 400			315												0												
17 17 18 18 18 18 18 18			400								L	C	L	С	С	С			H	<u> </u>			_				
23	6		200								•		•		0												
25 800 1.0 km 1.2 km			630												0												
33 1.8k		H	800			<u> </u>								0	0												
31 1.25k	10		+							•		•	•	1	1				_								
33 1.6k	!		25k																								
33 2.5k		ŀ	, 6k			_						L	L	С						L			L				
35 3.15k 36 3.15k 37 3.15k 38 6.3k 39 8k 40 0	11		10.11		-	-			•		•	•	•				\downarrow		+	+		-	1				
35 3.15k	:		7 2 K		-					•	•	•	•						+			-					
37 138		ł	151	\downarrow	\downarrow	\downarrow						L				\dagger	\dagger		+	+	+	+	+	<u> </u>			
37 5%	12		10 AV							•	•	•								<u> </u>			<u> </u>				
39 88 88 88 88 89 88 89	<u> </u>		f i							•	•	•	•						+	<u> </u>			+				
98		+	X C	\downarrow	\downarrow	+	\downarrow	<u> </u>							\dagger	\dagger	\dagger	\dagger	+	+	+	+	+	+			
39 00K 41 112.8k 42 16k 43 20k 44 23k 45 31.8k 46 40 C 47 50k 48 63k 49 80k 51 112k 52 160k 53 200k 54 50k 55 313k 56 60 57 100k 58 630k 60 11k 61 1.23k 62 6	1,	+	3. 3K		1	+			4	•	•	4				\dagger	+	+	+	+	+	+	+				
43 17.5K 44 20K 44 20K 45 31.5K 46 63K 51 10K 52 200K 53 200K 54 250K 55 315K 60 1 1 2 3K 60 1 1 2 3K 60 1 1 2 3K 60 1 1 2 3K 61 1 2 3K 61 1 2 3K 62 1 60K 63 2 3 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2		10.E						•	•	•	•															
41 12.3k 43 20k 44 31.3k 44 31.3k 45 31.3k 46 44 23k 47 50k 48 63k 49 80k 50 100k 51 12.5k 52 313k 53 200k 54 250k 55 313k 56 60 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		+	NO.	\downarrow	1	\downarrow	1	1	1						\dagger	t	\dagger	\dagger	\dagger	+	+	+	+	+		\downarrow	
42 100 44 25k 45 31.5k 46 40k 47 50k 48 63k 49 80k 50 0 <td>-</td> <td></td> <td>2. 5K</td> <td>-</td> <td>+</td> <td>+</td> <td></td> <td>•</td> <td>•</td> <td>•</td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td></td> <td></td> <td></td> <td>+</td> <td>+</td> <td>+</td> <td>+</td> <td></td> <td></td> <td></td> <td></td>	-		2. 5K	-	+	+		•	•	•	•					+				+	+	+	+				
44 23k 46 40k 47 23k 46 40k 47 50k 48 63k 48 63k 49 800k 50 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4	+	16K		-	1		•	•	•	•								+	+	+	+	+				
44 25k 45 31.5k 46 40k 47 50k 48 63k 49 80k 50 100k 51 12k 52 160k 53 200k 54 250k 55 315k 56 0 57 10k 58 630k 60 1k 61 1.2k 62 0 63 0 64 2.5k		1	20k			\downarrow													+	+			+				
45 31.5k 0 <td></td> <td>+</td> <td>25k</td> <td></td> <td>+</td> <td>+</td> <td>+</td> <td>1</td> <td>+</td> <td></td> <td></td> <td></td> <td></td>		+	25k																+	+	+	1	+				
46 40k 47 50k 48 63k 49 80k 50 100k 51 12k 52 160k 53 200k 54 400k 55 31k 56 400k 57 500k 58 630k 60 11,25k 61 1,25k 62 6 63 1,25k 64 2,5k 64 2,5k	15		1. 5k				•	•	•	•																	
47 50k C		-	40k																								
48 63k • • • • • • • • • •		_	20k																				_				
49 80k	16 — —	_	63k			•	•	•	•											1							
50 100k		_	80k		~																						
51 125k 0 0 0 0 52 200k 0 0 0 0 54 250k 0 0 0 0 55 315k 0 0 0 0 0 56 400k 0 0 0 0 0 57 500k 0 0 0 0 0 59 800k 0 0 0 0 60 11k 0 0 0 0 61 1.23k 0 0 0 0 63 1.6k 0 0 0 0 64 2.3k 0 0 0 0			100k						0																		
52 160k 53 200k 54 250k 55 315k 56 400k 57 500k 59 800k 60 1M 61 1,23k 63 2M 64 2,5k	14	_	125k		•	•	•	•		1	_					1	1		+	+	+	1	1				
53 200k 54 250k 0 0 0 55 315k 0 0 0 0 56 315k 0 0 0 0 57 500k 0 0 0 0 59 800k 0 0 0 0 60 1M 0 0 0 0 61 1,2M 0 0 0 0 63 2M 0 0 0 0 64 2,5M 0 0 0 0			160k	\cup																							
S4 250k																				1							
55 315k	<u></u>		•	•	•	•	•	-																			
56 400k C C C 57 500k C C C 58 630k C C C 60 1M C C C 61 1.25M C C C 63 2M C C C 64 2.5M C C C		_																					-				
57 500k C C C C 58 630k C C C C 60 1M C C C C 61 1.25m C C C C 63 2m C C C C 64 2.5M C C C C																											
58 630k 0 0 0 0 0 0 0 0 0	19		•	•	•	•	_																_				
59 800k							0													\dashv	-		\dashv				
60 1M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							0																				
61 1.25M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	70		•	•	•																						
62 1.6M \bigcirc \bigcirc \bigcirc 63 \bigcirc 2M \bigcirc						0			_	_	_								-	\dashv	\dashv		\dashv				
63 2M • ○ • ○ • • • • • • • • • • • • • • •						0																					
2.5M	71		•	•	•	0																					

(●: 1/1 OCT, ○: 1/3 OCT)

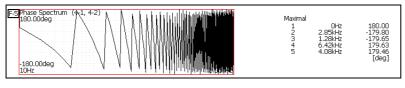
Timebase			5μ	η01	20 µ	705	100 H	200 µ	700s	#	2m	5m	10m	20m	20m	100m	200m	500m	-	2	5	10	30	50	09	100	120	300
Period [s]			50n	100n	200n	500n	1μ	2μ	5μ	η01	20 µ	-	100L	200 µ	200 H	Ę	Zm	Sm.	10m	20m	. W	100m	300m	500m (m009	-	1.2	3
Sampling f.	Sampling frequency [Hz]	[z]	ZOM	10#	SM	2,11	×	500k	200k	100k	50k	20k	10 4	5K	2k	=	200	700	100	20	70	9	3, 33	. 7	1.66	-	833m	333m
Frequency	Frequency range [Hz]		8M	₩	2M	800k	400k	200k	80k	40k	20k	8 %	4	2k	800	400	700	80	40	70	&	4	1.33	800m (667m 4	400m	333m	133m
1/1 0CT	1/3 fre 0CT [Center frequency [Hz]	0	-	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
	99	3.15₩	0	0													l	l	-	F	-			-	F	H		
77	99	#	о •	○ •																								
	29	WS.	0																									
	89	6.3#	0																							H		
73	69	₩8	○ •																									
	70	10M																										
	71	12.5#																										
24																												

Phase Spectrum

PHA

Shows the phase characteristics of the input signal.

Main uses:


- To inspect the phase spectrum of channel 1. Displays the phase of a cosine waveform as a reference (0°).
- To inspect the phase difference between channels 1 and 2.

See About the Functions "3.10.2 Analysis Mode Functions" (p. 102)

- 1 Ch FFT: Displays the phase of the signal on channel 1. Displays the phase of a cosine waveform as a reference (0°). Unless the waveform is synchronous, phase values are unstable.
- 2 Ch FFT: Displays the phase difference between channels 1 and 2. Positive values indicate that the phase of channel 2 is leading.

Axis	Display Type	Description
	Linear	Frequency is displayed with equal spacing Display Range: DC to the top of the frequency range
X axis	Log	Frequency is displayed logarithmically Display Range: 1/400 th to 1/8000 th (depending on the number of analysis points) to the top of the frequency range
Y axis	Lin-Mag	Analysis values are displayed linearly.

Waveform Example

2chFFT X axis: Log Y axis: Log-Mag

1chFFT X axis: Log Y axis: Lin-Mag

Emphasizing only a Specific Portion (Highlighted Display)

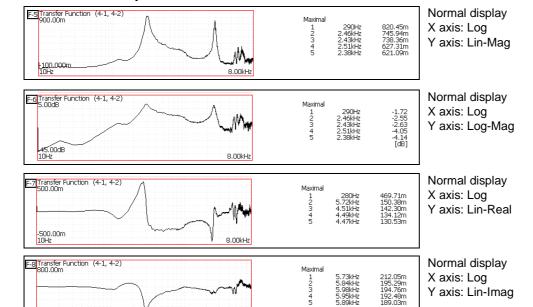
A specific portion of a phase spectrum can be emphasized and displayed.

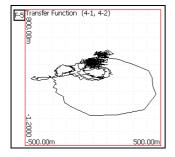
See "3.4.7 Emphasizing Analysis Results (phase spectra only)" (p. 61)

Transfer Function TRF

From the input and output signals, the transfer function (frequency characteristic) of a measurement system can be obtained. It can also be displayed as a Nyquist plot.

Main uses:


- To inspect a filter's frequency characteristic
- To inspect the stability of a feedback control system (using the Nyquist plot)
- To inspect the resonance characteristic of an object using an impulse hammer and pick-up sensor


See About the Functions "3.10.2 Analysis Mode Functions" (p. 102), "Linear Time-Invariant Systems" (p. 104)

Axis	Display Type	Description
	Linear	Frequency is displayed with equal spacing Display Range: DC to the top of the frequency range
X axis	Log	Frequency is displayed logarithmically Display Range: 1/400 th to 1/8000 th (depending on the number of analysis points) to the top of the frequency range
	Nyquist display	Displays the real-number component of the input-output ratio.
	Lin-Mag	Displays the input-output ratio linearly (dimensionless units).
	Log-Mag (logarithm)	Displays the input-output ratio as dB values.
Y axis	Lin-Real	Displays the real-number component of the input-output ratio (dimensionless units).
	Lin-Imag	Displays the imaginary component of the input-output ratio (dimensionless units).
	Nyquist display	Displays the imaginary component of the input-output ratio.

Y axis: Lin-Imag

Waveform Example

-1.2000 10Hz

Nyquist display

8.00kHz

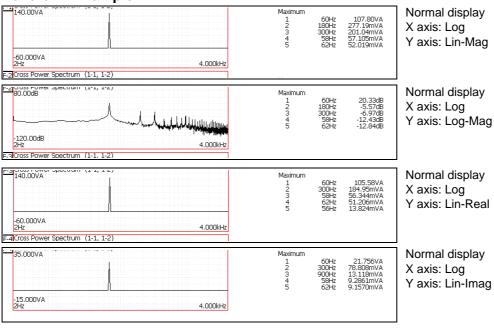
Cross Power Spectrum

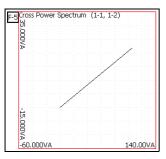
CSP

The product of the spectra of two input signals can be obtained. The common frequency components of two signals can be obtained.

Using the voltage and current waveforms as input signals, active power, reactive power and apparent power can be obtained at each frequency.

