PW8001

PW8001-01	PW8001-11
PW8001-02	PW8001-12
PW8001-03	PW8001-13
PW8001-04	PW8001-14
PW8001-05	PW8001-15
PW8001-06	PW8001-16

사용설명서

파워 아날라이저 POWER ANALYZER

	사용 전에 읽어 주십 잘 보관해 주십시오	실시오 .		
안전어	니대해서	▶ p.15	유지보수 및 서비스	▶ p.299
측정 순	는서	▶ p.19	문제가 발생했을 경우	▶ p.301
각부의	명칭과 기능	▶ p.23	다이얼로그 표시	▶ p.303

Apr. 2024 Revised edition 1 PW8001A971-01 (A960-04)

1 개요

1.1	제품 개요	21
1.2	특장점	21
1.3	각부의 명칭과 기능	23
1.4	기본 조작(화면의 표시 및 구성)	28
	화면 조작	28
	공통의 화면 표시	31
	측정 화면의 표시	32
	화면 구성	33
1.5	시스템 구성	35
1.6	측정 예	36
	파워 컨디셔너의 효율 측정	36
	파워 컨디셔너에 의한 전력 융통	
	시스템의 성능 평가	36
	SiC 탑재 인버터의 변환 효율 평가	37
	EV, HEV 등의 모터 해석	37
	듀얼 인버터 구동 시스템의 성능 평가	38
	6상 모터, 리액터 손실 측정 등의 특수한	
	결선	38

2 측정 전 준비

2.1	측정 전 점검	40
2.2	전압 코드의 연결(전압 입력)	41
2.3	전류 센서의 연결(전류 입력)	42
	Probe1 단자	43
	Probe2 단자	45
	측정 범위를 넘을 때(VT, CT 사용)	46
2.4	전원의 공급	47
	전원 코드의 연결	48
	전원 켜는 방법	48
	전원 끄는 방법	49
2.5	결선 모드와 전류 센서의 설정	50
	결선 모드	51
	전류 센서 자동 인식 기능	51
	전류 센서의 위상 보정	52
2.6	간이 설정 (Quick Set)	54

목 차

2.9측정 라인에 결선하기58결선도592.10결선의 확인60

Δ

3 전력의 수치 표시

측정치의 표시 방법 전력 측정 전압 측정치의 표시 전압 측정치, 전류 측정치의 표시 전압 레인지, 전류 레인지 제로 서프레스의 설정 데이터 갱신율 동기 소스 저역 통과 필터(LPF) 측정 상한 주파수와 하한 주파수(주파수 추저 범인의 성정)	61 63 63 64 64 67 68 69 71
정류 방식	72
스케일링 (VT(PT) 또는 CT 사용 시)	74
적산 즉정	75
적산 즉성시의 표시 저사 모드	76 80
시간 제어 기능과 조합한 적산 측정	81
고조파 측정	82
WideBand 광대역 측정 모드	82
IEC 즉정 모드	82
고소파 즉성시의 표시 고조파이 고토 선저	83 87
효율 및 손실 측정	89
연산 방식의 선택	89
[Fixed] 모드	90
[Auto] 모드	91
효율 및 손실의 표시	93
모터 즉성(모터 애직 내상 모델)	94
모터 측정의 결신 미터 해서 여겨 에	94 07
모터 측정치의 표시	97
모터 입력의 영점 조정	99
모터 입력	100
토크미터 보정 기능	105
모터의 선기각 즉성 미터이 히저 바햐 거추	107 100
IEC 전압 변동 / 플리커 측정	109
IEC 플리커 측정의 설정	112
IEC 플리커 측정 방법	113
측정 항목의 설명	114
	측정치의 표시 방법

4 파형 표시

4.1	파형의 표시 방법	.115
4.2	파형 표시의 변경과 기록의 설정	. 117
	시간축의 설정	.117
	세로축 배율과 표시 위치의 설정	.119
	세로축 배율의 일람 표시	120
	트리거의 설정	120
4.3	파형의 기록	123
	파형 데이터의 측정값 (커서 측정)	124
	파형의 확대 (줌 기능)	125
4.4	FFT 해석(파워 스펙트럼 해석)기능	127
	파형과 FFT 해석 결과의 표시	127
	창의 크기 및 위치	128
	FFT 해석 결과의 수치	131
	FFT 해석 결과 표시의 ON/OFF	131
	특정 주파수 범위의 FFT 해석 결과 표시	132
	FFT 피크 값 표시의 하한 주파수	133
	윈도우 함수의 설정	134
	FFT 해석 결과 표시의 세로축 스케일	135

5 각종 기능

5.1	시간 제어 기능	. 137
	타이머 제어	137
	실시간 제어	. 137
	시간 제어 기능의 설정 방법	138
5.2	애버리지 기능	139
	평균화의 설정	139
	애버리지의 동작	. 140
	오버로드 시의 동작	. 140
5.3	홀드 기능	. 141
	홀드 중의 동작	. 142
5.4	피크 홀드 기능	. 143
	피크 홀드 중의 동작	. 144
5.5	델타 변환 기능	. 145
	∆ - Υ 변환	. 145
	Υ- Δ 변환	. 146
5.6	전력 연산식	. 147
5.7	사용자 정의 연산(UDF)	. 148
	사용자 정의 연산(UDF)의 설정	. 148
	사용자 정의 연산 (UDF) 설정 데이터의 저	
	장	151
	사용자 정의 연산(UDF) 설정 데이터의 로	
	딩	152

설정 확인 및 변경..... 153 6.1 본 기기의 초기화......155 6.2 시스템 리셋 155 부팅키 리셋 155 6.3 공장 출하 시의 설정 156 7 데이터 저장과 파일 조작 157 USB 메모리.....157 7.1 7.2 파일 조작 화면 159 측정 데이터의 저장..... 161 7.3 저장할 측정 항목의 설정...... 161 측정 데이터의 수동 저장..... 163 측정 데이터의 자동 저장..... 164 기록 가능 시간과 데이터...... 166 시간 제어에 의한 자동 저장의 동작 168 7.4 파형 데이터의 저장...... 169 FFT 데이터의 저장...... 171 7.5 화면 복사의 저장과 로딩......173 7.6 설정 데이터의 저장과 로딩...... 175 7.7 파일 및 폴더의 조작 177 7.8 USB 메모리 내의 파일 및 폴더 조작 177 USB 메모리의 포맷 178 파일의 수통 전송(FTP 서버에 업로드)..... 178 측정치의 저장 데이터 형식...... 179 7.9 헤더 구성..... 179 Status 데이터 184 측정치의 데이터 포맷..... 186 7.10 BIN 저장 형식 186

6

115

137

시스템 설정

153

8 외부기기의 연결 187

8.1	동기 측정	. 187
	BNC 동기	. 187
	광링크 (광링크 인터페이스)	. 190
8.2	파형, 아날로그 출력(파형 & D/A 출	
	력 옵션)	. 195
	본 기기와 외부기기의 연결	. 195
	출력 항목의 선택	. 197
	출력률	. 200
	D/A 출력 예	. 202
8.3	외부 신호로 적산을 제어	. 204
8.4	CAN 출력 기능	. 207

1

2

3

4

5

6

7

8

9

10

11

색 인

299

CAN 출력 기능의 개요 2	207
CAN 출력까지의 흐름 2	207
CAN 출력의 설정 2	207
DBC 파일의 작성2	211
CAN 출력의 실행 2	213
VT1005 AC/DC 고전압 디바이더 2	215

217

9 PC 와의 연결

8.5

9.1	LAN의 연결과 설정	218
	LAN 케이블의 연결	218
	LAN의 설정과 네트워크 환경의 구축	220
9.2	HTTP 서버에서의 원격 조작	222
	HTTP 서버로의 연결	222
9.3	FTP 서버에서 데이터를 취득	224
	본 기기의 FTP 서버에 액세스	225
	FTP로 파일을 조작	226
9.4	FTP 클라이언트로 데이터를 송신	228
	자동 송신의 설정	228
o =	수동 송신의 순서	232
9.5	FIP 서버 마운트 기능	233
~ ~	FTP 서버에 파일 저장 시의 설정	233
9.6	통신 커맨드에 의한 제어	236
9.7	GP-IB의 연결과 설정	237
	GP-IB 케이블의 연결	237
	GP-IB 어드레스의 설정	238
~ ~	리모트 컨트롤의 해제	238
9.8	RS-232C의 연결과 실정	239
	RS-232C 케이블의 연결	239
	사양	241
0 0	중신 속도의 설정	242
9.9	GENNECT ONE (FC 에들니케이	040
	선 소프트)	243
0 4 0	설지	243
9.10	Modbus/ICP 저머 동신으도 세어	
	와 데이터를 쥐늑	245
	Modbus/TCP 통신 기능의 개요	245
	연결 망법	245
	Nonna 사용	245
40		

10 사양 247

10.1	일반 사양	247
10.2	입력 사양/출력 사양/측정 사양	248
	기본 사양	248
	정확도 사양	253

	파형 기록 사양	. 253
	FFT 해석 사양	. 254
	플리커 측정 사양	. 254
	모터 해석 사양(옵션)	255
	파형 & D/A 출력 사양(옵션)	. 259
	표시부 사양	. 260
	조작부 사양	. 260
	외부 인터페이스 사양	. 261
	CAN/CAN FD 인터페이스 사양(옵션)	. 263
10.3	기능 사양	. 265
	AUTO 레인지	265
	시간 제어	. 265
	홀드 기능	. 266
	연산 기능	. 267
	표시 기능	. 270
	데이터 자동 저장 기능	. 271
	데이터 수동 저장 기능	. 272
	그 밖의 기능	. 273
10.4	측정 항목 상세 사양	. 274
	기본 측정 항목	. 274
	고조파 측정 항목	. 279
	전력 레인지 구성	. 280
10.5	연산식 사양	. 283
	기본 측정 항목의 연산식	. 283
	모터 해석 옵션의 연산식	. 287
	고조파 측정 항목의 연산식	. 288
	적산 측정의 연산식	. 289
10.6	U7001 2.5MS/s 입력 유닛	. 290
	입력 사양	. 290
	정확도 사양	. 292
10.7	U7005 15MS/s 입력 유닛	. 294
	입력 사양	. 294
	정확도 사양	. 295
	전류 측정 옵션과의 특별 조합 정확도	. 296

11 유지보수 및 서비스

11.1	수리,점검,클리닝	. 299
	교정에 대해서	. 299
	교체부품과 수명	. 300
	클리닝	. 300
11.2	문제가 발생했을 경우	. 301
11.3	다이얼로그 표시	. 303
11.4	자주하는 질문	. 307
11.5	조합 정확도의 계산	. 308
11.6	외관도	. 309
11.7	랙 마운트	. 310
11.8	기술 자료에 관하여	. 313

5

11.9 블록도	314
11.10 펌웨어의 업데이트	315
11.11 본 기기의 폐기(리튬 전지 분리 방	
법)	317
11.12 오픈 소스 소프트웨어에 관하여	318

색인	319
	0.0

보증서

머리말

저희 HIOKI PW8001 파워 아날라이저를 구매해 주셔서 대단히 감사합니다. 이 제품을 충분히 활용하여 오래 사용할 수 있도록 사용설명서는 조심스럽게 다루고 소중하게 보관해 주십시오.

제품 사용자 등록 요청	
사용설명서 내용은 개선 , 사양 변경 등을 위해 변경될 수 있습니다 . 최신판은 당사 홈페이지에서 다운로드할 수 있습니다 . <u>https://www.hiokikorea.com/support/manual_off.html</u>	
사용설명서 최신판	

제품에 관한 중요한 정보를 보내드리기 위해 제품 사용자 등록을 부탁드립니다. https://www.hiokikorea.com/mypage/registration.html

다음 사용설명서를 용도에 맞춰 참조해 주십시오.

사용설명서의 명칭	내용	제공 형태
사용 시 주의사항	본 기기를 안전하게 사용하시기 위한 정보입니다. 본 기기를 사용하기 전에 별지 "사용 시 주의사항"을 잘 읽어 주십시오.	인쇄
사용설명서(본 설명서)	본 기기의 기본적인 조작 방법, 사양, 기능 설명 등이 기재되어 있습니다.	인쇄 / 다운로드 (PDF)
통신 커맨드 사용설명서	본 기기를 제어하는 통신 커맨드에 대해 기재되어 있습 니다.	다운로드(PDF)
GENNECT One User's manual	PC용 애플리케이션의 설치 방법, 사용 방법, 사양 등 이 기재되어 있습니다.	CD (PDF) / 다운로드(PDF)
Modbus/TCP 통신 사용설명서	본 기기를 Modbus/TPC로 제어하는 통신 커맨드에 대해 기재되어 있습니다.	다운로드 (PDF)
Data Receiver 설명서	PC용 애플리케이션의 설치 방법, 사용 방법, 사양 등 이 기재되어 있습니다.	다운로드 (PDF)
MATLAB 툴킷 User's manual	MATLAB 툴킷으로 본 기기에서 기록한 파형 바이너 리 데이터를 MATLAB의 배열 데이터로 로드하거나, MATLAB 상에서 Ethernet 접속한 본 기기를 제어하 는 방법이 기재되어 있습니다.	다운로드 (PDF)
LabVIEW 드라이버	LabVIEW 드라이버로 본 기기의 제어 및 측정 데이터 를 취득하는 방법이 기재되어 있습니다.	다운로드 (PDF)

사용설명서의 대상 독자

이 사용설명서는 제품을 사용하시는 분과 제품 사용법을 지도하는 분을 대상으로 합니다. 전기에 관한 지 식이 있다는 것(공업고교의 전기계 학과 졸업 정도)을 전제로 제품 사용법을 설명합니다.

머리말

상표

Windows, Microsoft Edge는 미국 Microsoft Corporation의 미국, 일본 및 기타 국가에서의 등록상 표 또는 상표입니다.

화면의 폰트

DynaFont는 DynaComware Taiwan Inc.의 등록상표입니다.

포장 내용물 확인

본 기기를 받으시면 수송 중에 이상이나 파손이 발생하지 않았는지 점검한 후에 사용해 주십시오. 특히 부 속품, 패널 면의 스위치 및 단자류를 주의깊게 살펴봐 주십시오. 만일 파손이 있는 경우나 사양대로 작동하 지 않는 경우에는 당사 또는 대리점으로 연락 주십시오.

포장 내용물이 맞는지 확인해 주십시오.

□ PW8001 파워 아날라이저

✔: 기능 있음 -: 기능 없음

	옵션(부가 기능)						
제품 모델명(발주 코드)	모터 해석	파형 & D/A 출력	CAN/CAN FD 인터페이스	광링크 인터페이스			
PW8001-01	-	-	-	-			
PW8001-02	-	\checkmark	-	-			
PW8001-03	-	-	✓	-			
PW8001-04	-	-	-	✓			
PW8001-05	-	✓	-	✓			
PW8001-06	-	-	✓	✓			
PW8001-11	✓	-	-	-			
PW8001-12	✓	✓	-	-			
PW8001-13	✓	-	✓	_			
PW8001-14	✓	-	-	✓			
PW8001-15	✓	\checkmark	-	\checkmark			
PW8001-16	✓	-	✓	✓			

공장 출하 시 옵션인 U7001 2.5MS/s 입력 유닛 및 U7005 15MS/s 입력 유닛이 상기 제품 모델명의 본체에 장착 됩니다.

부속품

- □ 전원 코드
- □ 사용 시 주의사항(0990A903)
- □ 사용설명서(본 설명서)
- □ GENNECT One (PC 애플리케이션) CD
- □ D-sub25 핀용 커넥터 (PW8001-02, PW8001-05, PW8001-12, PW8001-15 만)

옵션(별매)

본 기기에는 다음과 같은 옵션이 있습니다. 구매하시려면 당사 또는 대리점으로 연락 주십시오. 옵션은 변 경될 수 있습니다. 당사 웹사이트에서 최신 정보를 확인해 주십시오.

공장 출하 시 옵션

입력 유닛

U7001 2.5MS/s 입력 유닛	
U7005 15MS/s 입력 유닛	

제품 모델명(PW8001-xx)으로 지정

모터 해석 옵션	
파형 & D/A 출력 옵션	(CAN/CAN FD 인터페이스와 동시 선택 불가)
CAN/CAN FD 인터페이스 옵션	(파형 & D/A 출력 옵션과 동시 선택 불가)
광링크 인터페이스 옵션	

전압 측정 옵션

본 기기의 전압 입력 단자에는 ϕ 4 mm의 안전 바나나 플러그를 연결할 수 있습니다. 용도에 맞는 전압 코드를 준비해 주십시오.

	제품명	최대 정격 전압 전류	케이블 길이 (약)	비고
L1025	전압 코드	CAT II DC 1500 V AC1000 V, 1 A CAT III 1000 V, 1 A	3 m	바나나-바나나(빨간색/검정색 ×각 1개) 악어클립 부속
L9438-50	전압 코드	CAT III 1000 V, 10 A CAT IV 600 V, 10 A	3 m	바나나-바나나(빨간색/검정색 ×각 1개) 악어클립 부속
L1000	전압 코드	CAT III 1000 V, 10 A CAT IV 600 V, 10 A	3 m	바나나-바나나 (빨간색/황색/청색/회색×각1 개, 검정색×4개) 악어클립 부속
L9257	접속 코드	CAT III 1000 V, 10 A CAT IV 600 V, 10 A	1.2 m	바나나-바나나(빨간색/검정색 ×각1개) 악어클립부속
L1021-01	분기 코드	CAT III 1000 V, 10 A CAT IV 600 V, 10 A	0.5 m	전압 입력 분기용 바나나 분기-바나나(빨간색 ×1개)
L1021-02	분기 코드	CAT III 1000 V, 10 A CAT IV 600 V, 10 A	0.5 m	전압 입력 분기용 바나나 분기-바나나(검정색 ×1개)
L9243	그래버 클립	CAT II 1000 V, 1 A	_	빨간색/검정색×각1개
L4940	접속 케이블	CAT III 1000 V, 10 A CAT IV 600 V, 10 A	1.5 m	바나나-바나나(빨간색/검정색 ×각 1개) 악어클립 부속 없음
L4935	악어클립	CAT III 1000 V, 10 A CAT IV 600 V, 10 A	_	빨간색/검정색×각1개
VT1005	AC/DC 고전압 디바이 더	5000 V, ±7100 V peak CAT III 1500 V CAT II 2000 V	_	1000 V 이상의 전압 측정용

전류 측정 옵션

상세는 전류 센서에 부속된 사용설명서를 참조해 주십시오.