Main uses:


To inspect common frequency components of two signals


See About the Functions "3.10.2 Analysis Mode Functions" (p. 102)

Axis	Display Type	Description
	Linear	Frequency is displayed with equal spacing Display Range: DC to the top of the frequency range
X axis	Log	Frequency is displayed logarithmically Display Range: 1/400 th to 1/8000 th (depending on the number of analysis points) to the top of the frequency range
	Nyquist display	Displays the real-number component of the input-output ratio linearly.
	Lin-Mag	Displays the squared value of amplitude contents of analysis data linearly.
	Log-Mag (logarithm)	Displays the amplitude contents of analysis data as dB values. (0 dB reference value: $1 \mathrm{eu}^2$)*
Y axis	Lin-Real	Displays the squared values of the real component of analysis data linearly.
	Lin-Imag	Displays the squared values of the imaginary component of analysis data linearly.
	Nyquist display	Displays the imaginary component of analysis data linearly.

^{*} eu: engineering units that are currently set are the standard (e.g., when the unit settings is volts, 0 dB = 1 V^2)

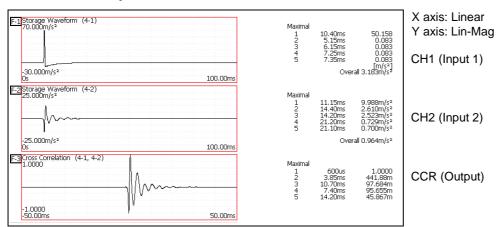
Waveform Example

Nyquist display

Cross-Correlation Function

CCR

Using two input signals, shows the correlation of two points on the input signal at time differential t. Output is displayed as a function of differential time t.


Main uses:

- To determine the phase shift of two signals per unit of time
- To determine the speed and distance of time lag between two signals

See About the Functions "3.10.2 Analysis Mode Functions" (p. 102)

Axis	Display Type	Description
X axis	Linear	Time display The center $(t = 0)$ is the reference. To the right is lag time $(+t)$, and to the left is lead time $(-t)$
Y axis	Lin-Mag	+1 to -1 is displayed in dimensionless units. At time differential t , this value is +1 when the correlation of input and output signals is the closest, and 0 when correlation is the least1 indicates completely reversed polarity.

Waveform Example

This instrument provides a circular cross-correlation function.

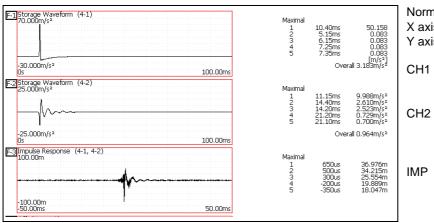
Analysis results are normalized to the maximum value.

Impulse Response

IMP

The transfer characteristic of a system is obtained as a time-domain waveform.

Utilizing both output and input signals of the measurement system, a unit impulse is applied to the system and the corresponding response waveform is obtained.


Main uses:

To inspect circuit time constants

See About the Functions "3.10.2 Analysis Mode Functions" (p. 102), "Linear Time-Invariant Systems" (p. 104)

Axis	Display Type	Description
X axis	Linear	Time display The center $(t = 0)$ is the reference. To the right is lag time $(+t)$, and to the left is lead time $(-t)$
Y axis	Lin-Mag	This value is the transfer function provided by inverse Fourier transformation.

Waveform Example

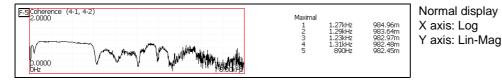
Normal display

X axis: Linear Y axis: Lin-Mag

Coherence Function COH

This function gives a measure of the correlation (coherence) between input and output signals. Values obtained are between 0 and 1.

With a single measurement, the coherence function gives a value of one for all frequencies. Spectrum (frequency-domain) averaging should always be performed before measurement (analysis is not available with time-domain averaging).


Main uses:

- To evaluate transfer functions
- · In a system with multiple inputs, to inspect the effect of each input on the output

See About the Functions "3.10.2 Analysis Mode Functions" (p. 102)

Axis	Display Type	Description
	Linear	Frequency is displayed with equal spacing Display Range: DC to the top of the frequency range
X axis	Log	Frequency is displayed logarithmically Display Range: 1/400 th to 1/8000 th (depending on the number of analysis points) to the top of the frequency range
Y axis	Lin-Mag	Displays the causal relationship and degree of relationship between two input signals, as a value between 0 and 1 (dimensionless units).

Waveform Example

The coherence function has two general definition formulas. For the definition formulas, see "3.10.2 Analysis Mode Functions" (p. 102)

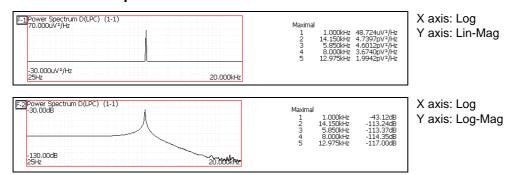
Power Spectrum Density (Linear Predictive Coding)

LPC

When the spectrum shape is complex and hard to comprehend with either linear or power spectra, a rough spectrum structure can be obtained.

Not available with external sampling enabled.

Main uses:


To obtain a spectral envelope using statistical methods

See About the Functions "3.10.2 Analysis Mode Functions" (p. 102)

Axis	Display Type	Description
	Linear	Frequency is displayed with equal spacing Display Range: DC to the top of the frequency range
X axis	Log	Frequency is displayed logarithmically Display Range: 1/400 th to 1/8000 th (depending on the number of analysis points) to the top of the frequency range
Y axis	Lin-Mag	Analysis values are displayed linearly.
T axis	Log-Mag (logarithm)	Analysis values are displayed as dB values. (0 dB reference value: 1eu²/Hz)*

^{*} eu: engineering units that are currently set are the standard (e.g., when the unit settings is volts, 0 dB = $1 \text{ V}^2/\text{Hz}$)

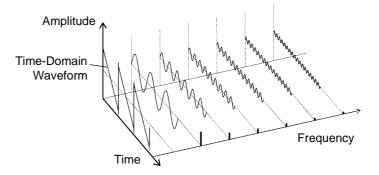
Waveform Example

NOTE

- Always specify the order (from 2 to 64). Higher orders can expose finer spectral details.
- Amplitude values provided by LPC are not always the same as the power spectrum density.
- If an error occurs during analysis, no waveform is displayed.
- Noise-like phenomena can strongly affect the spectrum shape.

3.10.2 Analysis Mode Functions

Analysis Mode	Internal analysis formula (linear, real, imag [imaginary], log [logarithm])
No Analysis	No analysis.
Storage Waveform	A waveform obtained by applying the window function to a time-domain waveform.
Linear Spectrum (LIN)	$X(k) = \sum_{n=0}^{N-1} x(n)W^{kn} F(k) = CX(k) \qquad C = \begin{cases} 1/N(DC) \\ 2/N(AC) \end{cases}$ $linear = F(k) real = \operatorname{Re}\{F(k)\} imag = \operatorname{Im}\{F(k)\} \log = 20\log F(k) $
RMS Spectrum (RMS)	$F'(k) = C'F(k) \qquad C' = \begin{cases} 1 & (DC) \\ 1/\sqrt{2}(AC) \end{cases}$ $linear = F'(k) real = \text{Re}\{F'(k)\} imag = \text{Im}\{F'(k)\} \log = 20\log F'(k) $
Power Spectrum (PSP)	$P(k) = a F(k) ^{2} \qquad a = \begin{cases} 1 & (DC) \\ 1/2(AC) \end{cases}$ $linear = P(k) \log = 10 \log P(k) $
Power Spectrum Density (PSD)	$P'(k) = P(k) / \delta f$ δf : Frequency resolution $linear = P'(k)$ $log = l0log P'(k) $
Auto-correlation Function (ACR)	$R_{xx}(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) ^2 W^{-kn} \qquad \text{(recursive convolution)}$
Histogram (HIS)	Counts amplitude data.
Transfer Function (TRF)	$H(k) = Y(k) / X(k)$ $linear = H(k) real = \text{Re}\{H(k)\} log = 20 \log H(k) $
Cross Power Spectrum (CSP)	$\begin{split} S_{yx}(k) &= X^*(k)Y(k) : \text{Cross Spectrum} \\ X_{power}(k) &= AS_{yx}(k) \qquad A = \begin{cases} 1/N^2 \\ 2/N^2 \end{cases} \\ linear &= X_{power}(k) real = \text{Re}\{X_{power}(k)\} \\ mag &= \text{Im}\{X_{power}(k)\} \log = 10\log X_{power}(k) \end{split}$
Cross-correlation Function (CCR)	$R_{yx}(n) = \frac{1}{N} \sum_{k=0}^{N-1} S_{yx}(k) W^{-kn} \qquad \text{(recursive convolution)}$
Impulse Response (IMP)	$h(n) = \frac{1}{N} \sum_{k=0}^{N-1} \frac{Y(k)}{X(k)} W^{-kn}$
Coherence Function (COH)	$coh(k) = \sqrt{\frac{S_{yx}(k)S_{yx}^*(k)}{S_{xx}(k)S_{yy}(k)}}$
Phase Spectrum (1ch / 2ch) (PHA)	$\theta(k) = 180/\pi \times \tan^{-1}(\text{Im}(F'(k))/\text{Re}(F'(k)))$ $\theta(k) = 180/\pi \times \tan^{-1}(\text{Im}(S_{yx}(k))/\text{Re}(S_{yx}(k)))$
Power Spectrum (LPC)	(Abbr.) Spectrum approximation from Linear Predictive Coding. See "Linear Predictive Coding (LPC)" (p. 115)


3.11 FFT Definitions

What is FFT?

FFT is the abbreviation for Fast Fourier Transform, an efficient method to calculate the DFT (Discrete Fourier Transform) from a time-domain waveform. Also, the reverse process of transforming frequency data obtained by the FFT back into its original time-domain waveform is called the IFFT (Inverse FFT). The FFT functions perform various types of analysis using FFT and IFFT.

Time and Frequency Domain Considerations _____

All signals are input to the instrument as a function of the time domain. This function can be considered as a combination of sine waves at various frequencies, such as in the following diagram. The characteristics of a signal that may be difficult to analyze when viewed only as a waveform in the time domain can be easier to understand by transforming it into a spectrum (the frequency domain).

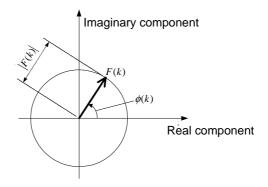
Discrete Fourier Transforms and Inverse FFT

For a discrete signal x(n), the DFT is X(k) and the number of Analysis points is N, which relate as follows:

$$X(k) = DFT\{x(n)\} = \sum_{n=0}^{N-1} x(n)W_N^{kn} \qquad (1)$$

$$x(n) = IDFT\{X(k)\} = \frac{1}{N} \sum_{n=0}^{N-1} X(k) W_N^{-kn}$$
 (2)

$$W_N = \exp\left(-j\frac{2\pi}{N}\right) \tag{3}$$


X(k) is typically a complex number, so expression (1) can be transformed again and written as follows:

$$F(k) = |F(k)| \exp\{j\phi(k)\} = |F(k)| \angle \phi(k) \qquad (4)$$

$$\phi(k) = \tan^{-1} \frac{\operatorname{Im}\{X(k)\}}{\operatorname{Re}\{X(k)\}}$$
 (5)

|F(k)|: Amplitude spectrum, $\phi(k)$: Phase spectrum

Representing the above relationship on a complex flat surface produces the following figure.

Linear Time-Invariant Systems

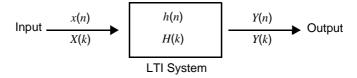
Consider a linear time-invariant (LTI) system y(n) that is a response to discrete time-domain signal x(n).

In such an LTI system, the following expression applies to any integer A_i when the response to $x_i(n)$ is $y_i(n) = L[x_i(n)]$.

If the system function of an LTI system is h(n), the input/output relationship can be obtained by the next expression.

$$y(n) = \sum_{m=0}^{\infty} h(n)x(n-m) = \sum_{m=-\infty}^{\infty} h(n-m)x(m) - \dots$$
 (7)

Therefore, when a unit impulse $\delta(n)$ (which is 1 when n = 0, and 0 when $n \neq 0$) is applied to x(n), the input/output relationship is:


This means that when the input signal is given as a unit impulse, the output is the LTI system characteristic itself.

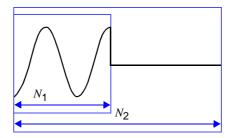
The response waveform of a system to a unit impulse is called the **impulse** response.

On the other hand, when the discrete Fourier transforms of x(n), y(n) and h(n) are X(k), Y(k) and H(k), respectively, expression (7) gives the following:

$$Y(k) = X(k)H(k)$$
 (9)

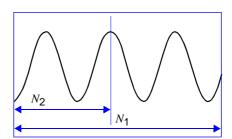
H(k) is also called the transfer function, calculated from X(k) and Y(k). Also, the inverse discrete Fourier transform function of H(k) is the unit impulse response h(n) of the LTI system. The impulse response and transfer function of this instrument are calculated using the relationships of expression (9).

Number of Analysis Points


The FFT functions of this instrument can perform frequency analysis of time-domain waveforms consisting of 1000, 2000, 5000, 10,000 or 20,000 points. However, when the following conditions are satisfied, previously analyzed data can be reanalyzed with a different number of analysis points.

- A. When measurements are made with the averaging function disabled (Off)
- B. When measurements are made with the averaging function enabled for time-domain averaging (simple or exponential).

When the number of analysis points at measurement time is N_I and the number of analysis points is changed to N_2 after measurement, the instrument performs as follows.

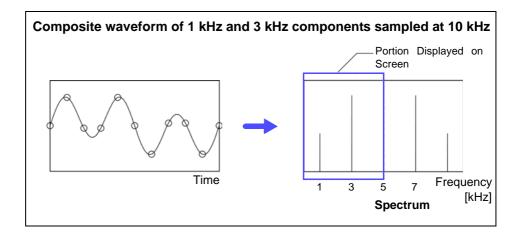

(1) When $N_1 < N_2$

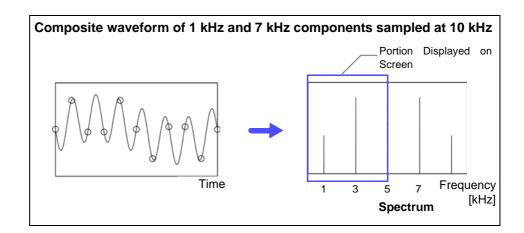
- Because not enough data has been collected, zero is inserted for time after the end of the measured waveform.
- The window function applies only to the N₁ segment.
- Frequency resolution is increased. For example, if $N_1 = 1000$ and $N_2 = 2000$, frequency resolution is doubled.
- The average energy of the time-domain waveform is reduced, so the amplitude of the linear spectrum is also reduced.

(2) When $N_1 > N_2$

- The specified (N_2) segment is extracted from the head of the (N_1) data.
- The window function applies only to the N_2 segment.
- Frequency resolution is decreased. For example, if $N_1 = 2000$ and $N_2 = 1000$, frequency resolution is halved.
- The average energy of the time-domain waveform is unchanged, so the amplitude of the linear spectrum is not significantly affected.

Aliasing

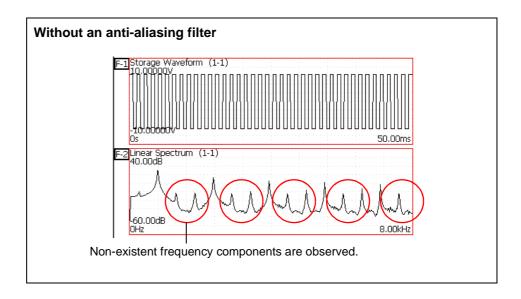

When the frequency of a signal to be measured is higher than the sampling rate, the observed frequency is lower than that of the actual signal, with certain frequency limitations. This phenomena occurs when sampling occurs at a lower frequency than that defined by the Nyquist-Shannon sampling theorem, and is called **aliasing**.

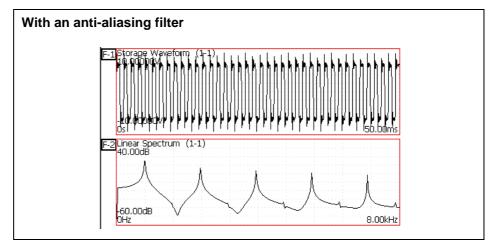

If the highest frequency component of the input signal is $f_{\rm max}$ and the sampling frequency is $f_{\rm S}$, the following expression must be satisfied:

$$f_s = 2f_{\text{max}} - \cdots$$
 (10)

Therefore, if the input includes a frequency component higher than $f_s/2$, it is observed as a lower frequency (alias) that does not really exist.

The following diagrams show the results of spectrum analysis of composite waveforms having components of 1 kHz and 3 kHz, and of 1 kHz and 7 kHz. If sampling frequency $f_{\rm S}$ is 10 kHz, the spectral component of an input frequency above 5 kHz (in this case, 7 kHz) is observed as an alias at 5 kHz or below. In this example the difference between the 3 and 7 kHz components is indiscernible.

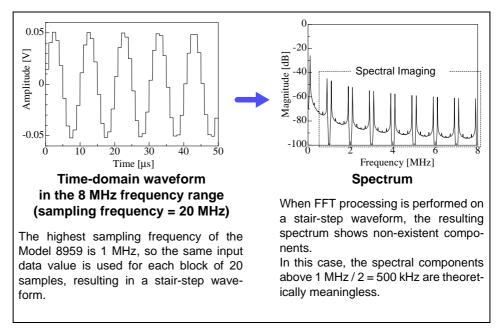


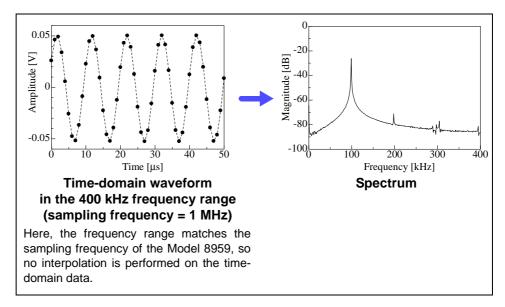


Anti-Aliasing Filters

When the maximum frequency component of the input signal is higher than one-half of the sampling frequency, aliasing distortion occurs. To eliminate aliasing distortion, a low-pass filter can be used that cuts frequencies higher than one-half of the sampling frequency. Such a low-pass filter is called an anti-aliasing filter.

The following figures show the effect of application of an anti-aliasing filter on a square wave input waveform.





Imaging

When the instrument is set to a measurement frequency range that requires a higher sampling rate than the maximum capability of the input module, intermediate data points are interpolated between successive data samples. In this case, the time-domain waveform exhibits a stair-step shape. When FFT analysis is performed in this situation, non-existent high frequency spectral components appear. This phenomena is called zero-order hold characteristic **imaging**.

The following figures show the time-domain waveform and spectrum of a sine wave applied to the Model 8959 DC/RMS Unit.

To avoid imaging phenomena when analyzing waveforms with the FFT function, verify the maximum sampling frequency of the input module before measuring.

Averaging

With the FFT function, averaging is performed according to the following analytical expressions. Averaging in the time domain produces meaningless data if performed with inconsistent trigger criteria.

1. Simple Averaging (Time and Frequency Domains)

Sequences of acquired data are summed and divided by the number of acquisitions.

$$A_{n} = \frac{(n-1)A_{n-1} + Z_{n}}{n}$$
 (11)

n: count of measurements to average

 A_n : averaging results of n counts

 Z_n : measurement data of n counts

2. Exponential Averaging (Time and Frequency Domains)

Before averaging, newer data is given exponentially greater significance than older data.

$$A_n = \frac{(N-1)A_{n-1} + Z_n}{N}$$
 (12)

N: Specified number of counts to average

n: count of measurements to average

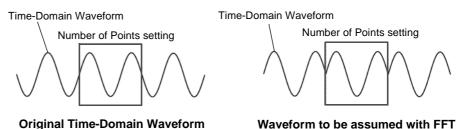
 A_n : averaging results of n counts

 Z_n : measurement data of n counts

Overall Value

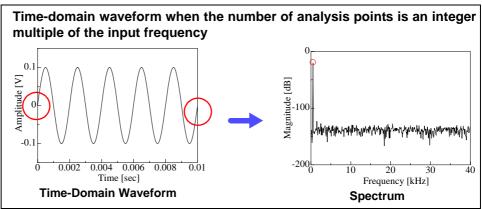
The overall value is the sum of the power spectrum at each frequency. This value is equal to the positive sum of the squares of the (RMS) input signals, except when frequency averaging is performed. The FFT function of this instrument calculates and displays the RMS values for stored waveforms and the overall value from the sum of the power spectrum for the frequency domain.

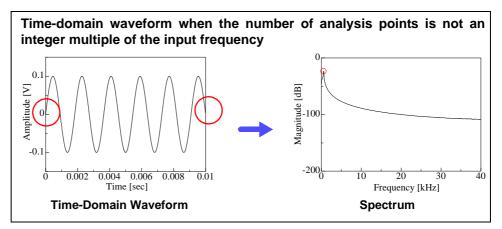
$$(Over all) = \sum_{i=0}^{\infty} P_i \qquad (13)$$


 P_i : power spectrum of value i

Window Function

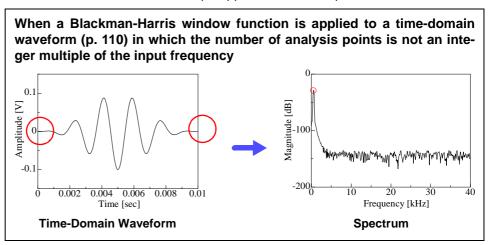
The Fourier transform of a continuous system is defined by the integral Calculus in expression (14) for the time range from minus infinity to plus infinity.


$$X(f) = \int_{-\infty}^{\infty} x(t)\varepsilon^{-2\pi f t} dt - \dots$$
 (14)


However, because expression (14) cannot be calculated with actual measurements, the Analysis is performed on a segment between finite limits. Processing the waveform segment within these limits is called window processing. For FFT analysis, the waveform segment within these limits is assumed to repeat periodically (as shown below).

When the number of points for FFT analysis is an integer multiple of the input

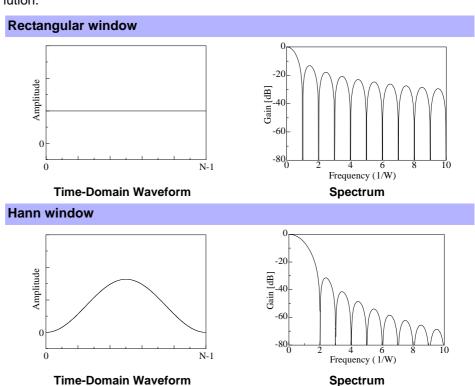
signal frequency, a single-line spectrum is obtained. However, if it is not an integer multiple of the frequency (when the waveform assumed with FFT includes discontinuous points), the spectrum is scattered, and a line spectrum cannot be obtained. This phenomena is called leakage error (as shown below).