✔: 해당 -: 비해당

전류 센서 타입	자동 인식 기능	제품 모델명	최대 정격 전류 rms	주파수 특성	기본 정확도 (진폭)	측정 가능 도체 지름	채널 수 케이블 길이 (약)	사용 온도 범위	
초고정확도 직결	\checkmark	PW9100A-3					2 베너		
	-	PW9100-03	50 4	50 A DC ~ 3.5 MHz	DC ~ 3.5 MHz ±0.02% ±0.005%	±0.02% rdg	측정 단자	3세월	0°C ~ 40°C
	\checkmark	PW9100A-4	50 A			±0.005% f.s.	M6 나사	ᄼᆊᇅ	
	—	PW9100-04					4세코		
초고정확도 관통	\checkmark	CT6904A					3 m		
	-	CT6904	500 A	500 A	±0.02% rdg ±0.007% f.s.		5111		
	\checkmark	CT6904A-1		DC ~ 2 MHz		φ 32 mm	10 m	-10°C ~ 50°C	
	✓	CT6904A-2	800 A	DC ~ 4 MHz	±0.025% rdg		3 m		
	✓	CT6904A-3	000 A	DC ~ 2 MHz	±0.009% f.s.		10 m		
고정확도 관통	_	CT6862-05		DC ~ 1 MHz	±0.05% rdg ±0.01% f.s.		3 m	-30°C ~ 85°C	
	✓	CT6872	50 A	DC ~ 10 MHz	±0.03% rdg			-40°C ~ 85°C	
0	\checkmark	CT6872-01			±0.007% f.s.	4 24 mm	10 m	-40 0 * 00 0	
	_	CT6863-05		DC ~ 500 kHz	±0.05% rdg ±0.01% f.s.	ψ 2 τ ΠΠΠ	3 m	-30°C ~ 85°C	
	✓	CT6873	200 A	DC ~ 10 MHz	±0.03% rdg			_	
	~	CT6873-01			±0.007% f.s.		10 m		
	✓	CT6875A		DC ~ 2 MHz		φ 36 mm	3 m	-	
	_	CT6875	500 A						
	✓	CT6875A-1		DC ~ 1.5 MHz	±0.04% rdg ±0.008% f.s.		10 m		
	✓	CT6876A	1000 A				3 m		
	_	CT6876						-	
	✓	CT6876A-1		DC ~ 1.2 MHz			10 m		
	✓	CT6877A	2000 A	2000 A DC ~ 1 MHz			3 m		
	_	CT6877				φ 80 mm			
	✓	CT6877A-1					10 m		
고정확도 클램프	✓	CT6841A	20 A	DC ~ 2 MHz	±0.2% rdg ±0.01% f.s.				
	_	CT6841-05		DC ~ 1 MHz	±0.3% rdg ±0.01% f.s.			-40°C ~ 85°C	
	✓	CT6843A	200 A	DC ~ 700 kHz	±0.2% rdg ±0.01% f.s.	տ 20 mm			
	_	CT6843-05		DC ~ 500 kHz	±0.3% rdg ±0.01% f.s.	,			
	√	CT6844A		DC ~ 500 kHz	±0.2% rdg ±0.01% f.s.		3 m		
	_	CT6844-05	500 4	DC ~ 200 kHz	±0.3% rdg ±0.01% f.s.				
	~	CT6845A	500 A	DC ~ 200 kHz	±0.2% rdg ±0.01% f.s.				
	-	CT6845-05		DC ~ 100 kHz	±0.3% rdg ±0.01% f.s.	- E0 mama			
	~	CT6846A	1000 1	DC ~ 100 kHz	±0.2% rdg ±0.01% f.s.	φ 50 mm			
	_	CT6846-05	1000 A	DC ~ 20 kHz	±0.3% rdg ±0.01% f.s.				
범용 클램프 *	_	9272-05	20 A 200 A	1 Hz ~ 100 kHz	±0.3% rdg ±0.01% f.s.	φ 46 mm	3 m	0°C ~ 50°C	

*: 상용 주파수대의 측정용

접속용 케이블류

	제품명	케이블 길이 (약)	비고	
L9217	접속 코드	1.7 m	CAT II 600 V, 0.2 A CAT III 300 V, 0.2 A 모터 해석 입력용, 절연 BNC	
9642	LAN 케이블	5 m	CAT5e, 크로스 변환 커넥터 부속	Q,
9637	RS-232C 케이블 (9 pin-9 pin/1.8 m)	1.8 m	9pin– 9pin, 크로스 케이블	Q.
9151-02	GP-IB 접속 케이블	2 m	_	O
9444	접속 케이블	1.5 m	외부 제어용, 9pin– 9pin, 스트레이트 케이블	\bigcirc
L6000	광접속 케이블	10 m	50 μm/125 μm 멀티모드 화이버 상당품	-
9165	접속 코드	1.5 m	BNC 동기용, 금속 BNC-금속 BNC	0 DI
9713-01	CAN 케이블	2 m	편측 가공 없음	d'

기타

아래는 수주 생산품입니다.

제품명		케이블 길이 (약)	비고	
C8001	휴대용 케이스	_	하드 트렁크 타입 바퀴 부속	
Z5300	랙 마운트 키트	_	EIA	and a second
Z5301	랙 마운트 키트	_	JIS	
Z5200	BNC 단자 박스	_	D-sub25pin– BNC(female) 20채널 변환 박스	000000000000000000000000000000000000000
PW9100A-3	AC/DC 커런트 박스	_	3채널, 5 A 정격 사양	
PW9100A-4	AC/DC 커런트 박스	_	4채널, 5 A 정격 사양	tin tin tin tin
CT6904A-1	AC/DC 커런트 센서	10 m	500 A 정격 출력 케이블	
CT6904A-2	AC/DC 커런트 센서	3 m	800 A 정격 출력 케이블	
CT6904A-3	AC/DC 커런트 센서	10 m	800 A 정격 출력 케이블	2-5
L3000	D/A 출력 케이블	2.5 m	D-sub25pin– BNC(male) 20채널 변환 케이블	

표기에 대해서

안전에 관한 표기

본 설명서에서는 위험의 중대성 및 위험성 정도를 아래와 같이 구분하여 표기합니다.

▲ 위 험	회피하지 않으면 사망 또는 심각한 상해를 입을 수 있는 절박한 위험 상황을 나타냅니다.
⚠ 경 고	회피하지 않으면 사망 또는 심각한 상해를 입을 수 있는 잠재적인 위험 상황을 나타냅니다.
⚠주 의	회피하지 않으면 경도 또는 중도의 상해를 입을 수 있는 잠재적인 위험 상황 또는 대상 제품 (또는 기타 재산)이 파손될 잠재적인 위험을 나타냅니다.
중 요	조작이나 유지보수 작업 시에 특별히 알아 두어야 할 정보나 내용을 나타냅니다.
\bigwedge	고전압에 의한 위험이 있음을 나타냅니다. 안전 확인을 소홀히 하거나 잘못 취급하면 감전에 의한 쇼크, 화상 또는 사망에 이르는 위험 을 경고합니다.
\bigotimes	해서는 안 되는 행위를 나타냅니다.
	반드시 수행해야 하는 강제 사항을 나타냅니다.

기기상의 기호

	잠재적인 위험요소가 있음을 나타냅니다. 사용설명서의 "사용 시 주의사항" (p.16) 및 각 사용 설명의 서두에 기재된 경고 메시지를 읽어 주십시오. 또한, 부속된 "사용 시 주의사항" 및 "커 런트 센서 사용 시 주의사항"도 참조해 주십시오.
Ċ	전원의 ON/OFF를 할 수 있는 버튼 스위치를 나타냅니다.
<u> </u>	접지 단자를 나타냅니다.
	직류(DC)를 나타냅니다.
\sim	교류(AC)를 나타냅니다.

규격에 관한 기호

기타 표기

Tips	제품의 성능 및 조작에 관한 조언을 나타냅니다.
*	하부에 설명이 기재되어 있음을 나타냅니다.
(p.)	참조 페이지 번호를 나타냅니다.
START (굵은체)	본 기기의 키에 관한 명칭을 나타냅니다.
[]	화면상의 사용자 인터페이스 명칭은 꺾쇠 괄호([])로 묶어 표기하고 있습니다.
Windows	특별히 단서가 붙어 있지 않은 경우, Windows 10은 "Windows"로 표기하였습니다.
전류 센서	전류를 측정하는 센서를 총칭하여 "전류 센서"로 기재합니다.
S/s	본 기기에서는 아날로그 입력 신호를 디지털화하는 1초당 횟수를 samples per second (S/ s)라고 하는 단위로 표현합니다. 예: "20 MS/s" (20 megasamples per second)는 1초당 20×10 ⁶ 회의 디지털화를 의미 합니다.

본 설명서에서는 구판에서 사용했던 "마스터"와 "슬레이브"라는 용어를 각각 "프라이머리"와 "세컨더리"로 변경하였 습니다.

정확도 표기

당사는 측정기의 정확도를 리딩 (reading), 레인지 (range), 풀 스케일 (full scale) 및 디지트 (digits)에 의한 오차 한계치를 규정하여 표시합니다.

% of reading	리딩(표시치) 측정기가 표시하고 있는 값을 나타냅니다. 리딩 오차의 한계치는 "% of reading (% rdg)"을 이용하여 표시합니다.
% of range	레인지 측정기의 레인지를 나타냅니다. 레인지 오차의 한계치는 "% of range (% rng)"를 이용하여 표시합니다.
f.s.	풀 스케일(정격의 값) 본 기기에서는 주로 전류 센서의 정격을 나타냅니다. 풀 스케일 오차의 한계치는 "% of full scale(% f.s.)"을 이용하여 나타냅니다.
digits	디지트 (분해능) 디지털 측정기의 최소 표시 단위, 즉 최소 자릿수인 1을 나타냅니다. 디지트 오차의 한계치는 "digits"를 이용하여 표시합니다.

안전에 대해서

본 기기를 사용하기 전에 다음의 안전에 관한 사항을 잘 읽어 주십시오. 이 사용설명서를 잘 읽고 내용을 충분히 이해한 후에 본 기기를 사용해 주십시오. 잘못 사용하면 중대한 인신사고 또는 본 기기의 파손을 일 으킬 수 있습니다.

측정 카테고리에 대해서

측정기를 안전하게 사용하기 위해 IEC 61010에 측정 카테고리가 규정되어 있습니다. 주전원 회로에 연 결하는 것을 의도한 시험 및 측정 회로는 주전원 회로의 종류에 따라 3개의 카테고리로 분류되어 있습니 다. 측정 카테고리가 없는 측정기는 주전원 회로의 측정에 사용할 수 없습니다.

\Lambda 위 험

측정기의 정격 측정 카테고리 분류를 초과하는 주전원 회로의 측정에 측정기를 사용하지 않는다

정격 측정 카테고리가 규정되어 있지 않은 측정기를 주전원 회로의 측정에 사용하 지 않는다

중대한 인신사고 또는 측정기, 설비의 파손을 일으킬 수 있습니다.

- **측정 카테고리 없음** 주전원에 직접 연결하지 않은 회로의 측정에 적용한다.
- (O) 예: 고정 설비의 콘센트로부터 트랜스 등을 경유한 2차측 기기에서의 측정

측정 카테고리 II저전압 주전원 공급 시스템의 사용점(콘센트 및 유사 부분)에 직접 연결하는 시험 및 측정 회로
(CAT II)에 적용한다.

- · 예: 가전 제품, 휴대 기구 및 유사 기기의 주전원 회로 및 고정 설비 콘센트의 사용자 측에서만의 측정
- **측정 카테고리 III** 건조물의 저전압 주전원 공급 시스템의 배전 부분에 연결하는 시험 및 측정 회로에 적용한다.

(CAT III)예: 고정 설비에서의 배전반(2차측 미터 포함), 광전지 패널, 회로 차단기, 배선, 부대되는 케이
블, 버스 바, 접속 박스, 스위치 및 콘센트에서의 측정, 고정 설비에 영속적으로 연결하는 산
업용 기기 및 설치 모터와 같은 기타 기기에서의 측정

측정 카테고리 Ⅳ건조물의 저전압 주전원 공급 시스템의 공급원에 연결하는 시험 및 측정 회로에 적용한다.(CAT IV)예: 건조물 설비 내의 주전원 퓨즈 또는 회로 차단기의 앞에 장착하는 디바이스에서의 측정

사용 시 주의사항

본 기기를 안전하게 사용하기 위해, 또한 기능을 충분히 활용하기 위해 다음 주의사항을 지켜 주십시오. 본 기기의 사양뿐 아니라 사용하는 부속품, 옵션 등의 사양 범위 내에서 본 기기를 사용하십시오.

본 기기의 설치

⚠경고

■ 다음과 같은 장소에 본 기기를 설치하지 않는다

- 직사광선에 노출되는 장소, 고온이 되는 장소
- 부식성 가스나 폭발성 가스가 발생하는 장소
- 강력한 전자파가 발생하는 장소, 전기를 띠는 물체 근처
- 유도가열장치(고주파 유도가열장치, IH 조리기구 등) 근처
- 기계적 진동이 많은 장소
 - 물, 기름, 약품, 용제 등에 접촉할 수 있는 장소
 - 다습하고 결로가 생기는 장소
 - 먼지가 많은 장소

본 기기가 파손되거나 오동작을 하여 인신사고를 일으킬 우려가 있습니다.

▲주의

■ 불안정한 받침대 위나 기울어진 장소에 본 기기를 두지 않는다

본 기기가 떨어지거나 쓰러지면 인신사고를 일으키거나 본 기기가 파손될 수 있습니다.

- 본 기기의 온도 상승을 방지하기 위해 바닥면 이외는 주위에서 30 mm 이상 간격을 두고 설치한다.
- 바닥면은 접지면에서 15 mm(지지발의 높이) 이상 간격을 두고 설치한다.
- 바닥면을 아래로 가게 하여 설치한다.
- 통풍구를 막지 않는다.

30 mm 이상

30 mm 이상

본 기기의 취급

본 기기는 EN 61326 Class A 제품입니다. 주택지 등의 가정환경에서 사용하면 라디오 및 텔레비전 방송 수신을 방해할 수 있습니다. 그런 경우에는 작업자가 적절한 대책을 세워 주십시오.

측정 시의 주의

운반 시의 주의

본 기기를 운반할 때는 코드류, USB 메모리를 분리한 후, 핸들을 잡고 운반해 주십시오.

수송 시의 주의

- 본 기기를 수송할 경우에는 제품 출하 시에 사용된 포장 상자 및 완충재를 사용하거나, C8001 휴대용 케이스를 사용해 주십시오. 단, 포장 상자나 완충재가 파손된 경우에는 사용하지 마십시오. 제품 출하 시 의 포장 상자 및 완충재를 사용할 수 없는 경우에는 당사 또는 대리점으로 연락 주십시오.
- 포장할 때는 코드류와 USB 메모리를 본 기기에서 분리해 주십시오.
- 수송 시에는 낙하 등의 강한 충격을 가하지 않도록 주의해 주십시오.

디스크 사용 시 주의사항

- 디스크 기록면에 오염이나 흠집이 생기지 않도록 주의해 주십시오. 또한, 글자 등을 레이블면에 기재할 때는 끝이 부드러운 필기 용구를 사용해 주십시오.
- 디스크는 보호 케이스에 넣어 보관해 주십시오. 또한 직사광선이나 고온다습한 환경에 노출하지 마십시 오.
- 이 디스크의 사용으로 인해 발생한 컴퓨터 시스템상의 문제에 대해 당사는 일체 책임을 지지 않습니다.

측정 순서

본 기기의 기본적인 측정 순서는 다음과 같습니다.

1	측정 전 점검을 실행한다		
Τ	"2.1 측정 전 점검" (p.40)		
2	측정 전 준비를 한다		
	"2.2 전압 코드의 연결(전압 입력)" (p.41) "2.3 전류 센서의 연결(전류 입력)" (p.42) "2.4 전원의 공급" (p.47) 높은 정밀도로 측정하기 위해 전원 투입 후부터 영점 조정 실행 전	까지 워밍업을 30분 이상 실	시합니다.
3	결선 모드와 전류 센서를 설정한다		
Τ	"2.5 결선 모드와 전류 센서의 설정" (p.50)		
4	간이 설정 (Quick Set)을 한다		
Τ	"2.6 간이 설정 (Quick Set)" (p.54)		
5	영점 조정을 실행한다		
	"2.8 영점 조정과 소자(DMAG)" (p.57) 결선하기 전에 반드시 영점 조정을 실행해 주십시오.		
6	측정 라인에 결선한다		
Т	"2.9 측정 라인에 결선하기" (p.58)		
7	결선이 올바른지 확인한다		
	"2.10 결선의 확인" (p.60)		
8	측정치, 파형을 확인한다		
	"3 전력의 수치 표시" (p.61) "4 파형 표시" (p.115)	적산의 시작/정지 START /STOP	파형의 표시 RUN /STOP
9	데이터를 저장한다		
Т	"7 데이터 저장과 파일 조작" (p.157)		
10	데이터를 해석한다		
	"8 외부기기의 연결" (p.187) "9.1 LAN의 연결과 설정" (p.218) "9.9 GENNECT One (PC 애플리케이션 소프트)" (p.243)		
11	측정을 종료한다		

측정 순서

1.1 제품 개요

본 기기는 측정 대상의 입력 전력과 출력 전력을 동시에 측정하여 전력 변환 효율을 해석할 수 있는 파워 아 날라이저입니다. 입력 유닛을 최대 8대까지 탑재할 수 있으며, 결선을 단상부터 3상 4선식까지 자유롭게 조합하여 고객의 용도에 맞는 다양한 측정 라인에 대응이 가능합니다.

1.2 특장점

최대 8유닛까지 탑재 가능

2종류의 입력 유닛을 1채널부터 8채널까지 자유롭게 조합하여 용도에 가장 적합한 측정 시스템을 1대로 구축할 수 있습니다.

2종류의 입력 유닛을 조합하여 최적의 시스템을 구축

고내압의 범용 입력 유닛 U7001과 세계 최고 수준의 정확도 ±0.03%, 세계 최고 수준의 고분해능 및 고속 샘플링을 실현한 입력 유닛 U7005, 이들 2종류를 준비하였습니다. 고객이 필요로 하는 성능에 따라 2종류의 입력 유닛을 조합하여 PW8001에 탑재할 수 있습니다.

U7001 (p.290) 파워 컨디셔너의 개발 평가, 출하 검사 시 1500 V CAT II에서 측정을 실 현 전력 측정 기본 정확도 ±0.07%

005 15walseur

U7005 (p.294)

SiC/GaN 인버터 효율, 리액터 및 트랜스 손실의 고정확도 측정

전력 측정 기본 정확도 ±0.03% (DC 정확도±0.05%)

샘플링 주파수	2.5 MHz	15 MHz
ADC 분해능	16 bit	18 bit
측정 주파수 대역	DC, 0.1 Hz~1 MHz	DC, 0.1 Hz~5 MHz
최대 입력 전압	AC 1000 V, DC 1500 V	AC 1000 V, DC 1000 V
대지간 최대 정격 전압	AC 600 V / DC 1000 V CAT III AC 1000 V / DC 1500 V CAT II	600 V CAT III 1000 V CAT II

전류 센서를 자동 인식 (p.51)

연결된 전류 센서의 정보 취득과 위상 보정을 자동으로 실 행합니다. 측정 전의 설정 시간을 큰 폭으로 줄여 정확한 전력 측정 을 강력하게 서포트합니다.

● 간이 설정 (Quick Set) (p.54)

Quick Set 기능을 통해 선택한 측정 라인에 맞춘 측정 조건을 대표적인 값으로 일괄 설정합니다.

1

계측기 1대로 4개의 모터를 동시에 해석 (옵션) (p.94)

1대의 PW8001로 4개 모터의 토크와 회전수를 동시에 측정하여 해석할 수 있습니다. 전동 AWD 등 복수의 모터 로 차륜을 제어하는 시스템의 평가에 효과적입니다.

💿 최대 32채널의 측정에 대응

광링크 인터페이스(옵션) (p.190)

2대의 PW8001을 광케이블(500 m까지)로 연결하여 ^{프라이머리 기기} 측정 데이터를 1대의 PW8001에 실시간으로 집약할 수 있습니다. 최대 16채널의 전력과 8개 모터를 동시에 해석 하여 효율 및 손실을 1대에 표시, 기록할 수 있습니다.

BNC 동기 (p.187)

프라이머리 기기와 최대 3대의 세컨더리 기기, 합해서 최 대 4대의 데이터 갱신 타이밍 및 적산 제어 타이밍을 동기 시킬 수 있습니다.

HILS 개발부터 실기능 평가까지, 다양한 전류 센서와의 조합을 통한 폭넓은 활용도

다양한 측정 작업에 대응한 라인업을 통해 최적의 전류 센서를 선택하여 전류를 측정할 수 있습니다.

고정확도 클램프 타입

빠르고 간편하게 결선할 수 있는 클램프 타입. 뛰어난 환경 성능을 통해 HILS 개발부터 실기능 평가까지 폭넓게 활용 할 수 있습니다.

고정확도 관통 타입

정확도, 대역, 안정성을 두루 갖춘 관통 타입. 최대 10 MHz의 광대역 측정 및 최대 2000 A의 대전류 측정 을 통해 최첨단 연구 개발에 활용합니다.

고정확도 직결 타입

자체 개발한 DCCT 방식을 통해 50 A 직결 타입으로 세 계 최고 수준의 정확도와 대역을 실현합니다.

CAN/CAN FD 버스 출력으로 기존의 CAN 네트 워크에 측정 데이터를 통합(옵션)

측정 데이터를 CAN/CAN FD 신호로 하여 CAN 버스 상 에 실시간으로 출력할 수 있습니다. CAN 버스 상의 ECU 데이터와 측정 데이터를 CAN 버스 데이터 로거로 기록함 으로써 시간의 오차나 정확도의 열화가 발생하는 일 없이 데이터를 통합하여 종합적인 평가를 수행할 수 있습니다.

1.3 각부의 명칭과 기능

정면

USB 커넥터 (p.157)

USB 메모리를 연결해 측정 데이터, 설정 내용, 화면 이미지 등의 각종 데이터를 저장합니다. 마우스, 키보드 등은 연결할 수 없습니다.

키 록을 하려면

REMOTE/LOCAL 키를 3초간 눌러 키 조작을 잠글 수 있습니다. 키 록 중에는 키 록 해제를 제외한 모든 키 조작과 터치패널 조작이 무효가 됩니다. 전원이 꺼졌다가 복귀 한 후에도 키 록 상태는 유지됩니다.

터치패널의 취급

1

키 조작부

MENU 키(화면 전환)

키를 누르면 선택된 키가 점등하고 화면이 전환됩니다.

MEAS	측정 화면을 표시합니다. 측정치나 파형을 표시하는 화면입니다.	p.61
INPUT	입력 설정 화면을 표시합니다. 입력이나 결선, 측정, 연산에 대해서 설정하는 화면입니다.	p.50
SYSTEM	시스템 설정 화면을 표시합니다. 시간 제어나 인터페이스, 기타 동작에 대해서 설정하는 화면입니다.	p.153
FILE	파일 조작 화면을 표시합니다. 파일 조작을 하는 화면입니다.	p.157

채널 표시 LED

점등하고 있는 입력 채널에 **RANGE** 키 및 설정 인디케이터의 표시 설정이 반영됩니다. 결선 설정에 의해 1쌍의 결선에 포함되는 채널은 동시에 점등합니다.

CH ► 채널 선택 키 측정화면에 표시할 채널을 선택합니다. 채널 선택 키와 연동하여 채널 표시 LED가 점등합니다.					
RANGE + + U I	RANGE 키 U의 +, - 키로 전압의 레인지를, I의 +, - 키로 전류의 레인지를 변경합니다. 채널 표시 LED가 점등하고 있는 채널의 레인지를 적용합니다. [A-D] 점등 시에는 U를 CH A, I를 CH C의 아날로그 입력에 적용합니다. [E-H] 점등 시에는 U를 CH E, I를 CH G의 아날로그 입력에 적용합니다. AUTO 키가 점등하고 있을 때는 레인지 변경과 더불어 AUTO 레인지가 해제됩니다.	_			
AUTO	AUTO 키 U의 AUTO 키로 전압의 AUTO 레인지 기능이, I의 AUTO 키로 전류의 AUTO 레 인지 기능이 동작하며 키가 점등합니다. 재차 누르면 소등되고 그 시점의 레인지로 고 정됩니다. 채널 표시 LED가 점등하고 있는 채널에 적용됩니다.	_			
0 ADJ	입력 채널을 영점 조정합니다.	p.57			
SAVE	키를 눌렀을 때의 측정 데이터를 USB 메모리에 저장합니다.	p.157			
СОРҮ	키를 눌렀을 때의 화면 이미지를 USB 메모리에 저장합니다.	p.173			
REMOTE / LOCAL KEY LOCK(3sec)	REMOTE/LOCAL 키(키 록) GP-IB 통신에서 리모트 상태가 되면 점등하고, 재차 누르면 로컬 상태로 되돌아가 소등됩니다. 3초 이상 길게 누르면 키 록 되고, 화면에 키 록 마크가 표시됩니다. 재차 3초 이상 길게 누르면 설정이 해제되고 소등됩니다.	p.237			

측정 제어 키

주로 전력 측정 기능을 제어합니다. 파형 표시에는 영향을 주지 않습니다.

HOLD	홀드 기능의 ON/OFF를 전환합니다. ON일 때에 점등합니다. 피크 홀드가 ON일 때에 누르면 피크 홀드 데이터를 클리어합니다.					
PEAK HOLD	피크 홀드 기능의 ON/OFF를 전환합니다. ON일 때에 점등합니다. 홀드가 ON일 때에 누르면 홀드 데이터를 갱신합니다.					
DATA RESET	적산 데이터를 6 적산 정지 중인	적산 데이터를 리셋합니다. 적산 정지 중인 채널에 대해서 기능합니다.				
	적산 및 자동 저 습니다.	장의 시작과 정지를 제어합니다. 결선별 적산 설정 시에는 점등하지 않				
START / STOP	<mark>START</mark> /STOP (녹색 점등)	적산 중 또는 자동 저장 중입니다.	p.77			
	<mark>START</mark> /STOP (빨간색 점등)	적산 또는 자동 저장을 정지 중입니다. DATA RESET 키를 누르면 START/STOP 키가 소등됩니다.				

파형 조작 키(로터리 노브)

주로 파형 가져오기를 제어합니다.

TRIGGER MANUAL	트리거 대기일 대 키를 누른 시점에	트리거 대기일 때 강제로 트리거를 겁니다(수동 트리거). 키를 누른 시점에 트리거가 걸리며 기록을 시작합니다.					
SINGLE	SINGLE (소등) RUN /STOP (빨간색 점등)	NGLE 기록 길이만큼 기록되면 기록을 정지합니다. 노등) 기록 길이만큼 기록되면 기록을 정지합니다. 내 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이					
	SINGLE (녹색 점등)	키를 누르면 키가 녹색으로 점등하면서 트리거 대기 상태가 됩니다. 트리거가 걸리면 파형을 한 번만 기록한 후 키가 소등됩니다.					
	파형을 연속으로 누르면 녹색으로	파형을 연속으로 기록합니다. 누르면 녹색으로 점등하고, 재차 누르면 빨간색으로 점등합니다.					
RUN / STOP	/ 당비가본 기기는 트리거 대기 상태입니다.트리거가 걸리면 기록을 시작합니다.(녹색 점등)반복 트리거 대기 상태가 됩니다.						
	RUN /STOP (빨간색 점등)	기록을 정지합니다.					
マ ×							
PUSH FAST	며, 변경 스텝 수	에 내에지는 털어 넣음으도써 속색 섬승과 털신색 섬승이 빈털아 신환되 녹를 변경할 수 있는 설정 항목이 있습니다.					
	실정한 후 원래의 소등 상태인 로테	의 버튼을 탭하면 로터리 노브가 소등됩니다. 터리 노브는 기능하지 않습니다.					

1 개 요

1	입력 채널	전력 1상분의 전압과 전류를 입력하는 유닛을 최대 8채널까지 실장할 수 있습니다.	_
2	전압 입력 단자	당사 옵션의 전압 코드를 연결합니다.	p.41
3	Probe2 단자 (전류 센서용)	커런트 프로브, CT 등의 전압 출력 타입의 센서를 연결합니다.	p.45
4	Probe1 단자 (고성능 전류 센서용)	당사 옵션의 전류 센서를 연결합니다. 본 기기는 전류 센서를 자동 인식합 니다. 또한, 전류 센서에 전원을 공급합니다.	p.43
5	GP-IB 커넥터	GP-IB로 본 기기를 원격 조작할 수 있습니다. 측정 데이터를 PC에 전송할 수 있습니다.	p.237
6	RS-232C 커넥터 (D-sub 9pin)	RS-232C에 의한 시리얼 통신으로, PC나 컨트롤러에서 본 기기를 제어 할 수 있습니다. 접점 스위치로 적산의 시작, 정지를 제어할 수 있습니다.	p.239
7	RJ-45 커넥터 (기가비트 이더넷)	본 기기를 LAN으로 원격 조작할 수 있습니다. 측정 데이터를 PC에 전송할 수 있습니다.	p.218
8	광링크 커넥터 (광링크 인터페이스 옵션)	L6000 광접속 케이블을 연결합니다. 본 기기를 2대 사용하여 고도의 동기 측정을 할 수 있습니다.	p.190
9	BNC 동기 커넥터	9165 접속 케이블을 연결합니다. 본 기기를 최대 4대까지 동기 측정할 수 있습니다.	p.187
10	전원 인렛	부속된 전원 코드를 연결합니다.	p.47
44	파형 & D/A 출력 옵션	본 기기의 출력을 레코더에 입력하여 장기 기록할 수 있습니다. 오실로스코프에 입력하여 파형을 관측할 수 있습니다.	p.195
	CAN/CAN FD 인터페이스 옵션	측정 데이터를 CAN/CAN FD 신호로 하여 CAN 버스 상에 실시간으로 출력할 수 있습니다.	p.207
12	모터 해석 옵션 (외부 입력)	토크 센서나 회전계의 출력을 입력하여 모터 출력을 측정할 수 있습니다.	p.94

1

개 요

우측면

좌측면

MAC 어드레스

제품 모델명

제조번호*

제조번호는 시스템 화면에서도 확인할 수 있습니다. 참조: "6.1 설정 확인 및 변경" (p.153)

27

1.4 기본 조작(화면의 표시 및 구성)

화면 조작

1 화면을 전환한다 (p.33)

2 표시 화면을 선택한다

표시 아이콘을 탭하면 화면이 전환됩니다. 선택 중인 화면의 아이콘은 배경이 청색이 됩니다. 측정 화면 [MEAS]는 표시 아이콘을 탭하면 왼쪽에 복수의 표시 아이콘이 표시됩니다.

3 표시 내용이나 설정을 변경한다

화면상에서 탭하여 조작합니다. 설정할 수 없는 항목은 짙은 회색으로 표시됩니다(탭할 수 없습니다).

기본적으로 청색, 회색, 흰색의 버튼 및 콤보 박스, 그리고 화면 우측의 아이콘을 탭할 수 있습니다. 파형 화면의 커서, 리스트 화면의 표시 차수 전환과 같은 예외도 있습니다. 또한, 각 설정 창은 창 밖을 탭하면 닫힙니다.

Language English Time/date settings 2021-10-19 10:48:55 Time zone English Time/date format yyyy MM dd Text format Delimiter Beep tone OFF System reset Startup screen WiRING System reset Model Times 10:00000 Units Serial number COUNDO Units CH1 CH2 CH3 CH4 CH5 CH5

2023-09-14 14:1	2:52 Mide Slow Do por The the training	Nand Laceg CH Laceg 3P3	12 Sy W2M ① LP	nc:U1 /U1 F :OFF	Auto 6 Auto 1	V A	Upper: 10 Lower: 10	likHz 2) Hz	00ms	123	USB
		U _{rms:}	1	0.0	100	1 V					
		U _{rms:}	1	0.0	100	1 V					N.
		U _{rms:}	1	0.0	100	1 V					vecas.
		U		0.0	100	<u>1 V</u>	8				
Primary	Second	ary								×	
CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8	Motor	Others		
U			Integ.							ms	
U _{rms1}	U _{mn1}	U _{ac1}	U_{dc1}	U _{fnd1}	U _{pk1+}	U _{pk1-}	Uthe	ii Urf		ms	
U _{rms12}	U _{mn12}									ms	8.
U _{rms123}	U _{mn123}	5				Uunbi	23 θ ₀₁	f _{u1}		ms	6

[ON] 또는 [OFF]의 전환

탭할 때마다 ON/OFF가 전환됩니다.

항목의 선택

선택지 중 하나를 탭하면 선택됩니다. 선택지 이외의 부분을 탭하면 설정이 변경되지 않습니 다.

창

창 표시 중에는 조작부 및 창 이외의 터치패널 키가 일부 제한되는 경우가 있습니다. 설정이 끝나면 [X]를 탭하여 창을 닫습니다.

- 창에는 3종류가 있습니다.
- 항목 선택 창
- 키보드 창 (p.30)
- 텐 키 창 (p.30)

로터리 노브에 의한 수치 변경

화면을 탭하면 로터리 노브 주위가 반짝거립니다. 그 로 터리 노브로 수치 변경 및 파형 조작을 할 수 있습니다. 화면을 탭하면 수치를 확정할 수 있습니다.

키보드 창

<u>`</u> 123	4 5 6 7 8	90-=	= BS
Clear q w e			
Delete a s	dfghjl	k l ; '	Enter
A/a z x			123
Esc			

코멘트, 단위, 폴더명을 키보드로 입력합니다.

이 창이 열려 있는 경우, 창 내부만 탭할 수 있습니다.

Clear	입력 문자를 모두 삭제합니다.	
Delete	입력 위치의 문자를 1개 삭제합니다.	
A/a	대문자와 소문자를 전환합니다.	
Esc	문자 입력을 취소하고 창을 닫습니다.	
BS	입력 위치 앞의 문자를 1개 삭제합니다.	
Enter	문자 입력을 결정하고 창을 닫습니다.	
123	알파벳, 숫자, 기호를 전환합니다.	
$\leftarrow \rightarrow$	입력 위치를 좌우로 이동합니다.	

텐 키 창

수치를 입력합니다.

이 창이 열려 있는 경우, 창 내부만 탭할 수 있습니다.

BS	입력 위치 앞의 숫자를 1개 삭제합니다.
Del	입력 위치의 숫자를 1개 삭제합니다.
Clr	입력 문자를 모두 삭제합니다.
$\leftarrow \rightarrow$	입력 위치를 좌우로 이동합니다.
Enter	숫자 입력을 결정하고 창을 닫습니다.
Esc	문자 입력을 취소하고 창을 닫습니다.
+, -	부호를 입력할 수 있는 경우에 표시됩니다.
T, G, M, k _, m, μ, n	k(킬로), M(메가) 등의 접두사를 입력할 수 있는 경우에 표시됩니다. _를 선택하면 접두사를 클리어합니다. 접두사를 입력할 수 없는 경우는 표시되지 않습니다.

경고 인디케이터*1

미디어 인디케이터*3

*1: 경고 인디케이터

왼쪽의 예에서는 CH1의 전류 입력이 오버로드(황색), CH2가 동기 언록(빨간색), CH3의 전압 입력이 피크 오버(빨간색)임을 나타냅니다.

상단에 입력 채널별 동기 상태가 표시됩니다.

CH1, CH2, CH3, CH4, CH5, CH6, CH7, CH8	입력 채널	적색: 기본 전력 연산의 동기 언록 상태 황색: 고조파 해석의 동기 언록 상태 회색: 정상적인 동기 상태
A, C, E, G	모터 입력 채널	황색: 동기 언록 상태 회색: 정상적인 동기 상태

하단에 입력 채널별 오버 상태가 표시됩니다.

U	전압 입력	회색 표시: 정상 측정 화새 표시: 이버르드
I	전류 입력	빨간색 표시: 피크 오버

*2: 동작 상태 인디케이터

Hold	홀드 중		적산 측정 시에 채널별 동작 상태를 다음의 색으로 표시 (p.75)
Peak	피크 홀드 중	[1][2][3][4] [5][6][7][8]	 【 녹색 점등) 적산 시작 【 빨간색 점등) 적산 정지 【 (황색 점등) 적산 대기 중 【 (무색) 데이터 리셋
£	키 록 중	몲	LAN으로 네트워크에 접속 중
Link Primary	광링크의 프라이머리로 설정 중	Link Secondary	광링크의 세컨더리로 설정 중
Sync Primary	BNC 동기의 프라이머리로 설정 중	Sync Secondary	BNC 동기의 세컨더리로 설정 중

*3: 미디어 인디케이터

USB 메모리의 사용 상황을 레벨계로 표시합니다. 미디어의 사용률이 95% 이상 또는 ERROR일 때 빨간색으로 점등합니다. 1

측정 화면의 표시

아래에 측정 화면의 일례를 나타냅니다. 설정에 따라 표시가 달라집니다. 측정 화면에서만 표시되는 것에 대하여 설명합니다. 이 영역을 "설정 인디케이터"라고 부릅니다.

.....

1	조합 채널	같은 결선으로 조합된 채널을 표시합니다.	
2	동기 소스	측정의 기본이 되는 주기(제로 크로스)를 결정하는 소스의 설정을 표시합니다. 왼쪽: 기본 측정 항목의 동기 소스 오른쪽: 고조파 측정 항목의 동기 소스	p.69
3	레인지 전환	상단이 전압, 하단이 전류 설정입니다. [Auto]: AUTO 레인지 기능 ON [Manu]: AUTO 레인지 기능 OFF	p.64
4	스케일링 VT 비, CT 비의 설정이 되어 있는 경우에 표시합니다.		p.74
5	측정 상한 주파수 [Upper]: 측정 상한 주파수의 설정 측정 하한 주파수 [Lower]: 측정 하한 주파수의 설정		p.72
6	데이터 갱신율 데이터 갱신율 설정을 표시합니다.		p.68
7	결선 모드	결선 설정을 표시합니다.	
8	8 전류 센서 연결 단자 [1]: 전류 센서로 Probe1이 선택된 경우 [2]: 전류 센서로 Probe2가 선택된 경우		p.42
9	9 델타 변환 설정 델타 변환 기능의 동작 상태를 표시합니다. [Δ]: 델타 변환 ON [표시 없음): 델타 변환 OFF		p.145
10	LPF 저역 통과 필터의 설정을 표시합니다.		p.71
11	PS	위상 보정 기능이 유효화되어 있는 경우에 표시합니다.	
12	애버리지	애버리지 설정을 표시합니다. [Mov]: 이동 평균 [Exp]: 지수화 평균 표시 없음: OFF	p.139

••••

화면 구성

측정 화면(MEAS 키로 표시)

□□□□ \V □□□□ \A □□□□ \V value	[VALUE] 측정치 화면	[BASIC] 기보 표시	각 채널의 전력 측정치나 모터 입력의 측정치를 결선별로 표시
		기근 표시	입니니.
		[CUSTOM] 선택 표시	기본 측정 항목 중에서 임의의 측정치를 선택하여 표시합니 다.
	[WAVE] 파형 화면	[WAVE] 파형 표시	전압, 전류, 전력, 모터 입력의 파형을 표시합니다.
\bigwedge		[WAVE+VALUE] 파형+측정치 표시	파형과 동시에 측정치를 수치로 표시합니다.
J U WAVE		[WAVE+ZOOM] 파형+줌 표시	파형을 확대 표시합니다.
		[WAVE+FFT] 파형+FFT 해석	파형을 토대로 FFT 해석(파워 스펙트럼 해석)을 실시하고, 해석 결과를 표시합니다.
VECTOR	[VECTOR] 벡터 화면	[VECTOR × 1] 1 벡터	고조파 측정치의 선택한 차수 성분을 수치와 함께 벡터 표시합 니다․
		[VECTOR × 2] 2 벡터	결선 중에서 2개를 선택하여 벡터 표시합니다.
		[VECTOR×4] 4 벡터	결선 중에서 4개를 선택하여 벡터 표시합니다.
	[HARMONIC] 고조파 화면	[LIST] 리스트 표시	선택한 고조파 측정 항목을 수치로 리스트 표시합니다.
		[BAR GRAPH] 그래프 표시	선택한 채널의 고조파 데이터를 막대 그래프로 표시합니다.