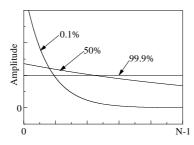
The window function was created to suppress such leakage errors. The window function smoothly connects each end of the time-domain waveform where it is cut off.

The following figure presents an example of spectral analysis by applying a window function to a time-domain waveform.

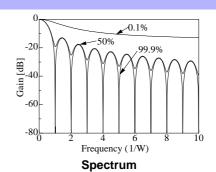
Using the window function, discontinuous points on the time-domain waveform are eliminated, so the wave shape approaches a line spectrum.

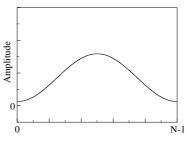

The following figure shows the time-domain waveform of the window function and its spectrum.

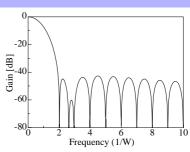
Each spectrum shows a large peak at a low frequency, and many smaller peaks at higher frequencies. The largest peak is called the **main lobe**, and the smaller peaks are the **side lobes**.


The most accurate results of the FFT function are obtained when the width of the main lobe and the amplitude of the side lobes are minimized, although both conditions cannot be satisfied at the same time.

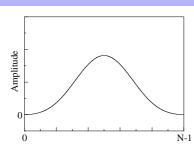
Therefore, a window function having a wide main lobe is used when amplitude values are important, while a window function having a small main lobe is used to observe fine spectral details, and a window function having small side lobe amplitudes is used to exclude the effects of the surrounding spectrum.


However, because the main lobe width is proportional to the width (1/W) of the window, increasing the number of analysis points increases the frequency resolution.

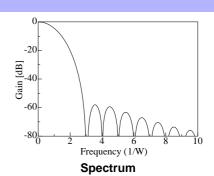

Exponential window


Time-Domain Waveform

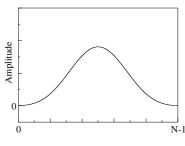
Hamming window

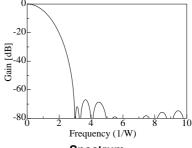


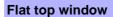
Time-Domain Waveform

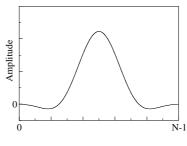


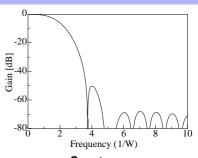
Spectrum


Blackman window

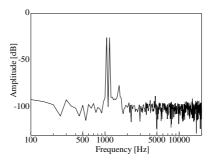

Time-Domain Waveform

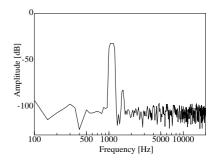

Blackman-Harris window




Time-Domain Waveform

Spectrum

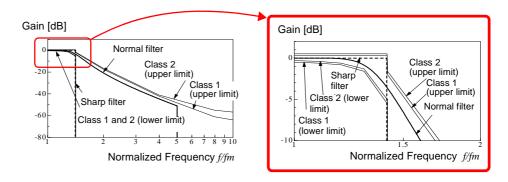




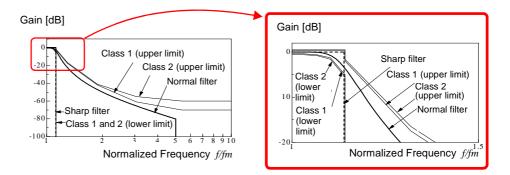
Time-Domain Waveform

Spectrum

The following example shows input sine waves of 1050 and 1150 Hz analyzed with different window functions. Because the frequencies in this example are close to one another, a rectangular window with a narrow main lobe is able to separate and display both frequencies, but a Hann window with a wide main lobe displays the two as a single spectral component.


Analysis Using a Rectangular Window

Analysis Using a Hann Window


Octave Filter Characteristics

Octave filter characteristics are determined according to IEC61260 standards. The figures below show these standards and the filter characteristics of this instrument.

1/1 Octave Filter Characteristic



1/3 Octave Filter Characteristic

Linear Predictive Coding (LPC)

In the following figure, linear predictive coding is implemented by passing a sample of the input signal through the prediction filter while altering the filter so as to minimize errors in the original signal.

Given a time-discrete signal $\{x_t\}$ (t is an integer) where the input signal is sampled at interval ΔT , LPC analysis presumes the following relationship between current sample value x_t and the value of previous sample p.

However, $\{\mathcal{E}_t\}$ is an uncorrelated random variable with average value 0 and the dispersion σ^2 .

Expression (15) shows how current sample value x_t can be "linearly predicted" from previous sample values. If the predicted value of x_t is actually \hat{x}_t , expression (15) can be transformed as follows.

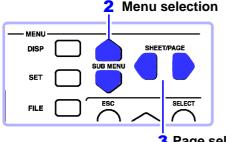
$$x_{t} = \overset{\wedge}{x_{t}} + \mathcal{E}_{t} = -\sum_{i=1}^{p} \alpha_{i} x_{t-i} + \mathcal{E}_{t}$$
 (16)

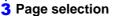
Here, α_i is called the **linear predictor coefficient**.

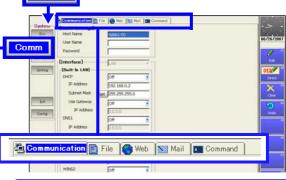
For LPC analysis, this coefficient is calculated using the Levinson-Durbin algorithm, and a spectrum is obtained. In this instrument, the order of the coefficient can be set from 2 to 64. Larger orders reveal fine spectral components, while small orders reveal the overall spectrum shape.

3.11 FFT Definitions

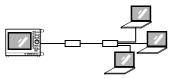
Communications Settings


Chapter 4


This instrument is equipped with an Ethernet 100BASE-TX interface for LAN communications. You can control the instrument from PCs and other devices by connecting it to a network with 10BASE-T or 100BASE-TX cable (maximum length 100 m).


Use the Communications Settings screen to make communications settings.

1 Move the cursor to the function menu of a waveform or settings screen, and then press the F7 [System] key. (Or hold down the SET key.)



LAN connections and settings

Connections (p. 118)

Connecting the instrument and a PC over a network

Connecting the instrument and a PC with a 1:1 connection

LAN settings on the instrument (p. 120)

LAN Check

"13.3.4 Self-Test (Self Diagnostics)" in the Instruction Manual

Accessing shared folders on PCs

You can connect to shared folders on Windows PCs, read files in the folders, and save files in the folders.

Make shared folder settings in the File screen.

"11.1.4 Using a Network Shared Folder" in the Instruction Manual

Accessing the instrument by FTP (p. 127)

[File] page

The instrument is equipped with an FTP (File Transfer Protocol, compliant with RFC959) server. You can use a PC FTP client to transfer files to instrument media and perform other file operations.

Performing remote operations with an Internet browser (p. 132)

[Web] page

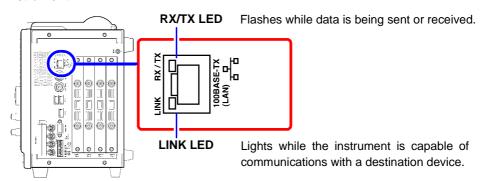
You can control the instrument from a PC Internet browser.

E-Mail notifications (p. 138)

[Mail] page

The instrument can automatically send e-mail to notify of an event occurrence while measuring.

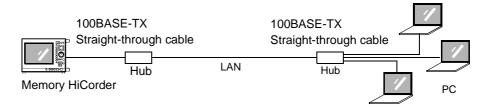
Controlling the instrument by command communications (p. 142)

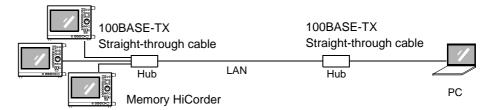

[Command] page

You can control the instrument by creating programs and connecting to the command communications port by TCP. The instrument can also be controlled using a GP-IB interface card.

For more information about commands, refer to the communications operation manual on the supplied application disk.

4.1 Connection Configurations

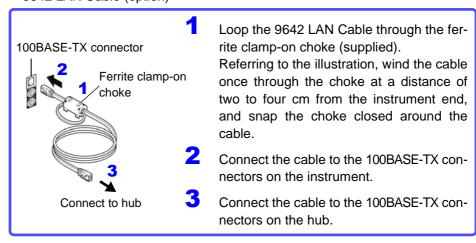

Connect the LAN cable to the 100BASE-TX connector on the right panel of the instrument.


Connecting the Instrument to a Network

(Connecting the Instrument to a Hub)

You can monitor and control the instrument from a PC by connecting the instrument to a hub with LAN cable (100BASE-TX cable).

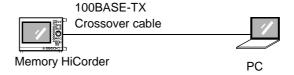
Connecting several instruments to one PC



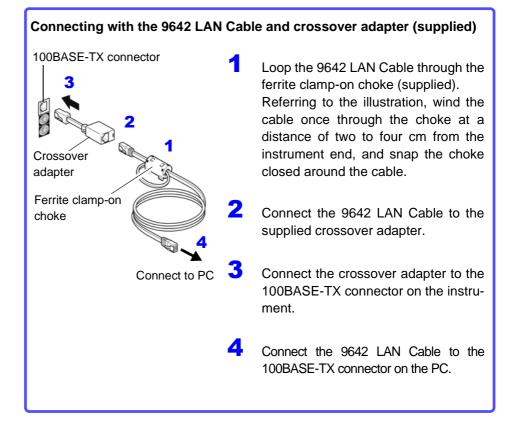
Connection cable: Use one of the following.

 100BASE-TX straight-through cable (maximum length 100 m, commercially available)

(10BASE-T cable may also be used for 10BASE communications)


9642 LAN Cable (option)

Making 1:1 Connections Between the Instrument and a PC


(Connecting the Instrument to a PC)

You can monitor and control the instrument from a PC by connecting the instrument to the PC with LAN cable (100BASE-TX cable)

Connection cable: Use one of the following.

- 100BASE-TX crossover cable (maximum length 100 m)
- 100BASE-TX straight-through cable with crossover adapter (maximum length 100 m)
- 9642 LAN Cable (option, supplied with crossover adapter)

4.2 Controlling the Instrument over the LAN Interface

4.2.1 Settings and Connection Procedure

NOTE

Always make LAN settings before connecting to the network. If you change settings while connected to the network, IP addresses may overlap or invalid address data may flow over the network.

1 Make settings on the instrument.

Make LAN settings in the Communications (Comm) Settings screen. Move the cursor to the [Apply] button and select **F1** [Apply]. (The settings are not reflected to the currently active LAN if the button's function is not executed.)

Connect the instrument to the network.

Connect the LAN cable. (p. 118)

3 Connect the PC.

See "4.3 Using FTP to Access Instrument Files (FTP Server)" (p. 127),
"4.4 Performing Remote Operations on the Instrument from an Internet Browser
(Web Server)" (p. 132)

4.2.2 Making Settings on the Instrument

Things to Check Before Making Settings

When Connecting to an Existing Network

The following items must be assigned in advance by your network administrator. Be sure that there is no conflict with other devices.

Whether to use DHCP: Yes/No
The host name and address of the instrument Host name (up to 15 characters): IP address: Subnet mask: (When DHCP is used, the IP address and subnet mask are not required)
DNS settings Whether to use DNS: Yes/No IP address (when used) : (up to 2 addresses)
WINS settings Whether to use WINS: Yes/No IP address (when used): (up to 2 addresses)
Gateway Whether to use a gateway: Yes/No IP address (when used):
The TCP/IP port number to use:X (default 880x) (Specify the most significant 3 digits of the 4-digit number. The least significant digit (0 to 9) is reserved for use by the instrument. Specify when the default 8800 to 8809 cannot be used.)