입력 화면 (INPUT 키로 표시)

	[WIRING] 결선 설정	측정 라인에 맞춰 입력 채널을 어떻게 조합할 것인가 하는 결선 패턴을 설정합 니다.
	[CHANNEL] 채널별 설정	결선 패턴에서 선택된 결선별로 상세한 측정 조건을 설정합니다.
COMMON	[COMMON] 입력 공통 설정	모든 채널 공통으로 사용되는 측정 조건을 설정합니다.
	[EFFICIENCY] 효율 연산 설정	효율 연산의 연산식을 설정합니다.
UDF	[UDF] 사용자 정의 연산 설정	본 기기의 측정치, 수치 및 함수를 조합하여 임의로 연산식을 설정합니다.
еф мотов	[MOTOR] 모터 입력 설정	모터 입력 설정을 합니다.
FLICKER	[FLICKER] 플리커 연산 설정	IEC 측정 모드에서 실행할 플리커 연산을 설정합니다.

시스템 설정 화면 (SYSTEM 키로 표시)

CONFIG	[CONFIG] 시스템 설정	시스템 환경을 확인 및 설정합니다.
	[TIME CONTROL] 시간 제어 설정	시간 제어 설정을 합니다.
DATA SAVE	[DATA SAVE] 데이터 저장 설정	USB 메모리에 데이터를 저장하는 설정을 합니다.
Сом	[COM] 통신 설정	통신 인터페이스 설정을 합니다.
	[OUTPUT] D/A 출력 설정	파형 & D/A 출력 옵션이 장착된 경우에만 표시됩니다. D/A 출력 설정을 합니다.
	[CAN OUTPUT] CAN 설정	CAN 설정을 합니다. CAN/CAN FD 인터페이스 옵션이 장착된 경 우에만 표시됩니다.

파일 조작 화면(FILE 키로 표시)

USB 메모리의 조작이나 설정 파일의 저장 및 로딩을 합니다.

- 모터 해석, CAN/CAN FD, 파형 & D/A 출력, 광링크는 옵션입니다.
- BNC 동기와 광링크 인터페이스는 동시에 사용할 수 없습니다.
- 파형 & D/A 출력 옵션과 CAN/CAN FD 옵션은 동시에 장착할 수 없습니다.

1.6 측정 예

파워 컨디셔너의 효율 측정

파워 컨디셔너의 연구 개발부터 출하 검사 시의 성능 평가까지 유효하게 활용할 수 있습니다.

.

파워 컨디셔너에 의한 전력 융통 시스템의 성능 평가

DC-DC 컨버터, 인버터 및 축전지의 입출력 등, 다점의 전력을 동시에 정확히 측정할 수 있어 파워 컨디 셔너의 성능 평가에 효과적입니다.

1

개 요

SiC 탑재 인버터의 변환 효율 평가

SiC, GaN 등의 최신 디바이스를 사용한 인버터의 변환 효율을 고정밀도로 측정할 수 있습니다.

EV, HEV 등의 모터 해석

발진, 가속의 모터 거동을 비롯한 과도 상태의 전력을 측정할 수 있습니다. 최소 0.1 Hz 부터, 변동하는 주 파수를 자동 추종하여 전력을 측정합니다.

듀얼 인버터 구동 시스템의 성능 평가

8채널의 전력을 넓은 주파수 대역에 걸쳐 높은 재현성과 정확도로 측정할 수 있어 듀얼 인버터 방식의 성 능 평가에 매우 효과적입니다.

6상 모터, 리액터 손실 측정 등의 특수한 결선

6상 모터의 성능이나 리액터의 손실도 고정밀도로 측정할 수 있습니다.

🛦 위 험

■ 전압 코드 및 전류 센서를 분전반의 1차 측에 연결하지 않는다

1차 측은 전류 용량이 크기 때문에 단락사고가 발생하게 되면 본 기기 및 설비가 파손되거 나 중대한 인신사고를 일으킬 우려가 있습니다. 분전반의 2차 측은 단락하더라도 분전반에 의해 단락 전류가 차단됩니다.

측정 전의 준비 순서는 다음과 같습니다.

1 측정 전 점검을 한다
"2.1 측정 전 점검" (p.40)
2 전압 코드 및 전류 센서를 본 기기에 연결한다
"2.2 전압 코드의 연결(전압 입력)" (p.41) "2.3 전류 센서의 연결(전류 입력)" (p.42)
3 전원을 공급한다
"2.4 전원의 공급" (p.47)
4 측정 조건을 설정한다
"2.5 결선 모드와 전류 센서의 설정" (p.50) "2.6 간이 설정 (Quick Set)" (p.54)
5 영점 조정을 한다
"2.8 영점 조정과 소자(DMAG)" (p.57)
6 측정 라인에 결선을 한다
"2.9 측정 라인에 결선하기" (p.58)
7 결선이 올바른지 확인한다
"2.10 결선의 확인" (p.60)

2.1 측정 전 점검

측정을 시작하기 전에 본 기기, 부속품 및 옵션을 점검합니다.

\Lambda 위 험

■ 사용 전에 본 기기를 점검하여 본 기기가 정상적으로 동작하는지 확인한다

본 기기가 고장난 채로 사용하면 중대한 인신사고를 일으킬 우려가 있습니다. 고장이 확인된 경우에는 당사 또는 대리점으로 연락 주십시오.

부속품 및 옵션 점검

점검 항목	대처
전원 코드 및 전압 코드의 피복이 벗겨지지 않았다. 금속이 노출되어 있지 않다.	손상이 있는 경우에는 감전사고나 단락사고의 원인이 되 므로 사용하지 마십시오. 정상적인 측정이 불가합니다.
전류 센서의 클램프부가 균열되거나 파손되어 있지 않 다.	당사 또는 대리점으로 연락 주십시오.

본 기기의 점검

점검 항목	대처
본 기기가 파손되지 않았다.	손상이 있는 경우에는 수리를 의뢰하십시오.
전원을 켰을 때 [PW8001 POWER ANALYZER] 라고 표시된다. (내부에서 셀프 테스트가 시작됩니다)	[PW8001 POWER ANALYZER]라고 표시되지 않는 경우는 전원 코드가 분리되었거나 본 기기 내부가 고장 났 을 우려가 있습니다. 당사 또는 대리점으로 연락 주십시오.
셀프 테스트 종료 후 [INPUT] > [WIRING] 화면 또는 전회 종료 시의 화면이 표시된다.	표시되지 않는 경우는 본 기기 내부가 고장 났을 우려가 있습니다. 당사 또는 대리점으로 연락 주십시오.
본 기기의 시계가 현재 시각과 일치한다.	시계를 현재 시각에 맞춰 주십시오. 참조: "6.1 설정 확인 및 변경" (p.153)

2.2 전압 코드의 연결(전압 입력)

전압 입력 단자에 전압 코드(옵션)를 연결합니다. 측정할 라인, 결선에 따라 필요한 개수를 연결합니다.

🛕 위 험

■ 전압 코드의 클립 선단의 금속부로 측정 라인의 2선 간을 단락하지 않는다

아크 섬광이 발생하여 중대한 인신사고 또는 본 기기 및 그 외 기기의 파손을 일으킬 수 있습 니다․

 측정 중에는 코드류 선단의 금속부에 절대로 접촉하지 않는다 중대한 인신사고 또는 단락사고를 일으킬 우려가 있습니다.

▲경고

■ 측정 회로의 전원을 끈 후 코드류를 연결한다

본 기기가 파손되거나 인신사고를 일으킬 우려가 있습니다.

■ 본 기기를 사용할 때는 당사가 지정한 접속 코드를 사용한다

지정된 것 이외의 코드를 사용하면 인신사고 또는 단락사고를 일으킬 우려가 있습니다. 참조: "전압 측정 옵션" (p.10)

중요

정확한 측정을 위해 전압 코드를 안쪽까지 확실하게 삽입해 주십시오.

- 1 본 기기의 전원을 끈다
- 2 전압 입력 단자의 U에 빨간색 전압 코드를 삽입한다
- **3** 전압 입력 단자의 ±에 검정색 전압 코드를 삽입한다

- 전류 센서를 바닥 등에 떨어뜨리지 마십시오.
- 충격을 가하지 마십시오.
- 측정 정확도 및 개폐 동작에 나쁜 영향을 미칠 수 있습니다.

본 기기의 뒷면		
CURRENT PROBE NOT ISOLATED PROBE	Probe1 단자	고성능 전류 센서용 단자입니다. 옵션의 전류 센서를 연결합니다. 본 기기는 전류 센서를 자동 인식합니다. 또한, 전류 센서에 전원을 공급합니다.
	Probe2 단자	전류 센서용 단자입니다. 커런트 프로브, CT 등의 전압 출력 타입의 센서를 연결합니 다.

전류 센서의 자세한 사양과 사용 방법에 대해서는 전류 센서에 부속된 사용설명서를 참조해 주십시오.

Probe1 단자

커넥터 장착 방법

중요

Probe1 단자에 연결한 전류 센서는 자동 인식됩니다. 단, CT6846 또는 CT6865를 CT9900 변환 케이블로 연결한 경우에는 500 A AC/DC 센서로 인식되므로 CT 비를 "2.00"으로 설정해 주십시오. 참조: "스케일링 (VT(PT) 또는 CT 사용 시)" (p.74)

커넥터가 금속제인 경우

9709-05, CT6860-05 시리즈, CT6840-05 시리즈는 Probe1 단자에 직접 연결할 수 있습니다. 제품 모델명에 -05가 붙은 전류 센서의 커넥터는 금속제입니다.

- 1 본 기기의 전원을 끈 후 본 기기와 전류 센서의 커넥 터 가이드의 위치를 맞춘다
- 2 커넥터의 수지 부분을 잡고 록 상태가 될 때까지 똑바로 삽입한다
 저로 세너의 조료로 보 기기가 파도으로 이시한다.

전류 센서의 종류를 본 기기가 자동으로 인식합니다.

커넥터가 수지제인 경우

9709, CT6860 시리즈, CT6840 시리즈는 옵션의 CT9900 변환 케이블을 사용하여 Probe1 단자에 연결할 수 있습니다.

- 1 본 기기의 전원을 끈 후 CT9900 변환 케이블과 전류 센서의 커넥터 가이드의 위치를 맞춰 연결한다
- 2 CT9900의 커넥터를 록 상태가 될 때까지 똑바로 삽입한다

커넥터 분리 방법

- 1 커넥터의 금속 부분을 잡고 케이블 측으로 슬라이드하여 잠금을 해제한다
- 2 커넥터를 뽑는다

중요

- 동일 입력 유닛 내에서는 Probe1과 Probe2 중 한쪽에만 전류 센서를 연결해 주십시오. Probe1과 Probe2의 양쪽에 전류 센서를 연결하면 측정에 영향을 미칠 수 있습니다.
- 전류 센서를 바닥 등에 떨어뜨리지 마십시오.
- 충격을 가하지 마십시오.
 - 측정 정확도 및 개폐 동작에 악영향을 미칠 수 있습니다.

Probe2 단자

커넥터 장착 방법

- 1 본 기기의 전원을 끈다
- 2 Probe2 단자(BNC 커넥터)의 볼록한 부분과 전류 센서의 커넥터의 오목한 부분을 맞춰 삽입 한다
- 3 오른쪽으로 돌려 잠근다
- 4 전류 센서에 전원을 공급한다

당사의 전류 센서(CT6700 시리즈, 3273-50 등)를 연결할 경우, 당사의 3269 또는 3272 전원에서 전류 센서로 전원을 공급합니다.

CT6700 시리즈, Probe 2 3273-50 등 BNC 1 (U7001) 1 MΩ (3269/ 3272)

전류 출력형 전류 센서인 경우

당사의 전류 센서인 경우

전류 출력형 전류 센서를 본 기기에 연결할 경우에도 고객 측에서 준비한 전원에서 전류 센서로 전원을 공 급합니다.

또한, 센서와 **Probe2** 단자 간에 션트 저항을 연결합 니다. 션트 저항부는 실드 처리를 하여 접지선이 만들 어 내는 루프 면적이 최소한이 되도록 배선합니다.

측정 대상에서 전기적으로 절연된 전류 센서로부터의 출력 이외는 입력하지 마십시오. 또한, 입력이 ±15 V 를 넘지 않도록 해주십시오.

커넥터 분리 방법

- 1 전류 센서의 커넥터를 왼쪽으로 돌려서 잠금을 해제한다
- 2 커넥터를 뽑는다

2

측정 범위를 넘을 때 (VT, CT 사용)

외장 계기용 변압기 VT(PT), 계기용 변류기 CT를 사용해 주십시오. 본 기기에 VT 비, CT 비를 설정하 면 1차 측 입력치를 직독할 수 있습니다. 참조: "스케일링(VT(PT) 또는 CT 사용 시)" (p.74)

\Lambda 위 험

활선 상태일 때는 VT (PT), CT 및 본 기기의 입력 단자에 접촉하지 않는다 중대한 인신사고를 일으킬 우려가 있습니다.

▲경고

■ 외장 VT(PT)를 사용할 때는 2차 측을 단락하지 않는다

단락 상태로 1차 측에 전압을 가하면 2차 측에 대전류가 흘러 소손, 화재가 발생합니다.

■ 외장 CT를 사용할 때는 2차 측을 개방하지 않는다

개방 상태로 1차 측에 전류가 흐르면 2차 측에 고전압이 발생하여 사용자가 감전될 우려가 있습니다.

중요

외장 VT(PT) 및 CT의 위상차가 전력 측정에 커다란 오차를 줄 우려가 있습니다. 더욱 정확한 전력 측 정을 하려면 사용하는 전기회로의 주파수 대역에서 위상 오차가 작은 VT(PT), CT를 사용해 주십시오.

전원 코드의 연결

- 1 본 기기의 전원을 끈다
- 2 전원 전압이 정격 범위 내인지를 확인하고 전원 코드를 전원 인렛에 연결한다 (AC 100 V~240 V)

.

3 전원 코드의 플러그를 콘센트에 연결한다

전원 켜는 방법

- 1 전압 코드, 전류 센서, 전원 코드를 연결한다
- 2 전원 키를 누른다

본 기기의 전원이 켜지면서 셀프 테스트(기기의 자가진단)가 시작됩니다(약 10초). 종료 후 입력 화면의 [WIRING] 페이지가 표시됩니다.(초기 설정) 기동 화면을 [LAST]로 설정한 경우, 전회 종료 시의 화면이 표시됩니다. 참조: "2.1 측정 전 점검" (p.40)

- 30분 이상의 대기시간 후 (워밍업), 측정을 시작한다
- 4 영점 조정을 실행한다

참조: "2.8 영점 조정과 소자 (DMAG)" (p.57)

중요

각 항목에서 문제가 있었던 경우는 셀프 테스트 화면에서 정지합니다. 전원을 다시 켜도 정지 상태인 경 우는 고장입니다. 다음 순서를 실행해 주십시오.

.

- 측정을 중지하고 측정 라인을 차단하거나 측정 라인에서 전압 코드 및 전류 센서를 분리한 후 본체 전원을 끕니다.
- 2. 전원 코드와 결선을 분리합니다.
- 3. 당사 또는 대리점으로 연락 주십시오.

전원 끄는 방법

본 기기의 전원을 끌 때는 화면 상에서 셧다운을 한 후 전원 키를 누릅니다.

- 화면 우측 하단에 있는 [SHUTDOWN]을 탭한다 확인 창이 표시됩니다.
- 2 [Yes]를 탭하여 본 기기를 셧다운한다

셧다운 처리 중인 본 기기의 상태는 다음과 같습니다.

- 본 기기 내부의 팬은 계속 돌아갑니다.
- MEAS 키, INPUT 키, SYSTEM 키, FILE 키의 4개 LED가 동시에 점등합니다.
- 3 화면의 표시가 사라지면 전원 키를 누른다

2.5 결선 모드와 전류 센서의 설정

본 기기에 실장된 채널 수와 측정 라인에 맞춰 결선 모드를 설정합니다.

서로 다른 입력 유닛으로 복수 채널을 조합할 경우(다상 시스템 측정을 할 경우), 조합할 채널 전체에 동일 한 전류 센서를 연결해 주십시오.

표시 화면 [INPUT] > [WIRING]

	alef definited after							•••	
	CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8	
nit 📶	U7005	U7005	U7005	U7005	U7001	U7001	U7001	U7001	
iring	1P2W	1P	'3W		3P3W3M		1P2W	1P2W	
୍ୱ				10	nit				\mathbf{X}
P2W2	1P2W						1P2W	1P2W	
				2 U	nits				3
P3W		1P.	3W						
P3W2M									
				3 U	nits				
РЗW3М					3P3W3M				
V3A									
P4W									
		-	-		-				

- 1 각 채널의 결선을 선택하는 버튼을 탭한다 설정 창이 표시됩니다.
- 2 1유닛, 2유닛, 3유닛의 조합에서 결선 모드 를 선택한다

참조: "결선 모드" (p.51)

서로 다른 종류의 입력 유닛으로 동일 결선을 구성 한 경우, 결선의 테두리가 황색으로 표시됩니다.

- 3 [×]를 탭하여 설정 창을 닫는다
- 4 U7001만 각 채널에서 사용할 전류 센서를 선택한다

동일 결선 내에서는 모두 동일한 전류 센서를 연결 해 주십시오.

Probe 1	Probe1 단자(고성능 전류 센서 용)에 전류 센서를 연결한 경우에 선택합니다. Rate는 자동으로 설정됩니다.
Probe 2	Probe2 단자 (전류 센서용)에 전 류 센서를 연결한 경우에 선택합니 다. Rate는 개별로 설정합니다. Rate 를 선택하는 버튼을 탭하여 연결한 전 류 센서의 Rate 또는 제품 모델명을 선택합니다.

정격을 전환할 수 있는 전류 센서를 사용하는 경우에는 동일 라인의 정격을 일치시켜 주십시오. 복수 채널을 사용하는 결선 패턴을 선택한 경우, 채널별로 설정 가능한 설정 항목(전압 레인지 등)은 선두 채널로 통일합니다.

중요

서로 다른 종류의 입력 유닛으로 동일 결선을 구성한 경우, 결선 내의 모든 측정치의 측정 정확도는 U7001 측정 정확도에 준합니다. U7005에서 측정된 측정치도 U7001과 동일합니다.

.

결선 모드

1P2W (단상 2선)	DC 라인을 측정하는 경우도 이 결선을 선택합니다. 전류 센서의 연결처는 Source 측에서도 Ground 측에서도 측정할 수 있습니다. 결선도는 그 2패턴을 기재하였습니다. 참조: "결선도" (p.59)
1P3W (단상 3선)	-
3P3W2M(3상 3선)	3상 델타 결선 라인의 2채널을 사용하여 2전력계법으로 측정하는 방법입니다. 불평형으로 왜곡된 파형이라도 유효전력을 바르게 측정할 수 있습니다. 불평형 라인의 피상 및 무효전력이나 역률 값은 여타 측정기와 다를 수 있습니다. 그 경우 는 3V3A 또는 3P3W3M을 사용해 주십시오.
3V3A(3상 3선)	3상 델타 결선 라인의 3채널을 사용하여 2전력계법으로 측정하는 방법으로, 당사의 3193 등 기존의 전력계와 호환성을 중시하는 경우에 사용합니다. 불평형 라인이라도 유효전력뿐 아니라 피상, 무효전력이나 역률도 포함하여 바르게 측정 할 수 있습니다.
3P3W3M (3상 3선)	3상 델타 결선 라인의 3채널을 사용하여 3전력계법으로 측정하는 방법입니다. PWM 인버터 측정에서 고주파 성분의 누설 전류가 크고 3V3A로 오차가 생기는 경우에 도 바르게 측정할 수 있어 모터 파워 측정에 적합합니다.
3P4W(3상 4선)	3상 Y(Star) 결선 라인의 3채널을 사용하여 3전력계법으로 측정하는 방법입니다.

전류 센서 자동 인식 기능

본 기기는 연결된 전류 센서의 정격 전류, 위상 보정치 등을 자동으로 취득합니다. 측정 전의 설정 시간을 큰 폭으로 줄일 수 있으며, 정확한 센서 정보로 전력을 측정할 수 있습니다. (자동 인식 기능이 있는 전류 센서만)

.

다음의 경우, 본 기기는 연결된 전류 센서의 정격 전류만을 인식하여 화면에 표시합니다.

- 자동 인식 기능이 없는 전류 센서가 본 기기에 연결된 경우
- 본 기기가 전류 센서의 위상 보정치 등을 읽어 들이지 못한 경우

옵션의 전류 센서 일람

참조: "전류 측정 옵션" (p.11)

전류 센서의 위상 보정

일반적으로 전류 센서는 주파수 대역 내의 고주파 영역에서 위상 오차가 서서히 증가하는 경향이 있습니 다. 센서에 고유한 위상 특성 정보를 사용하여 측정치를 보정하면 고주파수 영역에서의 전력 측정 오차를 줄일 수 있습니다.

위상 보정치의 입력 방법

자동 인식 기능이 내장된 전류 센서가 아닌 경우, 전류 센서 위상 보정을 실시하여 측정하는 것을 권장합니다.

				*
	CH1	СН2 СН	3 СН4 СН5	СН6 СН7 СН8
Sync. source	U1	U2	U4	U6
- HRM	U1	U2	U4	U6
U range	Manual	Manual	Manual	Manual
	1500V	1500V	1500V	1500V
I range	Manual	Manual	Manual	Manual
	50A	50A	50A	50A 🏹
LPF	OFF	OFF	OFF	OFF
VT ratio	1.00000	1.00000	1.00000	1.00000
U phase shift	OFF	OFF OFF	OFF OFF	OFF OFF OFF
CT ratio	1.00000	1.00000 1.0000	0 1.00000 1.00000	1.00000 1.00000 1.00000
I phase shift	OFF	OFF OFF	OFF OFF	OFF OFF OFF
LI rectification	DMS	DMS	DMS	DMS
Irectification	PMS	PMS	PMS	PMS
Upper f lim	2MHz	2MHz	1MHz	1MHz
Lower f lim.	10Hz	10Hz	10Hz	10Hz
Integ made	DMC	DUC	DMC	Duc

표시 화면 [INPUT] > [CHANNEL]

- 1 설정할 채널의 채널 상세 표시 영역을 탭한다
- 2 [Phase Shift] 영역의 박스를 탭하여 [ON] 을 선택한다

자동 인식 기능이 내장된 전류 센서를 사용하는 경 우, 선택지에 [Auto]가 표시됩니다. [Auto]를 선택하면 보정치는 자동으로 입력됩니다.

- 3 주파수 박스를 탭하여 텐 키로 주파수를 설정 한다
- 4 위상차 박스를 탭하여 텐 키로 위상차를 설정 한다
- **5** [×]를 탭하여 설정 창을 닫는다

중요

- 위상 보정치는 정확하게 입력해 주십시오. 설정 을 잘못하면 보정에 의해 측정 오차가 커지는 경 우가 있습니다.
- 전류 센서의 위상 정확도가 규정되어 있는 주파 수 범위 외에서의 동작은 규정하지 않습니다.

전류 센서 위상 특성 대표치

전류 센서의 위상 특성 정보는 다음 표를 참조해 주십시오.

표에 기재되지 않은 전류 센서의 위상 특성 대표치는 당사 웹사이트를 확인해 주십시오.

<u>https://www.hiokikorea.com</u>에서 "Typical Values of Current Sensors' Phase Characteristics" 를 검색

제품 모델명	주파수 (kHz)	입출력간 위상차 대표치 (°)
CT6841	100.0	-1.82
CT6843	100.0	-1.68
CT6844	50.0	-1.29
CT6845	20.0	-0.62
CT6846	20.0	-1.89
CT6862	300.0	-10.96
CT6863	100.0	-4.60
CT6865	1.0	-1.21
CT6875	200.0	-10.45
CT6875-01	200.0	-12.87
CT6876	200.0	-12.96
CT6876-01	200.0	-14.34
CT6877	100.0	-2.63
CT6877-01	100.0	-3.34
CT6904	300.0	-9.82
9709	20.0	-1.11
PW9100	300.0	-2.80

각 전류 센서 모두 다음 조건에서의 대표치입니다.

- 표준 케이블 길이 (연장 케이블 미사용)
- 측정 도체를 센서의 중심 위치에 배치한 경우

CT9557 사용 시의 위상 특성 정보는 당사 또는 대리점으로 연락 주십시오.

2.6 간이 설정 (Quick Set)

선택한 측정 라인에 맞춰 측정 조건을 대표적인 값으로 설정합니다. 본 기기를 처음 사용하는 경우나 직전 과는 다른 측정 라인을 측정할 경우에 편리합니다.

표시 화면 [INPUT] > [WIRING]

- I [Quick Set] 박스의 [Setup]을 탭한다
- 2 일람에서 측정 라인의 종류를 탭하여 선택한 다 확인 창이 표시됩니다.
- 3 [Yes]를 탭하여 설정을 확정한다
- 【INPUT] > [CHANNEL] 화면에서 설정 내 용을 확인한다
 필요에 따라 각각의 설정을 변경해 주십시오.

측정 라인의 종류

50/60Hz	상용 전원 라인을 광대역으로 측정합니다.
DC/WLTP	직류 라인을 광대역으로 측정합니다. 차량의 연비시험법(WLTP)에서의 배터리 DC 라인의 충방전 계측에 적합한 설정으로 합니다. WLTP에 준거한 측정의 경우, 데이터 갱신율을 50 ms 이하로 설 정해 주십시오. 1P2W 이외에서는 선택할 수 없습니다.
PWM	PWM 라인을 측정합니다. 기본 주파수를 1 Hz~1 kHz로 하고 1 kHz 이상의 캐리어 주파수에 동 기하지 않도록 설정합니다. 더욱 정확한 측정을 위해 센서 위상 보정 기능을 사용하기를 권장합니다.
HIGH FREQ	주파수가 10 kHz 이상인 고주파를 측정합니다. 더욱 정확한 측정을 위해 센서 위상 보정 기능을 사용하기를 권장합니다.
GENERAL	[50/60Hz], [DC/WLTP], [PWM], [HIGH FREQ] 이외의 라인을 측정할 때 사용합니다. 측정 대상을 잘 알지 못하는 경우에도 이 설정을 사용합니다. 더욱 정확한 측정을 위해 센서 위상 보정 기능을 사용하기를 권장합니다.

설정 내용

측정 라인	동기 소스	전류 레인지	상한 주파수	하한 주파수	적산 모드	U/I 정류 방식	LPF
50/60Hz	전압	Auto	100 Hz	10 Hz	RMS	RMS/RMS	OFF
DC/WLTP	DC	Auto	100 Hz	10 Hz	DC	RMS/RMS	OFF
PWM	전압	Auto	1 kHz	1 Hz	RMS	MEAN/RMS	OFF
HIGH FREQ	전압	Auto	1 MHz	1 kHz	RMS	RMS/RMS	OFF
GENERAL	전압	Auto	1 MHz	0.1 Hz	RMS	RMS/RMS	OFF

측정 모드를 선택합니다.

표시 화면 [INPUT] > [COMMON]

	A.11	
Measurement Mode WideBand	1	TT E
50ms Meas. Interval		
Harmonic	Calculation	1 - (] - ()
Grouping OFF THD Order 500	Average Mode OFF	
THD Type THD-F	Power Calculation TYPE1	

1 [Measurement Mode] 박스를 탭하여 측정 모드를 선택한다

IEC	IEC 측정 모드입니다. 측정 라인의 주파수가 50 Hz 또는 60 Hz인 경우에 IEC 61000-4-7의 규격에 준거한 고조 파 측정, IEC 61000-4-15의 규격에 준거한 전압 변동 / 플리커 측정을 합니다. 고조파 측정값은 약 200 ms로 갱신됩니다. 측정하는 주파수가 45 Hz 부터 66 Hz까지의 범위를 벗어나는 경우는 고조파 측정 및 전압 변 동 / 플리커 측정을 하지 않습니다. 해석 차수는 200차까지입니다.
WideBand	광대역 측정 모드입니다. 0.1 Hz부터 300 kHz까지의 폭넓은 주파수 범위에서 사용할 수 있습니다. 측정하는 주파수에 따라 해석 차수가 변화합니다. 데이터 갱신율이 10 ms 이하인 경우 고조파 측정값은 50 ms로 갱신됩니다.

- 결선이나 채널별로 설정을 전환하는 것은 불가합니다.
- 각 채널의 고조파 측정도 같은 동기 소스가 사용됩니다. 단, 동기 소스로 [Zph1]을 선택하여 [Ext1] 을 선택할 수 있는 경우, 고조파 측정의 동기 소스로 [Ext1]과 [Zph1] 중 하나를 선택할 수 있습니다. [Zph3]을 선택하여 [Ext3]을 선택할 수 있는 경우, 고조파 측정의 동기 소스로 [Ext3]과 [Zph3] 중 하나를 선택할 수 있습니다. 참조: "동기 소스" (p.69)
- 동기 소스에 설정한 입력 신호의 주파수가 변동하는 경우나 입력 신호가 레인지에 대해 낮은 레벨인 경우 는 정확한 고조파 측정이 불가합니다.

데이터 갱신율	200 ms 고정
데이터 출력 인터벌	100 ms 이상
동기 소스	U/I만 선택 가능
상한 주파수	100 Hz 고정
하한 주파수	10 Hz 고정
HPF	OFF 고정
평균화	지수 평균만
지수 평균 응답 속도	선택지 없음
광링크	OFF 고정
고조파 해석 차수	최대 200차
적산	모든 채널 적산 고정
적산 조작	가산 적산 불가 (정지 중부터 시작하여 그 이후부터 적산하는 기능)
간이 설정	50 Hz/60 Hz 만

IEC 측정 모드 시에는 IEC 규격에 준거한 측정을 실현하므로 통상의 측정 모드와 다른 내부 연산 처리를 하고 있습니다. 따라서 IEC 측정 모드 시에는 일부 기능이 제한됩니다.

2.8 영점 조정과 소자(DMAG)

결선하기 전에 전압 및 전류가 입력되지 않은 상태에서 영점 조정을 실행합니다. 영점 조정은 모든 입력 채 널의 모든 레인지가 동시에 실행됩니다. 또한, AC/DC의 측정이 가능한 전류 센서가 본 기기에 연결되어 있는 경우는 전류 센서의 소자(DMAG)도 동시에 실행됩니다.

1 전원이 켜진 상태에서 30분 이상의 워밍업 시간을 둔다

2 전류 센서와 전압 코드를 본 기기에 연결한다

전류 측정치는 전류 센서를 포함하여 보정할 필요가 있습니다.

- 3 영점 조정이 가능한 전류 센서를 본 기기에 연결한 경우, 전류 센서 측에서 영점 조정을 실시한다 전류 센서에 따라 노브 등으로 영점 조정이 가능한 기종이 있습니다. 전류 센서의 사용설명서를 참조하십시오. "제로 보정 기능이 있는 기기와 연결할 경우"에 대해서 지시가 있는 경우는 그 지시에 따라 주십시오.
- 4 결선 모드와 전류 센서를 설정한다

5 MEAS 키를 누른다

CH1~CH8이 점등된 경우는 전압과 전류의 영점 조정을 실행합니다. [A-D] [E-H]가 점등된 경우는 모터 입력 채널이 영점 조정됩니다.

6 0ADJ 키를 누른다

7 확인 다이얼로그가 표시되면 [Yes]를 탭한다

[Perform zero adjustment.] 이라고 표시되다가 약 30초 후에 종료합니다.

8 측정 라인에 결선한다

2.9 측정 라인에 결선하기

영점 조정을 실행한 후 [INPUT] > [WIRING] 화면의 결선도에 맞춰 전압 코드와 전류 센서를 측정 라인 에 결선합니다. 정확하게 측정하기 위해 결선도대로 결선해 주십시오. 결선도는 [INPUT] > [WIRING] 화면에서 결선 모드를 설정하면 표시됩니다. 참조: "2.5 결선 모드와 전류 센서의 설정" (p.50)

전압 코드

전류 센서

- 결선도 화면에 표시되는 상의 명칭은 "A, B, C"입니다. 적절하게 "R, S, T"나 "U, V, W" 등 사용하 는 명칭에 맞춰 결선해 주십시오.
- 도체 1선 둘레에만 클램프 해주십시오. 단상, 3상에 상관없이 2선 이상을 한데 묶어 클램프한 경우는 전류를 측정할 수 없습니다.

결선도

단상 2선 (1P2W)

3상 3선(3P3W2M)

3상 3선(3P3W3M)

PW9100A 사용 시의 통상 결선

3상 3선(3V3A)

3상 4선 (3P4W)

PW9100A와 PT, CT 사용 시

2.10 결선의 확인

화면의 측정치와 벡터로 전압 코드와 전류 센서의 연결이 올바른지 확인합니다.

표시 화면 [INPUT] > [WIRING]

1P2W의 경우

측정치가 표시되고 있으면 정상입니다.

Unit Type	CH1 U7005	CH2 U7005	CH3 U7005	CH4 U7005	CH5	CH6 U7001	CH7 U7001	CH8 U7001
Wiring	1P2W	1P2W	1P2W	1P2W	1P2W	1P2W	1P2W	1P2W
Input	Probe1	Probe1	Probe1	Probe1	Probe1	Probe1	Probe1	Probe1
Rate	50A AC/DC	SOA AC/DC	50A AC/DC	50A AC/DC	50A AC/DC	50A AC/DC	50A AC/DC	50A AC/DC
Quick Set	Setup	Setup	Setup	Setup	Setup	Setup	Setup	Setup
	Source Load	Source Load	Source Load	Source Load	Source Load	Source Load	Source Load	Source Load
	цр.			yg	yg.		18	
	U1 0.011 V 11 0.002 A P1-0.000 W	U2 0.031 V 12 0.02 A P2 0.0 W	U3 0.014 V 13 0.01 A P3- 0.0 W	U4 0.013 V 14 0.01 A P4 0.0 W	US 0.007 V 15 0.01 A P5- 0.0 W	UE 0.006 V 16 0.01 A P6 0.0 W	UT 0.006 V 17 0.02 A PT- 0.0 W	UB 0.012 V 18 0.01 A P8- 0.0 W

1P2W 이외의 경우

측정치와 벡터 선이 표시됩니다. 벡터 선이 범위 내에 표시 되고 있으면 정상입니다.

- 벡터 선은 각 채널의 측정치 항목명과 같은 색으로 표시됩니다.
- 벡터도에 표시되는 기준의 범위는 유도성 부하(모터 등)를 상정하고 있습니다.
- 역률이 0에 가까운 경우나 용량성 부하를 측정하는 경우는 범위에서 벗어날 수 있습니다.
- 3P3W2M 및 3V3A의 라인에서는 채널별 유효전력 P의 측정치가 마이너스가 될 수 있습니다.

이럴 때는	원인
전압 측정치가 지나치게 높다. 전압 측정치가 지나치게 낮다.	• 전압 코드가 본 기기의 전압 입력 단자에 확실하게 삽입되어 있지 않다. • 전압 코드가 바르게 결선되어 있지 않다.
전류 측정치가 적절한 값이 아니다.	 전류 센서가 본 기기의 전류 입력 단자에 확실하게 삽입되어 있지 않다. 전류 센서가 바르게 결선되어 있지 않다. 전류 센서의 연결처와 Probe1 및 Probe2의 설정이 일치하지 않는다.
유효전력 측정치가 마이너스이다.	• 전압 코드가 바르게 결선되어 있지 않다. • 전류 센서의 전류 방향 마크(화살표)를 부하 측 방향으로 결선하지 않았다.
유효전력이 표시되지 않는다. (제로 표시)	• 제로 서프레스가 OFF로 설정되어 있지 않다.
	전압의 벡터에 대해서 • 전압 코드가 바르게 결선되어 있지 않다.
벡터의 화살표가 너무 짧다. 또는 벡터의 길이가 다르다.	전류의 벡터에 대해서 • 전류 센서가 바르게 결선되어 있지 않다. • 연결한 전류 센서가 측정 라인의 전류에 대해 적절하지 않다. • [Sync. source] 가 바르게 설정되어 있지 않다.
벡터의 방향(위상)이나 색이 다르 다.	• 전압 코드 또는 전류 센서의 연결처가 잘못되었다.

참조: "2.2 전압 코드의 연결(전압 입력)"(p.41) "2.3 전류 센서의 연결(전류 입력)"(p.42) "2.9 측정 라인에 결선하기"(p.58)

모든 측정 데이터는 측정 화면에 표시됩니다. MEAS 키가 점등되지 않은 경우는 MEAS 키를 눌러 측정 화면을 표시합니다.

3.1 측정치의 표시 방법

베이식 화면

선택한 채널의 측정치를 표시합니다.

표시 화면 [MEAS] > [VALUE] > [BASIC]

2021-10-12 12		nd CEG CH 1 CUUC 3P3	12 Syr	ic:U1 /U1 Man	u 1.5kV	Upp	per: 204Hz	50ms		134	_
									224		
U _{rms1} U _{rms2}	0.00009 0.00067	kV kV	$\begin{array}{c} S_1 \\ S_2 \end{array}$	0.0006 0.0001	kVA kVA		0.498 0.431				N
U _{rms12}	0.00058	kV	S ₁₂	0.001	kVA	Φ12	0.060				
l _{rms1} I _{rms2}	0.4601 0.4962	A A	$\begin{array}{c} Q_1 \\ Q_2 \end{array}$	0.0007 0.0004	kvar kvar	f _{U1} f _{U2}	780.511 738.013	Hz Hz			
I _{rms12}	0.5876	Α	Q ₁₂	0.000	kvar						
P ₁ P ₂	0.0009 0.0003	kW kW	$\begin{matrix}\lambda_1\\\lambda_2\end{matrix}$	0.36421 0.02643		f ₁₁ f ₁₂	84.3967 414.473	Hz Hz	P		
P ₁₂	0.001	kW	λ_{12}	0.68245					1		
									Inte	8	ė,

표시할 측정치를 선택한다 P 전력 측정치 (p.63) U 전압 측정치 (p.64) I 전류 측정치 (p.64) Integ. 적산 측정치 (p.75)

2 채널 선택의 ◀ CH ▶ 키로 표시할 채널을 전환 한다

커스텀 화면

측정하고 있는 모든 기본 측정 항목에서 필요한 항목을 선택하여 1화면으로 표시할 수 있습니다.