When Configuring a New Network with a PC and This Instrument

(Using as Local Network Without External Connections)

If there is not administrator for your network, or if you have been entrusted with settings, the following addresses are recommended.

(Settings example) IP address PC: 192.168.0.1 First recorder: 192.168.0.2 Second recorder: 192.168.0.4 Third recorder: 192.168.0.4	
1	i '
V	V
Host name	Any name (However, must be unique)
Subnet mask	255.255.255.0
Gateway	Off
DNS	Off
DHCP	Off
WINS	Off
Port number	880X

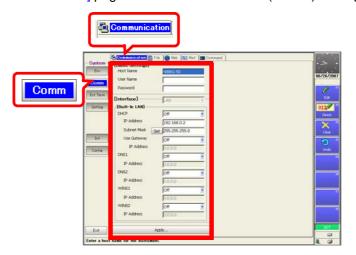
Setting Items

DHCP	DHCP is a protocol that allows devices to automatically obtain and set their own IP addresses.
(Dynamic Host Configuration Protocol)	If you enable DHCP and there is a DHCP server operating in the same network, the instrument's IP address, subnet mask, and gateway can be obtained and set automatically. If there is no DHCP server operating, a default IP address is assigned.
Host Name	This is a name that identifies the instrument on the network. Assign a host name that is different from the names of all other devices. This instrument does not support dynamic DNS, the name that you set is not registered with a DNS server. PCs on the same network can refer to the instrument by its host name by using the NetBIOS over TCP/IP protocol.
IP Address	This is an address that identifies an individual device on a network. Assign an address that is different from the addresses of all other devices. If DHCP is enabled, the address is assigned automatically by the DHCP server.
Subnet Mask	This is a setting used to divide an IP address shown to the network into a network address and a host address. Use the same subnet mask for all devices in the same network. If DHCP is enabled, the subnet mask is assigned automatically by the DHCP server.
DNS (Domain Name System)	DNS allows network devices to be specified by their names instead of by their IP addresses. (An IP address is simply a string of numbers, which it is hard to remember. Device addresses are easier to understand if they can be specified with names instead of IP addresses.)
WINS (Windows Internet Naming Service)	DNS allows network devices to be specified by their names instead of by their IP addresses. If there is a WINS server in the network, a name can be obtained by querying that server.
Gateway IP address	For network connections: When your PC (or the communicating device) is on another network than this instrument, set this to [On] and specify the gateway device. When the PC is on the same network, this is usually set to the same address as the default gateway in the PC communications settings. For 1:1 connections between the instrument and a PC: This setting is not required when the instrument and the PC are connected to the same hub. Set it to [Off]. If DHCP is enabled, the gateway address is obtained from the DHCP server.
Command Port (Port number)	The instrument uses the TCP/IP protocol for communications. TCP/IP allows communicating devices to establish multiple connections, which are distinguished by port numbers. By default the instrument uses port numbers 8800 to 8809. • 8800 to 8801 reserved • 8802 (instrument is server): For communications command control • 8803 to 8809 reserved Normally these ports do not need to be changed. You can change them if certain ports cannot be used for security reasons, or if certain ports are not available on the communications.
	cating PC. Set only the most significant three digits. The least significant digit (0 to 9) is used by the instrument, or reserved for use by the instrument. Use for control of communications commands.
Header (On/Off)	The Header item specifies whether to prefix headers to command response messages. For more information about commands, refer to the Communications operation manual on the supplied CD.
Delimiter	The Delimiter item specifies LF, CR, or CR/LF as the newline delimiter in command response messages. The instrument understands all three settings: LF, CR, and CR/LF.

Authorization User Name and Password

These are used when you login to the instrument by FTP, or use a PC browser (with the authorization setting set to on).

When authorization is enabled, login is not possible unless a correct user name and password are entered. This setting is recommended if you wish to restrict the users who can access the instrument.


The "Password" item is displayed as "********.".

Valid characters: Alphabetic characters and symbols (however, ":" (colon) cannot be used)

If you want to allow anyone to access, or you wish to login as "anonymous" with a FTP client, leave the user name and password fields blank.

Making Communications Settings on the Instrument

Make communications settings in the [Basic Settings] and [Interface] section of the [Communication] page of the Communications (Comm) Settings screen.

4.2 Controlling the Instrument over the LAN Interface

Interface Communication Settings: Network Connections MEM REC REC&MEM FFT REALTIME To open the screen: Press the DISP key→ Press the F7 [System] key→ Select Comm with the SUB MENU

 $\mathsf{keys} \to \mathsf{Comm} \ \mathsf{Settings} \ \mathsf{screen} \to \mathsf{Select} \ \mathsf{the} \ [\mathsf{Communication}] \ \mathsf{page} \ \mathsf{with} \ \mathsf{the} \ \mathsf{SHEET/PAGE} \ \mathsf{key}$

Operating Key Procedure

Set the host name, authorization user name, and password.

CURSOR F1 to F8 Move the cursor to the various [Basic Settings]

fields.

Enter the host name, authorization user name,

and authorization password.

See About Host Names

"Authorization User Name and Password"

(p. 123)

To obtain the IP address automatically

Enable DHCP.

CURSOR Move the cursor to the [DHCP] item.

F2 Select [On].

To set the IP address to any address

Set the IP address and subnet mask.

CURSOR Move the cursor to the [DHCP] item.

F1 Select [Off]. (default setting)

CURSOR Move the cursor to the [IP Address] or [Subnet

Mask] item.

F1 to F8 Enter the IP address and subnet mask of the in-

strument.

If you want to set the subnet mask automatically:

Press the [Set] button.

To use a gateway

Enable the gateway and set the IP address.

CURSOR Move the cursor to the [Use Gateway] item.

F2 Select [On].

CURSOR Move the cursor to the [IP Address] item.

F1 to F8 Enter the IP address.

1 To use DNS

Enable DNS and set the IP address.

CURSOR Move the cursor to the [DNS1] item.

F2 Select [On].

If you wish to use 2 DNS servers, also set

[DNS2].

(When [On] is selected for DNS1 and DNS2)

CURSOR Move the cursor to the [IP Address] item.

F1 to F8 Enter the IP address.

Communication File Web Mail [Basic Settings] Host Name User Name Password Linterrace i LAN -[Built-In LAN]-DHCP Off IP Address 192.168.0.2 Set 255.255.255.0 Use Gateway Off IP Address 0.0.0.0 DNS1 Off IP Address 0.0.0.0 DNS2 Off IP Address 0.0.0.0 Off IP Address 0.0.0.0

About subnet masks

Although the subnet mask can be set automatically, you should still check to be sure that it is set correctly. It should match the subnet mask of the network to which you are connecting.

Using gateways

If you will be using a PC on a different network from the instrument, set [Use Gateway] to [On], and specify the address of the device that serves as the gateway for that network.

Explanations of terms

"Setting Items" (p. 122)

- To make FTP connections (p. 127)
- To connect with an Internet browser (p. 132)
- To perform command communications(p. 142)

Operating Key Procedure

To use WINS

F2

Enable WINS and set the IP address.

CURSOR Move the cursor to the [WINS1] item.

F2 Select [On].

If you wish to use 2 WNS servers, also set

[WINS2].

(When [On] is selected for WINS1 and WINS2)

CURSOR Move the cursor to the [IP Address] item.

F1 to F8 Enter the IP address.

F To apply communications settings

CURSOR Move the cursor to the [Apply] button.

F1 Select [Apply].

A dialog appears.

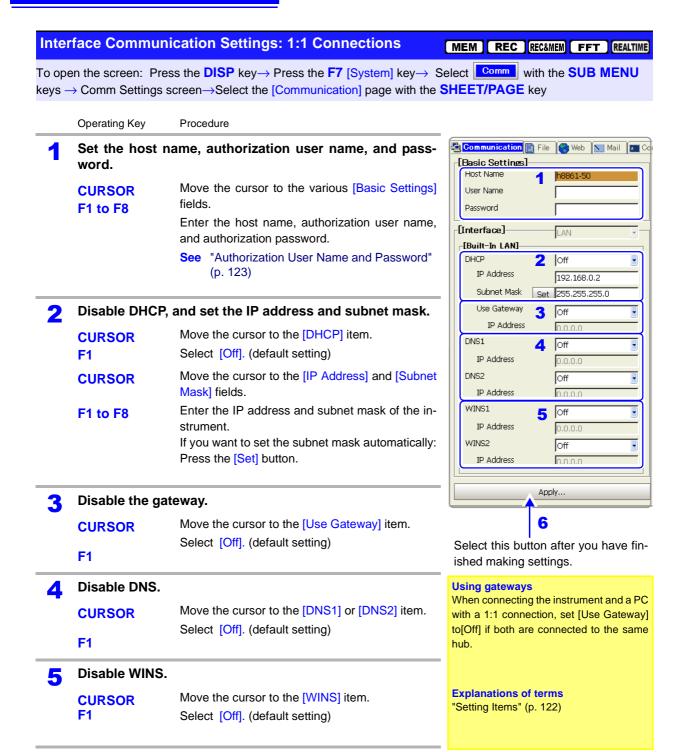
Select [Execute].

Select this button after you have finished making settings.

After applying the settings, connect the LAN cable.

NOTE About Host Names

Valid characters:


Alphabetic characters (uppercase and lowercase), numbers, symbols (only hyphen (-) and underscore (_))

Characters other than those listed above cannot be used.

Host names cannot begin with a number or symbol, and cannot end with a symbol

Contact your network administrator for more information about IP addresses and the other settings required by your network.

4.2 Controlling the Instrument over the LAN Interface

Apply the settings.

CURSOR Move the cursor to the [Apply] button.

F1 Select [Apply].
A dialog appears.
Select [Execute].

4.3 Using FTP to Access Instrument Files (FTP Server)

This instrument is equipped with an FTP (File-Transfer-Protocol, RFC959 compliant) server.

By using a PC FTP client, you can transfer files from the instrument's media to the PC and perform other file operations.

You can use IE (Internet Explorer) or other popular FTP clients.

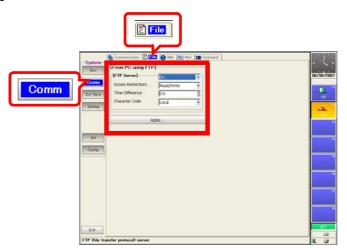
For more information about LAN connections and settings:

See "4.2 Controlling the Instrument over the LAN Interface" (p. 120)

NOTE

Be careful when moving files by FTP, as some FTP client/browser programs may delete all selected files or folders from the source if you cancel a transfer before completion. Rather than moving files in one step, we recommend copying (downloading) and then manually deleting from the source.

1 Make settings on the instrument.


- Make LAN settings in the Communications (Comm) Settings screen.
 (p. 121)
 - (Set the host name, authorization user name, and authorization password in the [Basic Settings] section of the [Communication] page of the Comm Settings screen.)
- Make FTP settings in the [FTP Server] section of the [File] page of the Comm Settings screen. (p. 127)

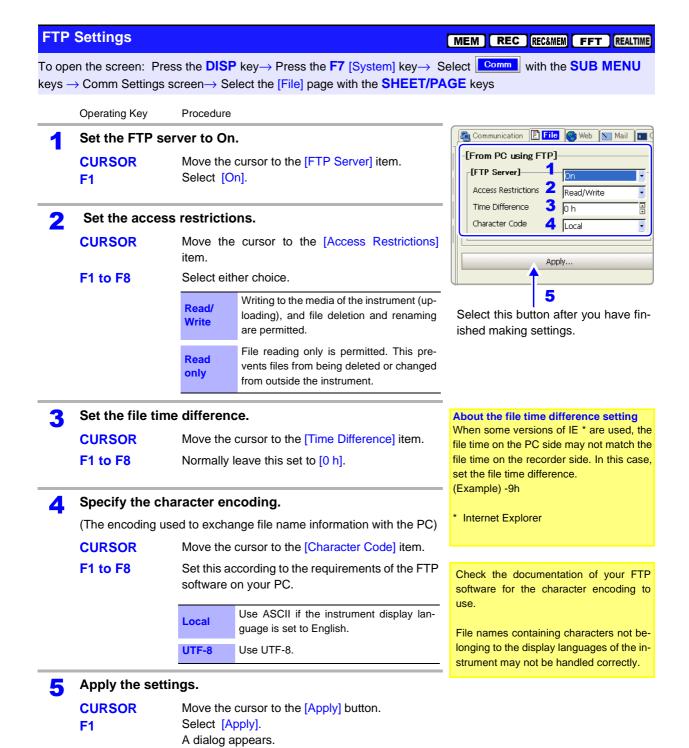
2 Operate on the PC.

Connect to the instrument from the PC, and carry out file operations. (p. 129)

4.3.1 Making Settings on the Instrument

Make FTP settings in the [FTP Server] section of the [File] page of the Comm Settings screen.

NOTE

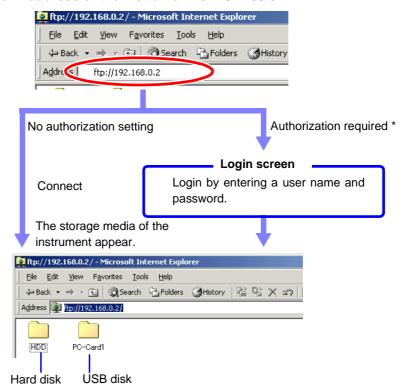

LAN settings are required to use FTP.

See "Interface Communication Settings: Network Connections" (p. 124) "Interface Communication Settings: 1:1 Connections" (p. 126)

F₂

Select [Execute].

4.3 Using FTP to Access Instrument Files (FTP Server)


4.3.2 Operate on the PC

Connecting

The following example shows how to use the IE (Internet Explorer) browser on Windows XP.

Launch IE on the PC and enter "ftp://" plus the IP address of the instrument in the address bar.

If the IP address of the instrument is "192.168.0.2":

Click to display the file stored on the media.

*: An authorization user name and password have been set in the [Communication] page of the instrument's Communications (Comm) Settings screen.

You can also enter the user name and password, delimited by ':' and '@', in front of the normal IP address.

[ftp:// Username:Password@ instrument IP address]

Example: When the user name is "hioki" and the password is "1234": Enter [ftp://hioki:1234@192.168.0.2].

If the connection fails

Check the communications settings of the instrument.

See "4.2 Controlling the Instrument over the LAN Interface" (p. 120)

Operations

Downloading Files

Select the file to download from the folder list and drag and drop* it on the download destination (the desktop or a folder outside the IE window).

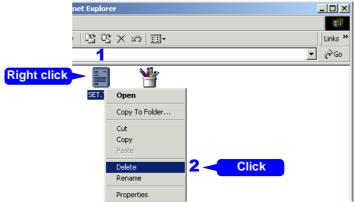
*: Click the file and hold the button down. Move the mouse pointer to the target destination, and then release the button

Drag & Drop

Minutes and seconds may not be reflected on the file stamp (date) of the file.

Uploading Files

Select a file on the PC desktop or in folder, and drag and drop it on a folder in the FTP folder list. This updates the FTP folder.


Drag & Drop

The file's time stamp becomes the time when you uploaded the file.

Deleting and Renaming Files

Right click a file in the FTP folder list, and select [Delete] or [Rename] from the pull-down menu.

Files cannot be moved.

Relationship Between Storage Media and Directories

Each of the various types of storage media appears as a directory on the FTP server.

/PC-Card1	PC Card
/PC-Card2	PC Card
/HDD	Hard disk
/USB-Disk	USB memory

NOTE

- In general, only one FTP user (1 connection) is allowed to log on to the FTP server at one time. For this reason, avoid the use of high-speed download tools which open multiple connections.
- Because FTP does not define a specific format for exchanging information about files, file information may not display correctly on some FTP clients. The server supports only generally used FTP commands. You may not be able to use FTP clients which rely on other commands.

4.4 Performing Remote Operations on the Instrument from an Internet Browser (Web Server)

You can perform remote operations on the instrument from a PC by using an Internet browser.

Microsoft Internet Explorer Version 5 or later is recommended as the browser. The Web server uses JavaScript, so enable Active Script in the Security tab of the Internet Options dialog of IE.

For more information about LAN connections and settings:

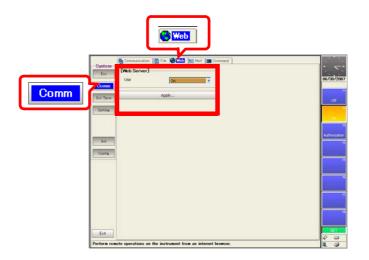
See "4.2 Controlling the Instrument over the LAN Interface" (p. 120)

1 Make settings on the instrument.

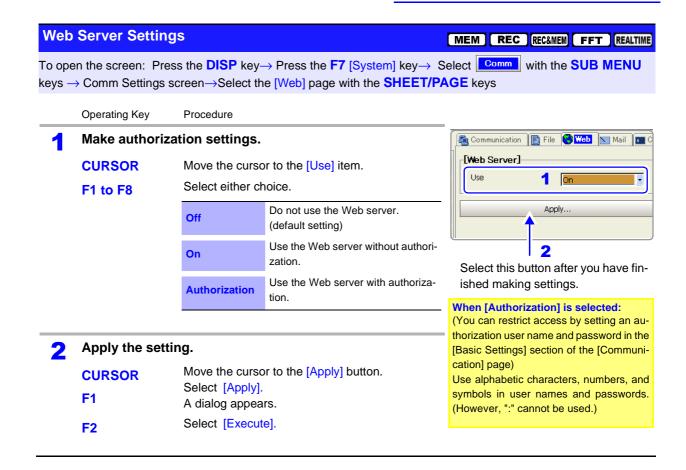
Make the following web server authorization setting in the [Web] page of the Communications (Comm) Settings screen. (p. 133)

If you want to restrict access to the instrument:

Set the Web server [Use] to F3 [Authorization].


(You can restrict access by setting an authorization user name and password in the [Basic Settings] section of the [Communication] page of the Comm Settings screen.)

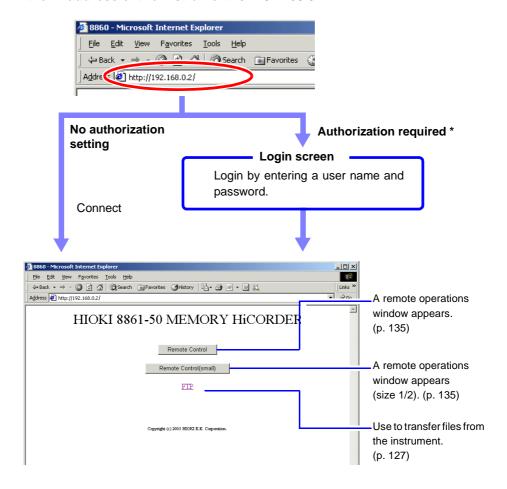
2 Operate on the PC.


Connect to the instrument from the PC, and carry out remote operations. (p. 134)

4.4.1 Making Settings on the Instrument

Make Web settings in the [Web Server] section of the [Web] page of the Comm Settings screen.

4.4 Performing Remote Operations on the Instrument from an Internet Browser (Web Server)


4.4.2 Operate on the PC

Connecting

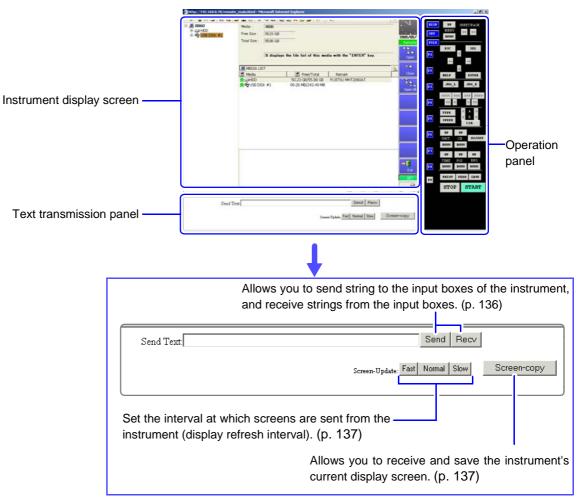
The following example shows how to use the IE (Internet Explorer) browser on Windows XP.

Launch IE on the PC and enter "http://" plus the IP address of the instrument in the address bar.

If the IP address of the instrument is "192.168.0.2":

* An authorization user name and password have been set in the [Communication] page of the instrument's Communications (Comm) Settings screen.

As shown below, you can also enter the user name and password as part of the address.

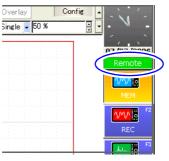

[http:// Username:Password@ instrument IP address]

(The user name and password delimited by ':' and '@', are entered in front of the normal IP address.)

_						
$\boldsymbol{\Gamma}$	_	\sim		 ^	-	_
		_				•
0	M	•	u	J		·

About the remote operation window

The remote operation window is divided into 3 sections: the instrument display screen, the operation panel, and the text transmission panel.



The screen is sent from the instrument periodically, so that it is always up to date. You can specify the display refresh interval.

See "Changing the Display Interval" (p. 137)

The instrument enters remote mode when you operate in the remote operation window.

(Remote display)

All of the operation keys on the instrument are disabled, with the exception of the **SET** key.

When you want to operate on the instrument

Press the **SET** key to exit remote mode.

Basic Operations

To use the operation panel:

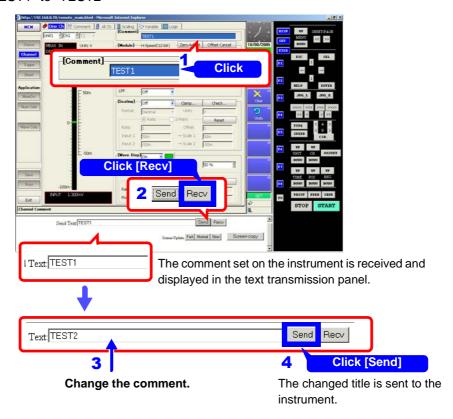
Click one of the buttons on the operation panel. The buttons can be used in the same way as the operation keys on the instrument. However, it is not possible to press two buttons at the same time.

If you are performing a key check in the initialization settings screen of the System menu and want to exit the key check screen, right click on the screen and select [Exit] from the pull-down menu. This exits from the key check screen.

To operate with the mouse on the display screen:

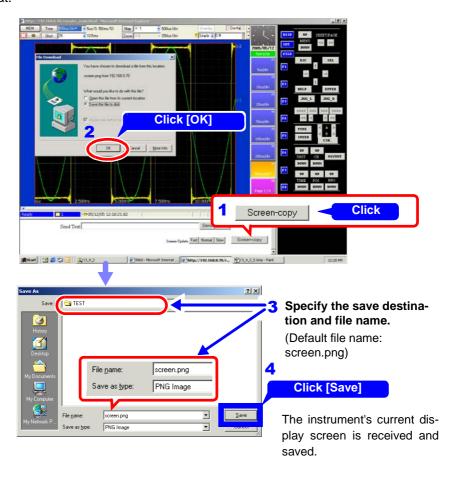
Click the display screen. Mouse operations on the display screen work in the same way as mouse operations on the instrument. However, dragging is not possible.