표시 화면 [MEAS] > [VALUE] > [CUSTOM]

8 항목 표	시								
2022-30-12 12:28:03	Grand CH 1 1P2W	Sync:U1 /U1 D LPF :OFF	Manu 1.5kV Manu 50 A	Upper: Lower:	294Hz 10 Hz	50ms		234	
	U _{rms1}	0.0	0065k\	/			2010 California		
	U _{rms1}	0.0	0065k\	/					N. M
	U _{rms1}	0.0	0065k\	/					
	U _{rms1}	0.0	0065 k \	1					Antonio a
	U _{rms1}	0.0	0065k\	/			_		
	U _{rms1}	0.0	0065k\	/				ternis	
	U _{rms1}	0.0	0065k\	/			16 36	items Items	55
	U _{rms1}	0.0	0065k\	/			64	items	<u>a</u>

36 항목 표시

2021-10-12 12:	28:52 WideBand OH 1 172W	Sync:U1	/UI Manu 1. SkV Manu 50 A	Upper Lower	: 294Hz 50ms : 10 Hz	1121314	i and
Urms1	0.00056kV	Urms1	0.00056kV	Urms1	0.00056kV	20 🔜	
U _{rms1}	0.00056kV	Urmsl	0.00056kV	U _{rms1}	0.00056kV		N
Umal	0.00056kV	Umal	0.00056kV	Umal	0.00056kV		· · · ·
U _{rms1}	0.00056kV	Urms1	0.00056kV	U _{rms1}	0.00056kV		
U _{ms1}	0.00056kV	Umms1	0.00056kV	Umsi	0.00056kV		
U _{rms1}	0.00056kV	Urmal	0.00056kV	U _{rms1}	0.00056kV		
U _{rms1}	0.00056kV	U _{rms1}	0.00056kV	U _{rms1}	0.00056kV		
Ummil	0.00056kV	Urms1	0.00056kV	U _{rms1}	0.00056kV		
Ummal	0.00056kV	Uemal	0.00056kV	Urma1	0.00056kV	8 Items	
Umms1	0.00056kV	Urms1	0.00056kV	Umma	0.00056kV	16 Items	-
Umst	0.00056kV	Ummal	0.00056kV	Ummat	0.00056kV	36 Items	3
Ums1	0.00056kV	Urms1	0.00056kV	Urmal	0.00056kV	64 items	0,

1	6	항	목	표시	
---	---	---	---	----	--

2023-10-12 12:28:17	CH 1 Sync:U1 SP2W (1) LPF : OFF	/UI Manu 1.5kV Manu 50 A	Upper: 2MHz 50ms Lower: 10 Hz	
U _{rms1}	0.00095kV	U _{rms1}	0.00095kV	
U _{rms1}	0.00095kV	U _{rms1}	0.00095kV	Ň
U _{rms1}	0.00095kV	U _{rms1}	0.00095kV	
U _{rms1}	0.00095kV	U _{rms1}	0.00095kV	
U _{rms1}	0.00095kV	U _{rms1}	0.00095kV	
U _{rms1}	0.00095kV	U _{rms1}	0.00095kV	
U _{rms1}	0.00095kV	U _{rms1}	0.00095kV	36 Items
U _{rms1}	0.00095kV	U _{rms1}	0.00095kV	64 Items

64 항목 표시

21-10-12	12:28:43 Midnea	OH 1	Sync:U1 /	UI Manu	1.5kV	Upper: 24	z 50ms		234	i and
Umai	0.00092kV	Umai	0.00092kV	Uma	0.00092kV	Umai	0.00092k	3el	Ξž	
Umat	0.00092kV	Umat	0.00092kV	Umat	0.00092kV	Umat	0.00092kv	GATTER	AND	10.00
Umit	0.00092kV	Umat	0.00092kV	Upmat	0.00092kV	Umat	0.00092kV			N
Umat	0.00092kV	Umat	0.00092kV	Umut	0.00092kV	Umat	0.00092kV			
Usmail	0.00092kV	Umat	0.00092kV	Umat	0.00092kV	Umat	0.00092kV			
Umat	0.00092kV	Umal	0.00092kV	Urmit	0.00092kV	Umal	0.00092kV			
Uenal	0.00092kV	Urmal	0.00092kV	Ummil	0.00092kV	Umal	0.00092kV			
Urmat	0.00092kV	Umat	0.00092kV	Umat	0.00092kV	Umet	0.00092kV			
U	0.00092kV	Umat	0.00092kV	Umat	0.00092kV	Umat	0.00092kV			
Urmal	0.00092kV	Umal	0.00092kV	Urmit	0.00092kV	Umal	0.00092kV			
Ummil	0.00092kV	Urnal	0.00092kV	Ummil	0.00092kV	Ummal	0.00092kV	816	ANIS I	
Umat	0.00092kV	Umat	0.00092kV	Umat	0.00092kV	Ujmet	0.00092kV	1000		
Umat	0.00092kV	Urmat	0.00092kV	Umat	0.00092kV	Umat	0.00092kV	161	ems	
Umst	0.00092kV	Umst	0.00092kV	Umst	0.00092kV	Umst	0.00092kV	160	ums -	25
Usmat	0.00092kV	Useat	0.00092kV	Ureat	0.00092kV	Umat	0.00092kV	6418	iems.	
Umat	0.00092kV	Umak	0.00092kV	Ummi	0.00092kV	Umat	0.00092kV			0

표시할 항목의 설정

표시 화면 [MEAS] > [VALUE] > [CUSTOM]

	CH 12 Sync:U1 3P3W2M ① LPF :OFF	/U1 Auto 6 V Auto 1 A	Upper: 10kHz Lower: 10 Hz	200ms	1 2 3 4 5 6 7 USB
U _{rms1} 0.01000	V U _{rms1}	0.01000 V	U _{rms1} 0.010	000 V	¥
U _{rms1} 0.01000	V U _{rms1}	0.01000 V	U _{rms1} 0.010	000 V	N
U _{rms1} 0.01000	V U _{rms1}	0.01000 V	U _{rms1} 0.010	000 V	
U _{rms1} 0.01000	V U _{rms1}	0.01000 V	U _{rms1} 0.010	000 V	VICTOR
U _{rms1} 0.01000	V U _{rms1}	0.01000 V	U _{rms1} 0.010	000 V	
U 0.01000	V Urms1	0.01000 V	U _{rms1} 0.010	000 V	
Primary Secondary				<u> </u>	$\langle \mathbf{q} \rangle$
CH1 CH2 CF	13 CH4 CH	5 CH6 C	CH7 CH8 Mot	or Others	9
	r meg, ruc		U.s. U.s.		tems
U _{rms12} U _{mn12}	aci veci v	fndl ♥pkl+	opk1- othd1		Items
Urms123 Umn123			U _{unb123} θ U1	f _{u1}	Items
					<u> </u>

1 항목명의 박스를 탭하여 설정 창을 연다

 2
 동기 측정할 경우는 [Primary] 또는

 [Secondary]를 탭하여 선택한다

Primary	동기 측정의 프라이머리 기기
Secondary	동기 측정의 세컨더리 기기

3 채널을 탭하여 선택한다

CH1~CH8	기본 측정 항목
Motor	모터 해석 항목
Others	연산식에서 설정하는 항목

- 4 CH1 부터 CH8까지 각각 [U], [I], [P], [Integ.], [Flicker]를 탭하여 선택한다
- 5 후보 중에서 항목을 탭하여 선택한다

유효 측정 범위와 표시 가능 범위에 대해서

본 기기의 유효 측정 범위(측정 정확도를 보증하는 범위)는 기본적으로 측정 레인지의 1%부터 110%까 지입니다. 본 기기의 표시 가능 범위는 측정 레인지의 0%부터 150%까지(1500 V 레인지는 135%까지) 입니다.

참조: "10.4 측정 항목 상세 사양" (p.274)

이것을 넘으면 오버로드를 의미하는 다음과 같은 표시가 됩니다.

표시 항목으로 **[OFF]**가 선택된 경우나 선택된 항목이 설정에 의해 무효가 된 경우는 수치 표시 부분이 공 백이 됩니다.

예: 3P4W 설정에서 P123을 선택한 후 결선 모드를 1P2W로 되돌려 P123이 무효가 된 경우 등

입력이 측정 레인지의 0.5%를 하강할 경우, 측정값이 제로인 상태로 변화하지 않는 경우가 있습니다. 낮 은 레벨까지 표시하고자 하는 경우는 제로 서프레스의 설정을 OFF로 해주십시오.

표시 항목에 대해서

2채널 이상의 측정치의 전체값으로써 연산된 값을 다음과 같이 표시합니다.

U _{rms123}	3개 상의 평균 전압 실효치
I _{rms123}	3개 상의 평균 전류 실효치
P ₁₂₃	3개 상의 총합 전력 실효치

참조: "10.5 연산식 사양" (p.283)

3.2 전력 측정

측정 라인별 전력 측정치를 보려면 베이식 화면을 사용합니다. 설정한 결선별 전력 측정치를 일람으로 하 거나 전압 및 전류의 상세한 측정치를 표시할 수 있습니다.

채널 선택 키로 표시할 채널을 변경하거나 전압 및 전류의 레인지를 변경합니다.

[MEAS] > [VALUE] > [BASIC]을 탭하여 베이식 화면을 선택합니다. 화면 아이콘에서 [P] 전력 화면, [U] 전압 화면, [I] 전류 화면, [Integ.] 적산 화면을 선택합니다.

전력 측정치의 표시

표시 화면 [MEAS] > [VALUE] > [BASIC]

		CLEG CH JUIC 3P3	12 Syi M2M (1) LPI	nc:U1 /U1 Man F:OFF Man	u 1.5kV u 50 A	Upp Low	ver: 200Hz ver: 10 Hz	50ms		2 3 4 6 7 8	
									John Contract		-
U _{rms1} U _{rms2}	0.00009 0.00067	kV kV	$\begin{array}{c} S_1 \\ S_2 \end{array}$	0.0006 0.0001	kVA kVA	Φ ₁ Φ ₂	0.498 0.431				Ň
Ú _{rms12}	0.00058	k۷	S ₁₂	0.001	kVA	Φ ₁₂	0.060				
I _{rms1} I _{rms2}	0.4601 0.4962	A A	$\begin{array}{c} Q_1 \\ Q_2 \end{array}$	0.0007 0.0004	kvar kvar	f _{U1} f _{U2}	780.511 738.013	Hz Hz	~		
rms12	0.5876	Α	Q ₁₂	0.000	kvar				ป		
P ₁ P ₂	0.0009 0.0003	kW kW	$\begin{array}{c} \lambda_1 \\ \lambda_2 \end{array}$	0.36421 0.02643		$\begin{array}{c} f_{l1} \\ f_{l2} \end{array}$	84.3967 414.473	Hz Hz			
P ₁₂	0.001	kW	λ_{12}	0.68245						I.	
									i int	teg.	

- 1 [P]를 탭한다
- 2 채널 선택의 ◀ CH ▶ 키로 표시할 채널을 전 환한다

Urms	전압 실효치			
Irms	전류 실효치			
Р	유효전력			
S	피상전력			
Q	무효전력			
λ	역률			
φ	전력 위상각			
fU	전압 주파수			
fl	전류 주파수			

- 정류 방식의 설정에 따라서는 전압 실효치(Urms)나 전류 실효치(Irms) 표시 영역에 평균치 정류 실효 값 환산치(mean)가 표시됩니다.
 참조: "정류 방식" (p.73)
- 역률 (λ), 무효전력 (Q), 전력 위상각 (φ)의 부호는 진행/지연의 극성을 나타내고, 부호 없음은 지연 (LAG), -는 진행(LEAD)을 나타냅니다.
- 고조파 측정치를 사용하는 기본파 역률(λfnd), 기본파 무효전력(Qfnd)의 부호는 계산상의 부호 를 나타내고, 역률(λ), 무효전력(Q)의 부호와 반대가 됩니다. (전력 연산식이 TYPE1인 경우) 참조: "10.5 연산식 사양" (p.283)
- 전압과 전류의 레벨 차이가 큰 경우나 전력 위상각이 0°에 가까운 경우, 역률, 무효전력, 전력 위상각의 부호가 안정되지 않을 수 있습니다.
- 3P3W2M, 3V3A 결선 시 각 채널의 유효전력 (P), 무효전력 (Q), 피상전력 (S), 역률 (λ)은 무의미한 데 이터입니다. sum 값*만을 사용해 주십시오.
- *: 1P2W 이외의 결선일 때 2채널 이상의 측정치 총합으로 연산되는 전력 측정치 (예: P123, S456, Q34 등)

중요

무입력 채널에서도 주변 노이즈의 영향으로 인해 측정치를 표시하는 경우가 있습니다. 유도 전압에 의해 무입력 시에 표시치가 흔들리는 경우가 있습니다만, 고장이 아닙니다. 표 시

전압 측정치, 전류 측정치의 표시

표시 화면 [MEAS] > [VALUE] > [BASIC]

	2:39:17 40:50:40:70:70:44 10:70:710:70:70	66 CH 393	12 Syn W2M ① LPF	::U1 /U1 Man :OFF Man	u 1.5kV u 50 A	Upp Low	er: 200Hz er: 10 Hz	50ms	1234	US8
U _{rms1} U _{rms2}	0.00054 0.00012	kV kV	U _{pk1*} U _{pk2*}	0.00016 0.00009	kV kV	U _{ac1} U _{ac2}	0.00036 0.00041	kV kV		Ň
U _{rms12}	0.00066	kV		-0.00038	LV.	The second	0.00006	- Lav		
U _{mn1} U _{mn2}	0.00075 0.00049	kV kV	U _{pk2-}	-0.00054	kV	U _{dc1}	0.00008	kV		(dille saaroos
U _{mn12}	0.00074	kV	U _{thd1} U _{thd2}	0.254 0.796	% %	f _{u1} f _{u2}	890.191 290.064	Hz Hz		
U _{fnd1} U _{fnd2}	0.00072 0.00069	kV kV						1		
									Integ.	6

- 예: 전압 측정치를 표시하는 경우
- *1: 적산 모드에서 DC가 선택된 경우는 총 고조파 왜곡률 대 신에 리플률이 표시됩니다.
- *2: 결선 모드가 3V3A, 3P3W3M, 3P4W일 때에 표시됩니다.

- 1 [U] (전압) 또는 [I] (전류)를 탭한다
- 2 채널 선택의 ◀ CH ▶ 키로 표시할 채널을 전 환한다

.

Urms	전압 실효치
Umn	전압 평균치 정류 실효값 환산치
Uac	전압 교류 성분(AC)
Udc	전압 단순 평균치(DC)
Ufnd	전압 기본파 성분
Upk+	전압 파형 피크+
Upk-	전압 파형 피크 ㅡ
Uthd	총 고조파 왜곡률* ¹
Uunb	불평형률 * ²
fu	전압 주파수

전압 레인지, 전류 레인지

측정 대상의 전압과 전류에 맞춰 적정한 전압 레인지와 전류 레인지를 설정합니다. 높은 정밀도로 측정하 기 위해서는 전압 및 전류 모두 입력 레벨을 넘는 최소의 레인지를 선택해 주십시오.

측정 화면에서의 레인지 설정

AUTO 레인지와 MANUAL 레인지

AUTO (소등)	MANUAL 레인지 임의로 레인지를 설정합니다. (전압 U, 전류 I 각각 RANGE 키의 + 또는 -를 설정하려는 레 인지가 될 때까지 누른다)
AUTO (녹색 점등)	AUTO 레인지 결선별 전압 레인지 및 전류 레인지를 입력에 따라 최적 레인지로 자동 설정합니다. (RANGE 키의 AUTO 키를 누른다)

레인지의 표시

측정 화면에서는 항상 다음 위치의 설정 인디케이터에 전압과 전류 레인지가 표시됩니다. 표시된 레인지 등의 정보는 채널 표시 LED가 점등되어 있는 채널의 정보입니다.

2021-10-12 12 00/00/00/04	2:38:50 WideBa	IND CEG CH 1 CUUC 3P30	2 Syni IZM (1) LPF	::U1 /U1 Man	u 1.5kV	- Ilor	er: 20042	50ec		n.	_				
										¥		Manu	1.5	kV	
U _{rms1} U _{rms2}	0.00009 0.00067	kV kV	S ₁ S ₂	0.0006 0.0001	kVA kVA		0.498 0.431			Ŵ		Manu	50	Α	
U _{rms12}	0.00058	kV	S ₁₂	0.001	kVA	Φ ₁₂	0.060			we we we we we we we	C				_
I _{rms1} I _{rms2}	0.4601 0.4962	A A	$\begin{array}{c} Q_1 \\ Q_2 \end{array}$	0.0007 0.0004	kvar kvar	f _{u1} f _{u2}	780.511 738.013	Hz Hz							
I _{rms12}	0.5876	A	Q ₁₂	0.000	kvar										
P ₁ P ₂	0.0009 0.0003	kW kW	$\lambda_1 \ \lambda_2$	0.36421 0.02643		f ₁₁ f ₁₂	84.3967 414.473	Hz Hz	P U						
P ₁₂	0.001	kW	λ_{12}	0.68245					1						
									integ.	۵					

전력 레인지

유효전력 P, 피상전력 S, 무효전력 Q는 공통으로 전력 레인지가 적용됩니다. 전력 레인지는 전압 레인지와 전류 레인지 및 결선의 조합으로 다음과 같이 결정합니다. 참조: "전력 레인지 구성" (p.280)

예: 유효전력 P 의 경우(S , Q도 같음)	전력 레인지
P1, P2, P3, P4, P5, P6, P7, P8	전압 레인지 × 전류 레인지
P12, P23, P34, P45, P56, P67, P78	2 × 전압 레인지 × 전류 레인지
3V3A, 3P3W3M의 P123, P234, P345, P456, P567, P678	2 × 전압 레인지 × 전류 레인지
3P4W의 P123, P234, P345, P456, P567, P678	3 × 전압 레인지 × 전류 레인지

[INPUT] > [CHANNEL] 화면에서의 레인지 설정

MANUAL 레인지 또는 AUTO 레인지를 선택합니다. 1P2W 이외에서 복수 채널을 조합한 결선의 경우, 조합한 각 채널은 강제적으로 같은 레인지가 됩니다.

표시 화면 [INPUT] > [CHANNEL]

	Hideband Copped								
	CH1	CH2	СНЗ	CH4	CH5	CH6	CH7	CH8	
Sync. source		U	2	ι	14		U6		
- HRM	101	U	2	L	14		U6		
U range	Manual	Man	nual	Mar	านอโ		Manual		
l l	1500V	150	00V	15	00V		1500V		
I range	Qual	Man	nual	Mai	nual	Manual			
	22 0A	50	A	51	DA		50A		
LPF	OFF	OF	FF	OFF		OFF			
VT ratio U phase shift CT ratio I phase shift Δ-Y Conv. U rectification I rectification Upper f lim.	1.00000 OFF 1.00000 OFF OFF RMS RMS 2MHz	1.00000 OFF OFF 1.00000 1.00000 OFF OFF RMS RMS 2MHz 10Hz		1.00 OFF 1.00000 OFF 0 RI RI 11 10	0000 OFF 1.00000 OFF FF MS MS IHz	1.00000 OFF OFF OFF 1.00000 1.00000 1.00000 OFF OFF OFF OFF OFF RMS RMS 1MHz 10Hz			
Integ. mode	RMS	RN	4S	RI	MS		RMS		

- 1 설정할 결선의 [U range] 박스를 탭하여 [Manual] 또는 [Auto]를 선택한다 [Auto]를 선택한 경우, 전압 레인지가 자동으로 선택됩니다.
- 2 [Manual]을 선택한 경우, 전압 레인지를 설 정한다

전류 레인지도 같은 방법으로 설정합니다.

AUTO 레인지의 전환 조건

△-Y 변환 기능이 ON인 경우, 전압의 레인지 변경은 레인지를 1/√3 배(약 0.57735배)하여 판정합니다. 참조: "△-Y 변환" (p.145)

레인지 업	결선 내의 어느 1채널이라도 다음 조건을 1개 이상 충족하는 경우, 1레인지 업합니다. • rms 값 ≧ 110% of range • 피크치 ≧ 300% of range
레인지 다운	결선 내의 모든 채널이 다음 조건을 모두 충족하는 경우, 1레인지 다운합니다. • rms 값 ≦ 40% of range • 피크치 ≦ 280% of the range immediately below

(Tips) 레인지가 바로 전환되지 않을 때에는

입력의 동기가 되었는지 확인한 후, [CHANNEL] 화면의 상세 설정 창에 있는 [Lower f lim.]를 1 Hz 이상으로 설정해 주십시오. 입력의 동기는 동기 언록의 인디케이터가 황색으로 점등되지 않은 것으로 확인할 수 있습니다.

레인지가 빈번하게 전환될 때에는

Manual 레인지를 선택할 것을 권장합니다. 참조: "전압 레인지, 전류 레인지" (p.64)

제로 서프레스의 설정

측정 레인지에 대해서 설정한 값 미만을 제로로 취급합니다. 레인지에 대해서 작은 입력까지 측정하려는 경우는 **[OFF]**로 설정해 주십시오.

표시 화면 [INPUT] > [COMMON]

[Zero suppress] 박스를 탭하여 설정을 선 택한다

.

OFF	제로 서프레스를 설정하지 않습 니다.
ON (0.5% f.s.)	레인지에 대해 설정값 미만의 값을 제로로 삼습니다.

데이터 갱신율

전압과 전류의 파형에서 측정치를 연산하여 측정 데이터를 갱신하는 주기를 설정합니다. 통신으로 취득하는 데이터나 D/A 출력에서 아날로그 출력되는 데이터, 인터벌 저장으로 저장되는 데이터 는 여기서 설정한 갱신 주기로 갱신됩니다.

표시 화면 [INPUT] > [COMMON]

1 [Meas. Interval] 박스를 탭하여 일람에서 데이터 갱신율을 선택한다

데이터 갱신율

	미세한 변동을 포착하고자 하는 경우에 선택합니다. 1 ms를 선택한 경우라도 고조파 해석은 50 ms로 동작합니다. 광링크 중 및 BNC 동기 중에는 1 ms를 사용할 수 없습니다. 1 kHz보다 낮은 주파수의 경우는 1 ms의 정수배 갱신율이 되는 경우가 있습니다.
1 ms	이 설정의 경우, 다음의 기능을 사용할 수 없습니다. • 평균화 데이터 갱신율의 설정을 1 ms로 변경하면 평균화의 설정이 OFF로 변경됩니다. • 사용자 정의 연산 [] 표시가 됩니다.
10 ms	고속 전력의 변동을 측정할 경우에 선택합니다. 10 ms를 선택한 경우라도 고조파 해석은 50 ms로 동작합니다. 광링크 중 및 BNC 동기 중에는 10 ms를 사용할 수 없습니다. 100 Hz보다 낮은 주파수의 경우는 10 ms의 정수배 갱신율이 되는 경우가 있습니다.
50 ms	일반적으로는 [50 ms] 를 선택합니다. 속도와 정확도의 균형을 양립시킨 선택입니다. 20 Hz보다 낮은 주파수의 경우는 50 ms의 정수배 갱신율이 되는 경우가 있습니다.
200 ms	변동이 심하고, 50 ms 로는 측정치가 안정적이지 않은 경우에 선택합니다. 고조파 측정에서 IEC 측정 모드를 사용하는 경우에도 이것을 선택합니다. 표시 갱신율과 거의 일치하여 동작합니다. 5 Hz 보다 낮은 주파수의 경우는 200 ms의 정수배 갱신율이 되는 경우가 있습니다.

- 결선이나 채널별로 설정을 전환하는 것은 불가합니다.
- 표시 갱신율은 이 설정에 상관없이 약 200 ms로 고정됩니다.
- 200 ms를 선택해도 측정치가 안정되지 않는 경우는 애버리지 기능을 병용해 주십시오.
- 기존 기종인 3193의 매끄러운 아날로그 출력에 가까운 D/A 출력을 얻으려면 10 ms를 선택하여 애버 리지 기능의 지수화 평균 또는 이동 평균과 조합합니다.

동기 소스

각종 연산의 기본이 되는 주기(제로 크로스 간)를 결정하는 소스를 결선별로 설정합니다. 일반적인 사용 방법에서는 교류를 측정하는 채널에는 측정 채널의 전압을, 직류를 측정하는 채널에는

[DC]를 선택합니다.

022-12-01 10:42:24	Wideband			A	234
1	CH1	СН2 СН3	СН4 СН5	СН6 СН7 СН8	
Sync. source	U1	U2	U4	U6	
- HRM	01	U2	U4	U6	2
U range	Manual	Manual	Manual	Manual	
	1500V	1500V	1500V	1500V	1
I range	Manual	Manual	Manual	Manual	
	50A	50A	50A	50A	
LPF	OFF	OFF	OFF	OFF	
VT ratio U phase shift CT ratio I phase shift Δ-Y Conv.	1.00000 OFF 1.00000 OFF OFF	1.00000 OFF OFF 1.00000 1.00000 OFF OFF OFF	1.00000 OFF OFF 1.00000 1.00000 OFF OFF OFF	1.00000 OFF OFF OFF 1.00000 1.00000 1.00000 OFF OFF OFF OFF	
U rectification I rectification Upper f lim. Lower f lim.	RMS RMS 2MHz 10Hz	RMS RMS 2MHz 10Hz	RMS RMS 1MHz 10Hz	RMS RMS 1MHz 10Hz	

표시 화면 [INPUT] > [CHANNEL]

022-12-01 10:43:21 [1]0[1]0[1]0[1]0[1]0[1]0[1]0[1]	Hideband Concol Actes Concol Actes	l						*	2 3 4 6 7 8 US
	CH1	CH2	СНЗ	CH4	CH5	CH6	CH7	CH8	T
Sync. source	U1	U2		U4			U6		
Units	U1	U2	U3	U4	U5	U6	U7	U8	×
DC	11	12	13	14	15	16	17	18	eesee
Option									arres
									日本
									2
CT ratio I phase shift Δ-Y Conv.	1.00000 OFF OFF	1.00000 OFF O	1.00000 OFF FF	1.00000 OFF O	1.00000 OFF FF	1.00000 OFF	1.00000 OFF OFF	1.00000 OFF	
U rectification I rectification Upper f lim. Lower f lim. Integ. mode	RMS RMS 2MHz 10Hz RMS	RI RI 2M 10 RI	MS MS IHz HZ MS	RI RI 1M 10 RI	MS MS IHz IHz MS		RMS RMS 1MHz 10Hz RMS		

동기 소스의 유닛

U1~U8	전압 신호를 기준으로 측정을 하는 경우에 설정합니다.
I1~I8	전류 신호를 기준으로 측정을 하는 경우에 설정합니다.
DC	데이터 갱신율을 기준으로 측정을 하는 경우에 설정합니다.
Ext1~Ext4	모터 해석 내장 모델에서 다음 채널의 입력 설정이 [Speed] (펄스 입력)이면서 (펄스 수/(극 수/2))의 나머지가 0일 때에 설정할 수 있습니다. Ext1: CH B, Ext2: CH D, Ext3: CH F, Ext4: CH H 모터 해석에서 펄스를 기준으로 한 측정이나 전기각을 측정할 경우에 설정합니다.
Zph1, Zph3	모터 해석 내장 모델에서 다음 채널의 입력 설정이 [Origin] (펄스 입력)일 때에 설정할 수 있습 니다. Zph1: CH D, Zph3: CH H 모터 해석에서 모터의 기계각 1주기에 동기한 측정 결과를 얻고자 하는 경우에 설정합니다.
CH B, CH D, CH F, CH H	모터 해석 내장 모델에서 해당 채널의 동작 모드가 [Individual] 모드일 때에 설정할 수 있습니 다. 외부 신호(펄스 입력)에 동기한 측정을 하려는 경우에 설정합니다.

설정할 결선의 [Sync. source] 박스를 탭 하여 설정 창을 연다

설정된 동기 소스는 측정 화면 상부의 설정 인디케이 터의 **[Sync]**에 표시됩니다.

2 동기 소스의 유닛을 탭하여 선택한다

- 각 채널의 전압과 전류는 같은 동기 소스가 설정됩니다.
- 각 채널의 고조파 측정도 같은 동기 소스가 사용됩니다. 단, 동기 소스로 [Zph1]을 선택하여 [Ext1] 을 선택할 수 있는 경우, 고조파 측정의 동기 소스로 [Ext1]과 [Zph1] 중 하나를 선택할 수 있습니다.
 [Zph3]을 선택하여 [Ext3]을 선택할 수 있는 경우, 고조파 측정의 동기 소스로 [Ext3]과 [Zph3] 중 하나를 선택할 수 있습니다.
- 교류를 측정하는 채널에는 측정 채널의 주파수와 같은 주파수의 입력을 동기 소스로 선택해 주십시오. 동 기 소스로 선택된 이전의 주파수가 측정 채널 주파수와 큰 폭으로 다를 경우, 입력과 다른 주파수가 표시 되거나 측정치가 불안정해질 수 있습니다.
- [DC] 를 선택한 경우의 구간은 데이터 갱신율과 일치합니다. (1 ms, 10 ms, 50 ms, 200 ms) [DC] 의 설정으로 교류 입력을 측정하면 표시치가 변동하여 정확한 측정이 불가합니다.
- 동기 소스가 [DC] 이외인 경우, 그 동기 소스에 측정 하한 주파수 설정보다 낮은 주파수나 측정 상한 주 파수 설정보다 높은 주파수가 입력된 경우에는 입력과 다른 주파수가 표시되고 측정치가 불안정해질 수 있습니다.
- [Ext]를 선택하면 모터의 회전 속도가 단시간에 변화하는 경우 동기하기 쉽고 전력 해석에 유효하게 작 용합니다.

참조: "모터의 전기각 측정" (p.107)

- [Zph.] 를 선택하면 모터 1회전(기계각 1주기)에 따른 고조파 해석을 할 수 있습니다.
- 직류를 입력하는 채널의 동기 소스를 전압이나 전류로 설정한 경우는 제로 크로스 기간을 취득할 수 없습 니다. 측정 하한 주파수의 약 1주기를 동기 주파수로 하여 동작합니다.
- 측정 하한 주파수 설정 전후의 주파수에서는 동기 언록이 발생하여 측정치가 불안정해질 수 있습니다.
- 모터 해석 내장 모델의 CH B, CH D, CH F, CH H에 펄스 신호를 입력하고, 동기 소스로 CH B, CH D, CH F, CH H를 선택함으로써 측정 타이밍을 임의로 설정할 수 있습니다. 또한, CH B, CH D, CH F, CH H는 모두 입력 펄스의 상승을 검출합니다.

동기 언록에 대해서

- 동기 소스에 동기할 수 없는 채널은 동기 언록이 되어 정확하게 측정할 수 없습니다.
- 동기 소스의 입력을 확인해 주십시오.
- 동기 언록 상태는 경고 인디케이터에 표시됩니다.
- 참조: "공통의 화면 표시" (p.31)

저역 통과 필터(LPF)

- 본 기기에는 주파수 대역을 제한하는 저역 통과 필터 기능이 있습니다.
- 이 필터를 사용하면 설정한 주파수를 넘는 고주파 성분이나 불필요한 외래 노이즈 성분을 제거하고 측정할 수 있습니다. 통상적으로 저역 통과 필터는 OFF로 설정한 상태에서 측정하는 것을 권장합니다.

								*	234
	CH1	CH2 C	снз сн	H4 C⊦	15	CH6	CH7	CH8	
Sync. source	U1	U2		U4		U6			
- HRM	U1	1 U2 U4							
U range	Manual	Manual		Manual		Manual			
	1500V	1500V		1500V	1500V				
I range	Manual	Manual		Manual	Manual				
, in the second s	50A	50A		50A		50A			
LPF	OFF	OFF		OFF		OFF			9
VT ratio U phase shift CT ratio I phase shift Δ-Y Conv. U rectification	1.00000 OFF 1.00000 OFF OFF RMS	1.00000 OFF 0 1.00000 1.0 OFF 0 OFF RMS	DFF 0 10000 1.0 DFF 0	1.00000 DFF OFF 0000 1.000 DFF OFF OFF RMS	= 00 F	OFF 1.00000 OFF	1.00000 OFF 1.00000 OFF OFF RMS	OFF 1.00000 OFF	
I rectification Upper f lim. Lower f lim. Integ. mode	RMS 2MHz 10Hz RMS	RMS 2MHz 10Hz RMS		RMS 1MHz 10Hz RMS		RMS 1MHz 10Hz RMS			

표시 화면 [INPUT] > [CHANNEL]

1 설정할 결선의 [LPF] 박스를 탭하여 일람에 서 저역 통과 필터(LPF)를 선택한다

결선별로 설정할 수 있습니다. 일람을 슬라이드하 여 선택해 주십시오.

500 Hz, 1 kHz, 5 kHz, 10 kHz, 50 kHz, 100 kHz, 500 kHz, 2 MHz (U7005 만 선택 가능), OFF

설정된 저역 통과 필터는 측정 화면 상부의 설정 인디케이터의 [LPF]에 표시됩니다. 참조: "측정 화면의 표시" (p.32)

측정 상한 주파수와 하한 주파수(주파수 측정 범위의 설정)

본 기기는 복수 계통의 주파수를 동시에 측정할 수 있습니다. 주파수 측정에는 측정 하한 주파수와 측정 상 한 주파수의 설정이 있으며, 결선별로 측정하고자 하는 주파수를 제한할 수 있습니다. PWM 파형의 기본 주파수 및 캐리어 주파수와 같이 복수의 주파수 성분을 지닌 파형을 측정할 경우에 측정하려는 입력의 주파 수에 따라 설정해 주십시오.

표시 화면 [INPUT] > [CHANNEL]

22-12-01 10:42:24								1 2 3 4 表 5 6 7 8 USB	1	채널 상세 표시 영역을 탭하여 설정 창을 연다
	CH1	CH2	СНЗ	CH4	CH5	CH6	CH7	СН8		이 창에서 결선별 상세 설정 내용을 확인할 수 있
Sync. source	U1	l	J2	U	14		U6	8		스니다
- HRM	U1		J2	U	14		U6			ㅂ니니.
U range	Manual	Ma	nual	Mar	nual		Manual			
	1500V	15	00V	150	00V		1500V		2	[]] 바ㅅ르 태치어 이라에너 사
range	Manual	Ma	nual	Mar	nual		Manual	10 miles	-	[Upper I IIII.] 빅스들 웹이어 월맘에지 성
	50A	5	0A	50	DA		50A	BE		하 주파수를 선택하다
LPF	OFF	0	FF	0	FF		OFF	310		
T ratio J phase shift T ratio phase shift V-Y Conv. U rectification	1.00000 OFF 1.00000 OFF OFF RMS	1.00 OFF 1.00000 OFF O RI	0000 OFF 1.00000 OFF IFF MS	1.00 OFF 1.00000 OFF O	0000 OFF 1.00000 OFF FF MS	OFF 1.00000 OFF	1.00000 OFF 1.00000 OFF OFF RMS	OFF 1.00000 OFF		100 Hz, 500 Hz, 1 kHz, 5 kHz, 10 kHz, 50 kHz, 100 kHz, 500 kHz, 1 MHz, 2 MHz(17005 th definition)
rectification Jpper f lim. .ower f lim. integ. mode	RMS 2MHz 10Hz RMS	R) 2M 10 R)	MS 4Hz 9Hz MS	R) 1M 10 R)	MS IHz IHz MS		RMS 1MHz 10Hz RMS	े ट		2 MH2(07003년 전력 가동)
									3	[Lower f lim.] 박스를 탭하여 일람에서 하
2-12-01 10:42:44	WideBand									
								* 1 2 3 4 5 6 7 7 USB		안 수파수들 선택안나
CH 1 1.00	0000 01		kHz +				0.1 kHz	. (4) . 🔘 🚥 📕		0.1 Hz, 1 Hz, 10 Hz, 100 Hz, 1 kHz, 10 kHz 100 kHz
	T Ph St	ase ift			СТ	Phase Shift] %	Л	【 > 1 르 태회에 서저 차우 다느다
	Conv.	U-Rect	I-Rect RMS	Freque Upper Lower	ncy f lim 2M		ntegration Iode	RMS .	4	[×] 늘 탭아여 실성 상을 닫는다
CH 1				ZC HPF	= 01	FF		<u>e</u>		

중요

주파수 측정은 전압 또는 전류 레인지에 대해 30% 이상의 정현파 입력에서 정확도를 보증합니다. 이 외 의 입력에서는 주파수 측정이 불가한 경우가 있습니다.

- 데이터 갱신율 설정의 주기보다 낮은 주파수 입력 시에는 데이터 갱신율이 입력 주파수에 의존하여 변화 합니다.
- 측정 상한 주파수 설정보다 큰 폭으로 높은 주파수 또는 측정 하한 주파수 이하의 주파수가 입력된 경우 에는 입력과는 다른 주파수가 표시될 수 있습니다.

제로 크로스 고역 통과 필터(ZC HPF)에 대해서

- 파형의 제로 크로스를 검출하기 위한 고역 통과 필터의 설정입니다.
- 낮은 주파수 측정 시에 주파수가 안정되지 않는 경우 [ZC HPF]를 OFF로 하면 안정되는 경우가 있습 니다.
- 맥류를 측정할 경우는 [ZC HPF] 를 ON으로 해주십시오.
정류 방식

피상전력, 무효전력, 역률의 연산에 사용하는 전압치, 전류치의 정류 방식을 선택합니다. 정류 방식은 각 결선의 전압이나 전류별로 선택할 수 있습니다.

				*-
	CH1	CH2 CH3	CH4 CH5	CH6 CH7 CH8
Sync. source	U1	U2	U4	U6
- HRM	U1	U2	U4	U6
U range	Manual	Manual	Manual	Manual
	1500V	1500V	1500V	1500V
range	Manual	Manual	Manual	Manual
	50A	50A	50A	50A
LPF	OFF	OFF	OFF	OFF
VT ratio	1.00000	1.00000	1.00000	1.00000
U pnase shiπ CT ratio	1.00000	1.00000 1.00000	1.00000 1.00000	0FF 0FF 0FF 1.00000 1.00000 1.00000
phase shift	OFF	OFF OFF	OFF OFF	OFF OFF OFF
Δ-Y Conv.	OFF	OFF	OFF	OFF
U rectification	RMS	RMS	RMS	RMS
I rectification	RMS	RMS	RMS	RMS
Upper f lim.	2MHz	2MHz	1MHz	1MHz
Lower f lim.	10Hz	10Hz	10Hz	10Hz
Integ. mode	DMS	PMS	RMS	RMS

표시 화면 [INPUT] > [CHANNEL]

2022-12-01 10							* * *	USB
CH 1			0.1 kHz +			0.1 kHz	4	
O	- V T	Phase					Т	
• Г				C	T Phase Shift			
	ΔConv.	U-Rec	3	Frequency		Integration		-00
	OFF	RMS	RMS	Upper f lin	n. 2MHz	Mode	RMS	
CH 1		2	3	Lower f lin ZC HPF	n. 10Hz OFF			e e

1 채널 상세 표시 영역을 탭하여 설정 창을 연다

2 [U-Rect] 박스를 탭하여 일람에서 정류 방식 을 선택한다

RMS	(참 실효치)통상은 이것을 선택합니 다.
MEAN	(평균치 정류 실효값 환산치) 일반적으로는 인버터 2차 측의 PWM 파 형으로 선간 전압을 측정하는 경우에만 사용합니다.