To operate with the keyboard on the display screen:


Press a key. Keyboard input for the display screen works in the same way as keyboard input for the instrument. However, the Alt key and function keys may be assigned to browser operations.

(Keyboard input is possible with IE Version 5 and later. Depending on the browser used, some entered characters may display differently from those on the pressed keys. This also occurs when the instrument's display language setting is different from the language of the keyboard.)

Sending and Receiving Text


You can send text to the input boxes of the instrument, and receive text from the input boxes.

Example: Changing the comment set for a channel on the instrument from "TEST1" to "TEST2"

Saving Screens

Screens received from the instrument can be saved. The data is saved in PNG format.

Changing the Display Interval

Click [Fast], [Normal], or [Slow] in the text transmission panel to change the screen transmission interval.

The [Slow] setting is recommended for use with slow networks.

The [Fast] setting puts a greater burden on the instrument, so operations may become slower. (The operations are performed correctly, but calculations take longer.)

Quitting Remote Operation

Click the \boxtimes (Close) button in the upper right corner of the browser. The browser closes.

4.5 E-Mail Notifications

When a particular event occurs while measuring, the instrument can send e-mail notifications over a network SMTP mail server to remote computers or portable telephones that support e-mail.

Events that can be notified by e-mail are:

- · Starting trigger occurrence
- Measurement stop
- · When the result of a numerical calculation is NG
- Upon recovery from a power outage (when measurement restarts upon recovery from an outage, but only if the Start Backup function is enabled)
- Error occurrence (when an error [other than a communication error] occurs while measuring)

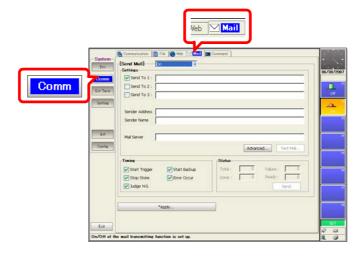
Up to three recipient addresses can be registered (e-mail can be sent to three addresses at once).

NOTE

The instrument cannot receive e-mail.

LAN Settings and Connection Procedure:

See "4.2 Controlling the Instrument over the LAN Interface" (p. 120)


1 Make settings on the instrument.

- Make LAN settings in the Communications (Comm) Settings screen. (p. 121)
 - (Set the host name, authorization user name, and authorization password in the [Basic Settings] section of the [Communication] page of the Comm Settings screen.)
- Make Mail settings of the [Mail] page of the Comm Settings screen. (p. 138)

2 To receive e-mail on a computer or portable telephone

Use any common e-mail client software to receive e-mail sent from the instrument.

Make Mail settings of the [Mail] page of the Mail Settings screen.

Mail Sending Settings

MEM REC RECAMEM FFT REALTIME

To open the screen: Press the DISP key \rightarrow Press the F7 [System] key \rightarrow Select Comm with the SUB MENU keys \rightarrow Comm Settings screen \rightarrow Select the [File] page with the SHEET/PAGE keys

Operating Key Procedure

Select ON as the Send Mail setting.

CURSOR Move the cursor to the [Send Mail] item.

F1 Select [On].

Specify the recipient(s).

CURSOR Move the cursor to the [Send To] item.

F1 to F8 Enter the addresses of the recipients (up to three

can be entered).

Specify the sender address.

CURSOR Move the cursor to the [Sender Address] item.

F1 to F8 Enter the e-mail address of the instrument.

Enter the name of the sender.

CURSOR Move the cursor to the [Sender Name] item.

F1 to F8 Enter the name that will be used to identify the in-

strument as the sender when the e-mail is received.

Specify the mail server.

CURSOR Move the cursor to the [Mail Server] item.

F1 to F8 Enter the name of the outgoing mail server.

(If authentication is required when sending mail) Configure mail authentification:

CURSOR

F1

г

CURSOR F1 to F8 Move the cursor to the [Advanced] button.

Select [Advanced].

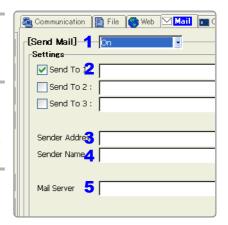
A dialog appears.

Set [Authentication] to [On].

• [POP3 Server]

Enter the name of the incoming mail server.

[User ID]


Enter the user ID registered with the incoming mail server.

• [Password]

Enter the user password registered with the incoming mail server.

[Port Number of SMTP Server],
 [Port Number of POP3 Server]

If necessary, enter the port numbers specified by the network administrator or internet service provider (the default setting is normally correct).

The instrument cannot receive e-mail.

The address of the instrument must be specified in order for the SMTP mail server to send e-mail notifications.

About Mail Servers

Enter the mail server name specified by your network administrator or internet service provider.

6	Advanced	Test Mail	
Advanced Sett	ings		
Authentica POP3 Server	tion		
User ID Password			
	of SMTP Server of POP3 Server	25	()

About E-Mail Authentication

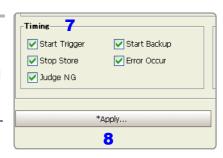
E-mail is sent by accessing an SMTP server, but the SMTP server itself does not perform authentication. To avoid abuse, internet service providers may offer the "POP before SMTP" security feature that only allows mail to be sent through the SMTP server after the sender has been authenticated by the incoming mail (POP) server. If your ISP requires it, enable mail authentication (POP).

4.5 E-Mail Notifications

Operating Key Procedure

Set notification criteria.

CURSOR


Move the cursor to the [Timing] item.

F1 to F8

Select whether and when the instrument should send e-mail notifications.

Multiple sending criteria can be selected.

Start Trigger	Sends an e-mail notification when recording is started by a trigger event.
Stop Store	Sends an e-mail notification when measurement is finished.
Judge NG	Sends an e-mail notification when a numerical calculation result becomes NG.
Start Back- up	Sends an e-mail notification when measurement restarts after recovering from a power outage (only when the Start Backup function is enabled).
Error Occur	Sends an e-mail notification when an error occurs while measuring (excepting communication-related errors).

8 Apply your settings.

CURSOR Move the cursor to the [Apply] button.

F1 Select [Apply].
A dialog appears.
F2 Select F2 [Execute].
A test e-mail is sent.

Confirm e-mail sending.

Selecting the [Apply] button sends a test e-mail. If the test e-mail is not received at a specified recipient's address, check the validity of your LAN settings and Mail Sending settings.

To check e-mail sending and receiving status

Use the [Status] items to check e-mail sending and receiving status.

- [Total] Shows the number of events that generated e-mail notifications
- [Done] Shows the number of e-mails sent.
- [Failure] Shows the number of attempts to send e-mail that failed. E-mails that could not be sent are deleted.
- [Ready] Shows the number of e-mails that have not been sent. Unsent e-mails can be sent by selecting the Send button.

Certain sending criteria (such as trigger events when the continuous trigger mode is selected) can cause a flood of e-mail notifications. When more than 500 e-mails are queued for sending, no additional e-mails can be sent, so a sending fault occurs and the e-mail failure count is incremented.

4.6 Using an Interface Card

The instrument can be controlled using an interface card (GP-IB card). To prepare for communications, insert the interface card and configure the interface settings on the Communications Settings screen.

See "4.7 Controlling the Instrument with Command Communications" (p. 142)

Refer to the Instruction Manual for the interface card for details.

!CAUTION

Observe the following precautions to avoid damage or disruption to the connections of the interface card and the instrument's card slot.

- Do not insert or remove the interface card by holding the connection cable, and avoid pulling the cable forcefully.
- Do not attempt to force the card into the slot when it is upside down or not facing in the proper insertion direction.
- Do not move the instrument while the cable is connected to the interface card.

Interface Card Insertion & Removal

The interface card is keyed to prevent improper insertion, so forcing it in the wrong way may damage the PC CARD slot or the card.

Inserting an Interface Card

- 1 Align the ▲ marks on the plug of the interface connection cable with the socket on the interface card as shown in the drawing, and insert the plug.
- 2 With the ▲ mark on the interface card facing toward the front and pointing in the insertion direction (arrow), insert it into the PC CARD slot as far as it will go.

Removing an Interface Card

Press the Eject button. When the button pops out, press it again to eject the Interface Card.

After the interface card is automatically recognized, the settings can be made.

GP-IB

Mode	Addressable / Disable
Address	0 to 30

Configure the communications settings on the [Command] page before establishing communications.

See "4.7.1 Making Settings on the Instrument" (p. 142)

You can control the instrument remotely over the communications interface.

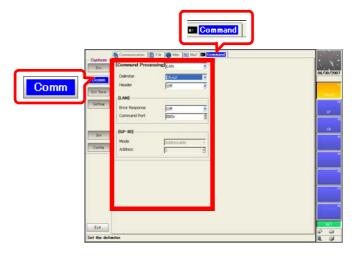
For more information about LAN connections and settings:

See "4.2 Controlling the Instrument over the LAN Interface" (p. 120)

Interface card connections

See "4.6 Using an Interface Card" (p. 141)

1 Make settings on the instrument.


Set communications commands on the [Command] page of the Communications (Comm) Settings screen.

2 Operate on the PC.

Connect the PC to the instrument (p. 145), launch a communications program, and issue commands to control the instrument. For details, refer to the Communications operation manual on the supplied CD.

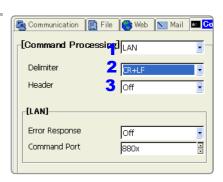
4.7.1 Making Settings on the Instrument

Set the items in the [Command Processing] section of the [Command] page of the Comm Settings screen.

MEM REC REC&MEM FFT REALTIME

To open the screen: Press the DISP key→ Press the F7 [System] key→ Select Comm with the SUB MENU keys → Comm Settings screen → Select the [Command] page with the SHEET/PAGE keys

Operating Key Procedure


Select the remote control interface for the instrument.

CURSOR F1 to F8

Move the cursor to the [Command Processing]

Select either choice.

Off	The instrument is not remotely controlled.
LAN	Remotely control the instrument via LAN.
GPIB	Remotely control the instrument via GP-IB.

Set the delimiter.

CURSOR

Move the cursor to the [Delimiter] item.

F1 to F8

Select the character code to send as a data delimiter (newline code).

CR	Send character code 0x0d.
LF	Send character code 0x0a.
CR+LF	Send character codes 0x0d and 0x0a.

About headers

The response to a :FUNCTION? query command from the PC differs according to the header setting.

On:FUNCTION MEM Off: :MEM

Make header settings.

Move the cursor to the [Header] item. **CURSOR**

F1 to F8 Select either choice.

> Off Do not add a header to response data. On Add a header to response data.

When controlling via LAN (Command Processing: [LAN])

Make the [Error Response] setting.

Move the cursor to the [Error Response] item. **CURSOR**

F1 to F8 Select either choice.

> Off Do not append error response. On Append error response.

About error responses

The following error codes are returned when an error occurs during command control of the instrument.

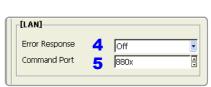
?E : Execution error ?C: Command error

?Q: Query error

The instrument's output buffer is 2048 bytes. It may not be possible to return an error response if the buffer limit is exceeded.

Set the communications command port.

Move the cursor to the [Command Port] item. **CURSOR**


Enter the port number. F1 to F8

About port numbers

Specify only the most significant 3 digits of the 4-digit port number.

If you specify "880x", port number 8802 is used.

"Command Port" (p. 122)

4.7.2 Operate on the PC

The following example shows how to make a connection using the telnet software (HyperTerminal) supplied with Windows XP.

Launch HyperTeminal.

Click [Start], [Programs] - [Accessories] - [Communications] - [HyperTerminal], and then click [HyperTerminal].

The HyperTerminal screen appears.

Specify a connection name.

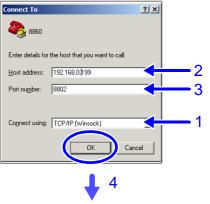
Enter a name in the [Name] field and click the [OK] button.

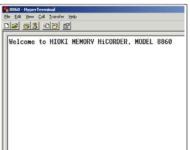
(You can enter any name.)

A [Connect To] dialog appears.

- 3 Make the connection settings.
 - 1. In [Connect using] select [TCP/IP (Winsock)].
 - 2. In [Host address], enter the IP address of the instrument.
 - 3. In [Port number], enter the port number specified in the [Command] page.

About port numbers

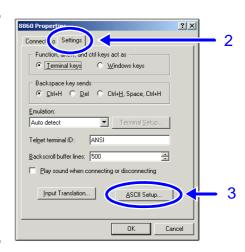

On the instrument, only the most significant 3 digits of the 4-digit instrument port number are specified (p. 143). If you specified "880x" on the instrument, enter "8802" here. "Command Port" (p. 122)

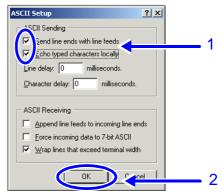

4. Click the [OK] button.

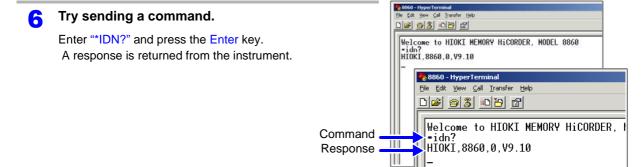
The connection is made.

NetMee Click
Network and Dial-up Connect

HyperTerminal screen


Make detailed connection settings.


- Select [Properties] in the [File] menu.
 The Properties dialog for the specified connection name appears.
- 2. Click the [Settings] tab.
- 3. Click the [ASCII Setup...] button.


The [ASCII Setup] dialog appears.

Make detailed settings

- 1. Check the [Send line ends with line feeds] and [Echo typed characters locally] check boxes.
- 2. Click the [OK] button to return to the Properties dialog.
- Click the [OK] button to return to the HyperTerminal window.

Numerics	Download
100BASE-TX118	FTP settings
T00BASE-1X	Header
A	Host name
	IP address
A/B cursor80, 83	Network
Acquisition interval	Port number
ACR 90	Subnet mask
Aliasing	Uploading Files130
Analysis modes	Web server
•	WINS 122, 125, 126
Analysis starting point80	Connecting the Instrument to a PC 119
Analyze page	Cross Power Spectrum97
Anti-aliasing filter37, 107	Cross-correlation function
Area	CSP
Auto correlation function90	
Average value6, 19	D
Averaging58, 109	
_	dB input71
В	Display color
	Calculation waveforms
Blackman56, 112	DISPLAY dialog
Blackman Harris56, 112	Display Method
	Display sheet settings49
C	Display type72
	Display types and split-screen settings
Calculation dialog31	Downloading files
Calculation No62	Duty
CCR98	Duty
Channel settings69	E
Channel settings screen41	_
One Ch page69	E-Mail
COH	Exponential
Coherence Function100	Exponential averaging
Color62	External sampling
Command142	External sampling
Comment	F
Communications117	
Access128	Fall Time
Command communications142	Flat-Top
Communications (Comm) command port .143	Four arithmetic Operations (4 Operations) 21
Delimiter143	Fourier transforms
Error response143	
Header143	Frequency range
Connection	Frequency resolution
Deleting and renaming files130	FTP
Delimiter122, 143	Function selection

G		Number of analysis points	
0	70	Numerical calculations	
Gauge		Calculation expressions	
GAUGE&VALUE dialog		Calculation results Calculation type	
GP-IB	141	Copying settings	
		Judging	
н		Settings	
Hammin a	50, 440	Nyquist	
Hamming		Nyquist	+, /-
Hanning		0	
Highlight		<u> </u>	
Attenuation ratio		OCT	91
dB		Octave analysis9	
HIS		Octave filter	
Histogram	90, 102	Offset Cancel	
		Opening screen	
Location	400	Overall71,	, 108
Imaging		P	
IMP		<u> </u>	
Impulse response		Parameter	61
Input channel settings			
Input coupling		Peak value display	
Interface	124, 126	Peak-to-peak value (P-P value)	
Internet browser	132	Period and Frequency	
_		PHA	
L		Phase spectrum	
		Highlight	
LAN	120	Power spectrum	
LIN	86	Power spectrum density89,	, 101
Linear predictive coding	115	Pre-trigger48	8, 67
Linear spectrum	86	Print settings screen4	4, 50
Linear time-invariant systems	104	Printing	76
Low-pass filter		Printing settings	50
LPC		Probe attenuation	
LPF (low-pass filter)		PSD	89
LTI system		PSP	
211 0/010111		Pulse count	
M		Pulse width	
		1 dioo width	
Maximum value	19	R	
Measurable ranges with octave analysis			
Measurement		Range	
End of measurement	50	Measurement range	69
Start of measurement		Rectangular56,	
Measurement configuration settings		Reference	
Measurement range		Rise Time	
Memory waveform		RMS	
Minimum value		RMS (Root-Mean-Square) value	
		Kivio (Koot-iviean-oquale) value	υ, τε
Mode (measurement mode)	69	S	
N			
		Sampling clock	54
NG		Save	
Analysis Mode Error		Example of saving numerical calculation	
Nyquist Display		results	
X-Axis Setting	73	Numerical calculation results(Auto Save)	14

Numerical calculation results(Manual Save) .	15
Save Settings Screen	
Saving	
Saving settings	
Scale page	66
Sheet settings screen	49
Simple averaging	109
Standard deviation (Std. Deviation)7	
Status settings screen	
Storage	
STR	85
т	
Time to Level	21
Time value	
Time to maximum value (Time to Max)	19
Time to minimum value (Time to Min)	
TIME/DIV key	
•	
Timebase	
Transfer Function	
TRF	96
Trigger45	, 48
Trigger criteria	48
Trigger mode60	
Trigger settings	
Trigger Settings Screen	
mggar county coron minimum	41
	41
W	41
w	41
W Waveform calculation	
Waveform calculation Operators	34
Waveform calculation Operators Settings	34
Waveform calculation Operators Settings Waveform Calculations	34 26
Waveform calculation Operators Settings	34 26
Waveform calculation Operators Settings Waveform Calculations	34 26 23
Waveform calculation Operators Settings Waveform Calculations Waveform color Waveform screen 38	34 26 23 68 , 78
Waveform calculation Operators Settings Waveform Calculations Waveform color Waveform screen 38 Setting items	34 26 23 68 , 78
Waveform calculation Operators Settings Waveform Calculations Waveform color Waveform screen Setting items Web server	34 26 23 68 , 78 39
Waveform calculation Operators Settings Waveform Calculations Waveform color Waveform screen Setting items Web server Saving screens	34 26 23 68 , 78 39 132 137
Waveform calculation Operators Settings Waveform Calculations Waveform color Waveform screen Setting items Web server Saving screens Sending and receiving text	34 26 23 68 , 78 39 132 137
Waveform calculation Operators Settings Waveform Calculations Waveform color Waveform screen Setting items Web server Saving screens Sending and receiving text Window	34 26 23 68 , 78 39 132 137
Waveform calculation Operators Settings Waveform Calculations Waveform color Waveform screen Setting items Web server Saving screens Sending and receiving text Window Coefficient	34 26 23 68 , 78 39 132 137 136
Waveform calculation Operators Settings Waveform Calculations Waveform color Waveform screen Setting items Web server Saving screens Sending and receiving text Window Coefficient Window function 56, 67,	34 26 23 68 , 78 39 132 137 136
Waveform calculation Operators Settings Waveform Calculations Waveform color Waveform screen Setting items Web server Saving screens Sending and receiving text Window Coefficient Window function Window function Multiplication	34 26 23 68 , 78 39 132 137 136 56
Waveform calculation Operators Settings Waveform Calculations Waveform color Waveform screen Setting items Web server Saving screens Sending and receiving text Window Coefficient Window function 56, 67,	34 26 23 68 , 78 39 132 137 136 56
Waveform calculation Operators Settings Waveform Calculations Waveform color Waveform screen Setting items Web server Saving screens Sending and receiving text Window Coefficient Window function Window Window function Window Window Server Saving screens	34 26 23 68 , 78 39 132 137 136 56
Waveform calculation Operators Settings Waveform Calculations Waveform color Waveform screen Setting items Web server Saving screens Sending and receiving text Window Coefficient Window function	34 26 23 68 , 78 39 132 137 136 56 110 56 122
Waveform calculation Operators Settings Waveform Calculations Waveform color Waveform screen Setting items Web server Saving screens Sending and receiving text Window Coefficient Window function Window function Window Solution Window Solu	34 26 23 68 , 78 39 132 137 136 110 56 122
Waveform calculation Operators Settings Waveform Calculations Waveform color Waveform screen Setting items Web server Saving screens Sending and receiving text Window Coefficient Window function	34 26 23 68 , 78 39 132 137 136 110 56 122
Waveform calculation Operators Settings Waveform Calculations Waveform color Waveform screen Setting items Web server Saving screens Sending and receiving text Window Coefficient Window function Window function Window Solution Window Solu	34 26 23 68 , 78 39 132 137 136 110 56 122
Waveform calculation Operators Settings Waveform Calculations Waveform color Waveform screen Setting items Web server Saving screens Sending and receiving text Window Coefficient Window function Window function Window Solution Window Solu	34 26 23 68 , 78 39 132 137 136 110 56 122
Waveform calculation Operators Settings Waveform Calculations Waveform color Waveform screen Setting items Web server Saving screens Sending and receiving text Window Coefficient Window function Window function Window Solution Window Solu	34 26 23 68 39 132 137 136 56 110 56 122

Z		
Zero adjustment	48,	70

Index	4
-------	---

- · Please visit our website at www.hioki.com for the following:
 - Regional contact information
 - The latest revisions of instruction manuals and manuals in other languages.
 - Declarations of Conformity for instruments that comply with CE mark requirements.
- All reasonable care has been taken in the production of this manual, but if you find any points which are unclear or in error, please contact your supplier or the International Sales and Marketing Department at Hioki headquarters.
- In the interests of product development, the contents of this manual are subject to revision without prior notice.
- The content of this manual is protected by copyright.
 No reproduction, duplication or modification of the content is permitted without the authorization of Hioki E.E. Corporation.

HIOKI

HEADQUARTERS

81 Koizumi, Ueda, Nagano 386-1192, Japan TEL +81-268-28-0562 FAX +81-268-28-0568 os-com@hioki.co.jp (International Sales Department)

www.hioki.com

HIOKI USA CORPORATION

hioki@hiokiusa.com www.hiokiusa.com

HIOKI (Shanghai) Sales & Trading Co., Ltd.

info@hioki.com.cn www.hioki.cn

HIOKI SINGAPORE PTE. LTD.

info-sg@hioki.com.sg www.hioki.com

HIOKI KOREA CO., LTD.

info-kr@hioki.co.jp www.hiokikorea.com 1604EN

Edited and published by Hioki E.E. Corporation

Printed in Japan