- 3 [I-Rect] 박스를 탭하여 일람에서 정류 방식 을 선택한다
- 4 [×]를 탭하여 설정 창을 닫는다

스케일링 (VT(PT) 또는 CT 사용 시)

외장 VT(PT) 또는 CT를 사용한 경우의 비율(VT 비, CT 비)을 설정합니다. VT 비, CT 비 중 어느 하나가 설정되어 있으면 측정 화면 상부의 설정 인디케이터에 VT, CT가 표시됩니 다.

표시 화면 [INPUT] > [CHANNEL]

Wideland Constant and Elis							4	
CH1	CH2	СНЗ	CH4	CH5	CH6	CH7	CH8	Ŧ
U1	U	2	U	14		U6		2
U1	U	2	U	14	U6			CHAR
Manual	Mar	ual	Mar	nual		Manual		<u></u>
1500V	150	ov	150	00V		1500V		com
Manual	Mar	ual	Mar	nual		Manual		2
50A	50	A	50	A		50A		নিয
OFF	OFF		0	FF	OFF			
1.00000 OFF 1.00000 OFF OFF RMS RMS 2MHz 10Hz	1.00 OFF 1.00000 OFF OI RN 2M 2M 10	000 OFF 1.00000 OFF FF MS MS Hz Hz	1.00 OFF 1.00000 OFF 01 R1 R1 1M 10	0000 OFF 1.00000 OFF FF MS MS MS HIZ HIZ	OFF 1.00000 OFF	1.00000 OFF 1.00000 OFF OFF RMS RMS 1MHz 10Hz	OFF 1.00000 OFF	1
	CH1 U1 U1 1500V Manual 50A OFF 1.00000 OFF OFF RMS RMS 2MHz 10Hz	Interesting U1 U U1 U U1 U Manual Mar 1500V 150 Manual Mar 50A 50 OFF O 1.00000 1.00 OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF NRS RMS RM 2MHz 2M 10Hz 10	Manual CH2 CH3 U1 U2 U1 U2 Manual Manual 1500V 1500V Manual Manual 50A 50A OFF OFF 0FF OFF <	Manual CH1 CH2 CH3 CH4 U1 U2 U U1 U2 U Manual Manual Manual 1500V 1500V 155 Manual Manual Manual 50A 50A 56 OFF OFF OF 0FF OFF OFF 0F OFF OFF 0F OFF OFF 0F OFF OFF 0F N N NM3 <td>CH1 CH2 CH3 CH4 CH5 U1 U2 U4 U1 U2 U4 Manual Manual Manual 1500V 1500V 1500V Manual Manual Manual 50A 50A 50A OFF OFF OFF 0FF OFF OFF 0F OFF OFF 0F OFF OFF <</td> <td>CH1 CH2 CH3 CH4 CH5 CH6 U1 U2 U4 U1 U2 U4 U1 U2 U4 U1 U2 U4 Manual Manual Manual Manual Manual 1500V 1500V 1500V 1500V 10000 06F OFF OFF OFF 06000 100000 100000 0FF OFF OFF OFF 0FF 0FF 0FF 0FF 0FF OFF OFF OFF 0FF 0FF 0FF 0FF 0FF OFF OFF OFF 0FF 0F</td> <td>CH1 CH2 CH3 CH4 CH5 CH6 CH7 U1 U2 U4 U6 U1 U2 U4 U6 Manual Manual Manual Manual 1500V 1500V 1500V 1500V Manual Manual Manual Manual 50A 50A 50A 50A OFF OFF OFF OFF 00000 1.00000 1.00000 1.00000 00F OFF OFF OFF 00F OFF OFF OFF 00F OFF OFF OFF 00F OFF OFF OFF 0F OFF OFF OFF 0FF OFF OFF OFF OFF 0F OFF OFF OFF OFF 0F OFF OFF OFF OFF 0F OFF OFF OFF OFF 0</td> <td>CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 U1 U2 U4 U6 U1 U2 U4 U6 Manual Manual Manual Manual 1500V 1500V 1500V 1500V Manual Manual Manual Manual 50A 50A 50A 50A OFF OFF OFF OFF 06F OFF OFF OFF 00000 1.00000 1.00000 00000 0000F OFF OFF OFF 0FF OFF OFF<!--</td--></td>	CH1 CH2 CH3 CH4 CH5 U1 U2 U4 U1 U2 U4 Manual Manual Manual 1500V 1500V 1500V Manual Manual Manual 50A 50A 50A OFF OFF OFF 0FF OFF OFF 0F OFF OFF 0F OFF OFF <	CH1 CH2 CH3 CH4 CH5 CH6 U1 U2 U4 U1 U2 U4 U1 U2 U4 U1 U2 U4 Manual Manual Manual Manual Manual 1500V 1500V 1500V 1500V 10000 06F OFF OFF OFF 06000 100000 100000 0FF OFF OFF OFF 0FF 0FF 0FF 0FF 0FF OFF OFF OFF 0FF 0FF 0FF 0FF 0FF OFF OFF OFF 0FF 0F	CH1 CH2 CH3 CH4 CH5 CH6 CH7 U1 U2 U4 U6 U1 U2 U4 U6 Manual Manual Manual Manual 1500V 1500V 1500V 1500V Manual Manual Manual Manual 50A 50A 50A 50A OFF OFF OFF OFF 00000 1.00000 1.00000 1.00000 00F OFF OFF OFF 00F OFF OFF OFF 00F OFF OFF OFF 00F OFF OFF OFF 0F OFF OFF OFF 0FF OFF OFF OFF OFF 0F OFF OFF OFF OFF 0F OFF OFF OFF OFF 0F OFF OFF OFF OFF 0	CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 U1 U2 U4 U6 U1 U2 U4 U6 Manual Manual Manual Manual 1500V 1500V 1500V 1500V Manual Manual Manual Manual 50A 50A 50A 50A OFF OFF OFF OFF 06F OFF OFF OFF 00000 1.00000 1.00000 00000 0000F OFF OFF OFF 0FF OFF OFF </td

- 1 채널 상세 표시 영역을 탭하여 설정 창을 연다
- 2 [VT] 박스를 탭하여 텐 키로 VT 비를 설정한 다

참조: "텐 키 창" (p.30) VT 비는 동일 결선 내의 각 채널에서 공통의 값을 설정합니다.

0.00001~9999.99

3 [CT] 박스를 탭하여 텐 키로 CT 비를 설정한 다

CT 비는 동일 결선 내의 각 채널에서 개별로 값을 설정합니다.

0.00001~9999.99

VT×CT가 1.0E+06을 넘는 설정은 할 수 없습니 다.

VT 비를 설정하면 전압 피크치나 고조파, 파형 등 도 포함한 모든 전압 측정 항목과, 전압을 사용하 여 연산되는 전력 측정 항목의 측정치가 설정한 비 율을 곱하여 연산됩니다.

CT 비를 설정하면 전류 피크치, 고조파, 파형 등 도 포함한 모든 전류 측정 항목과, 전류를 사용하여 연산되는 전력 측정 항목의 측정치가 설정한 비율을 곱하여 연산됩니다.

OFF로 하는 경우는 1.00000을 설정합니다.

4 [×]를 탭하여 설정 창을 닫는다

3.3 적산 측정

적산 제어 설정

적산 측정에는 탑재된 채널 모두에 대해서 일괄로 제어를 하는 모든 결선 적산과, 설정한 결선별로 제어를 하는 결선별 적산이 있습니다.

설정한 결선별로 독립하여 적산을 제어하려는 경우, 결선별 적산 기능을 사용합니다.

화면상에 표시된 버튼을 선택하여 제어할 결선을 변경하거나, 결선별로 적산 시작 시각, 정지 시각, 타이머 설정치를 설정하여 시간 제어를 할 수 있습니다.

표시 화면 [SYSTEM] > [TIME CONTROL]

 1
 [Integration control] 박스를 탭하여 리스 트에서 적산 제어 설정을 선택한다

All Channel	(모든 결선 적산)모든 결선에 대해 동일 타이밍에 적산을 제어 합니다.
Each Wiring	(결선별 적산)설정한 결선별로 독립된 타이밍에 적산을 제어합 니다.

 3
 전력의 수치

표 시

적산 측정치의 표시

전류(I), 유효전력(P)을 동시에 적산합니다. +, -, 토털 값이 표시됩니다.

.

적산 내용의 표시

표시 화면 [MEAS] > [VALUE] > [BASIC]

2021-10-12 00.000/0000 010010010	2:40:44 WideGa 4(),0-0-0-0 1011010101010	nd CH 1 1920	Sync C LPF	:UI /UI Man :OFF Man	u 1.5kV u 50 A	Uppe Low	er: 2944z er: 10 Hz	50ms	1234	USI
U _{rms1}	0.00052	kV	lhı	438.236	mAh	Integra Start Stop Elapsed	tion Time 0h	::- ::- 0m 0s		
I _{rms1}	0.9228	A	WP _{1*} WP ₁₋ WP ₁	0.069 0.349 0.756	Wh Wh Wh	f _{U1}	794.813	Hz		
P ₁	0.0006	kW	λ	0.06832		f ₁₁	341.975	Hz	PU	
								1	Integ.	Ć

[Integration Time] 란에는 모든 결선 제어 시, 모든 결선에 공통의 적산 시작 시각, 적산 정지 시각, 경과 시 간이 표시됩니다. 결선별 제어 시에는 ◀CH▶ 키로 선택된 결선의 적산 시작 시각, 적산 정지 시각, 경과 시간이 표시됩니다. 1 [Integ.]를 탭한다

2 채널 선택의 ◀ CH ▶ 키로 표시할 채널을 전 환한다

lh1+	CH1의 +방향 전류 적산값 (적산 모드가 DC인 경우에만 표시)			
lh1 —	CH1의 -방향 전류 적산값 (적산 모드가 DC인 경우에만 표시)			
lh1	CH1의 토털 전류 적산값			
WP1+	CH1의 +방향 유효전력 적산값			
WP1 -	CH1의 - 방향 유효전력 적산값			
WP1	CH1의 토털 유효전력 적산값			

- 적산 가능한 항목은 결선 모드, 적산 모드에 따라 다릅니다. 참조: "2.5 결선 모드와 전류 센서의 설정" (p.50), "적산 모드" (p.80)
- · 선택 표시 (CUSTOM) 화면에서 선택하여 표시할 수도 있습니다.
 참조: "3.1 측정치의 표시 방법" (p.61)

적산을 시작하기 전에

- 시계를 맞춘다
 참조: "6.1 설정 확인 및 변경" (p.153)
- **2** 적산 모드를 설정한다 참조: "적산 모드" (p.80)

3 필요한 각종 제어 시간을 설정한다

참조: "시간 제어 기능과 조합한 적산 측정" (p.81) 수동 적산이나 외부 신호로 적산하는 경우는 각종 시간 설정을 OFF로 설정합니다.

4 USB 메모리에 저장하는 경우와 D/A 출력하는 경우는 기록 및 D/A 출력을 설정한다

참조: "7.1 USB 메모리" (p.157) "7.3 측정 데이터의 저장" (p.161)

적산의 시작, 정지, 적산값 리셋 방법

조작 키에 의한 방법, 외부 신호에 의한 방법, 통신에 의한 방법이 있습니다. 각종 설정을 변경할 경우는 반드시 적산값을 리셋합니다.

적산 제어 설정이 모든 결선 [All Channel] 인 경우

1 START/STOP 키를 누른다

적산을 시작합니다. 키가 녹색으로 점등합니다. 적산 상태 인디케이터가 녹색이 됩니다.

2 START/STOP 키를 누른다

적산을 정지합니다. 키가 빨간색으로 점등합니다. 적산 상태 인디케이터가 빨간색이 됩니다.

3 DATA RESET 키를 눌러 적산값을 리셋한다

START/STOP 키가 소등됩니다. 적산 상태 인디케이터가 무색이 됩니다.

타이머 제어, 실시간 제어 설정 시에는 설정한 종료 시간에 자동으로 적산을 정지합니다.

수동으로 임의로 적산을 시작 또는 정지합니다.

수동 적산 동작

가산 적산 동작

적산 제어 설정이 결선별[Each Wiring]인 경우

START/STOP 키, DATA RESET 키의 동작 대상으로 할 채널을 다음 화면 중 하나에서 선택하여 제어 를 합니다.

표시 화면 [SYSTEM] > [TIME CONTROL]

표시 화면 [MEAS] > [VALUE]

[TIME CONTROL] 화면의 버튼 또는 [MEAS] > [VALUE] 화면의 우측 상단에 표시되는 채널 번호의 버튼을 선택한다

2 START/STOP 키를 누른다

순서 1에서 선택한 채널 중, 적산 리셋 또는 적산 정지한 채널에 대해 적산을 시작합니다. 키는 점등하지 않으며, 화면 우측 상단의 적산 상태 인디케이터가 녹색이 됩니다.

3 START/STOP 키를 누른다

순서 1에서 선택한 채널 중, 적산 중인 채널에 대해 적산을 정지합니다. 키는 점등하지 않으며, 화면 우측 상단의 적산 상태 인디케이터가 빨간색이 됩니다.

4 필요에 따라 DATA RESET 키를 누른다

순서 1에서 선택한 채널에 대해 적산값을 리셋합니다. 타이머 제어, 실시간 제어 설정 시에는 설정한 종료 시간에 적산 을 정지합니다.

적산의 시작, 정지, 적산값 리셋의 주의점

- 적산 시간은 9999시간 59분 59초까지이며, 그 시점에서 적산은 자동으로 정지합니다.
- 조작 키, 외부 제어에 의한 적산의 시작/정지/적산값 리셋은 적산하는 항목 모두 동기하여 동작합니다.
- 결선 모드, 적산 모드에 따라 적산 가능한 항목은 다음과 같습니다.

각 모드	선택할 수 있는 항목
1P2W, DC 모드	lh+, $lh-$, lh , $WP+$, $WP-$, WP
1P2W	Ih, WP+, WP-, WP
1P3W, 3P3W2M (CH1, CH2 사용 시)	Ih1, Ih2, WP12+, WP12 - , WP12
3V3A, 3P3W3M, 3P4W (CH1, CH2, CH3 사용 시)	lh1, lh2, lh3, WP123+, WP123 – , WP123

- 각 채널에서의 연산 결과를 데이터 갱신율 타이밍으로 적산합니다. 그러므로 응답 속도, 샘플링 속도, 연 산 방법이 다른 측정기하고는 적산값이 다를 수 있습니다.
- 전류 적산은 적산 모드가 DC 모드인 경우 순시 전류를 적산하고, RMS 모드인 경우는 rms 값으로써 적 산합니다.
- 전력 적산은 적산 모드가 DC 모드인 경우 순시 전력을 적산하고, RMS 모드인 경우는 유효전력을 적산 합니다.
- 적산 동작 중에는 (실시간 제어 적산에서 "대기 중"인 경우에도) 화면의 전환, 홀드/피크 홀드 기능, 레 인지 변경 이외의 설정 변경은 받아들이지 않습니다.
- 홀드 중인 경우 표시는 고정되지만, 내부에서는 적산 동작이 계속되고 있습니다. 단, 이 경우 D/A 출력 에는 표시된 데이터가 출력됩니다.
- 피크 홀드 상태에서도 적산 표시는 영향을 받지 않습니다.
- 적산 동작 중에 정전된 경우 적산값은 리셋되고 적산 동작은 정지합니다.

중요

MANUAL 레인지 또는 AUTO 레인지에 의해 레인지가 전환되는 동안은 적산되지 않습니다.

적산 모드

각 채널의 적산 모드를 설정합니다. 적산 모드에는 DC 모드와 RMS 모드가 있으며, 결선별로 선택할 수 있습니다.

표시 화면 [INPUT] > [CHANNEL]

- 1 채널 상세 표시 영역을 탭하여 설정 창을 연다 결선별 상세 설정 내용이 표시됩니다.
- 2 [Mode] 박스를 탭하여 일람에서 적산 모드를 선택한다

DC	샘플링별 순시 전류값, 순시 전력값을 극 성별로 적산합니다. 1P2W의 결선 시에만 선택할 수 있습니 다. 전류 적산(lh+, lh -, lh), 유효전력 적 산(WP+, WP -, WP)의 6항목을 동 시에 적산합니다.
RMS	데이터 갱신율별 전류 실효치, 유효 전력 값을 적산합니다. 유효전력의 경우만 극성별 적산을 합니 다.

3 [×]를 탭하여 설정 창을 닫는다

시간 제어 기능과 조합한 적산 측정

타이머 설정치, 실시간 제어 시간을 사전에 설정하고 **START/STOP** 키를 누르면 각종 설정 시각에 적산 을 시작/정지할 수 있습니다. 적산 제어 설정이 모든 결선일 때는 모든 결선에 공통으로 적용되는 타이머 설정치, 실시간 제어 시간을 설정할 수 있습니다.

결선별일 때는 설정한 결선별로 타이머 설정치, 실시간 제어 시간을 설정할 수 있으며 **START/STOP** 키 를 눌러 선택한 채널에 대해 각종 설정 시각에 적산을 시작/정지할 수 있습니다.

수동 적산 설정

3.4 고조파 측정

본 기기는 표준으로 고조파 측정 기능을 탑재하고 있어 모든 채널에서 전력 측정치와 동시성이 있는 고조 파 측정치를 얻을 수 있습니다. 기본 측정 항목에 포함되는 기본파 성분(fnd 값)이나 총 고조파 왜곡률 (THD)은 이 고조파 측정치가 사용되고 있습니다. 참조: "10.5 연산식 사양" (p.283) 또한, WideBand 광대역 측정 모드와 IEC 측정 모드를 설정함으로써 광대역에 대응한 고조파 측정과 IEC 규격에 준거한 고조파 측정을 실시할 수 있습니다.

참조: "2.7 측정 모드" (p.55)

WideBand 광대역 측정 모드

- 0.1 Hz 부터 1.5 MHz까지 (U7001은 1 MHz까지)의 폭넓은 주파수 범위에서 측정할 수 있습니다.
- 측정하는 주파수에 따라 해석 차수가 다릅니다.
- 데이터 갱신율은 고조파 측정값만 50 ms 로 갱신됩니다.

IEC 측정 모드

- IEC 고조파와 IEC 전압 변동 / 플리커를 측정합니다.
- 측정 라인이 50 Hz 또는 60 Hz인 경우에 IEC61000-4-7의 규격에 준거한 고조파 측정, IEC61000-4-15의 규격에 준거한 전압 변동 / 플리커 측정을 합니다.

- 데이터 갱신율은 200 ms 로 고정됩니다.
- 측정하는 주파수가 45 Hz 부터 66 Hz 까지의 범위를 벗어나는 경우는 고조파 측정 및 전압 변동 / 플리 커 측정을 하지 않습니다.
- 고조파 해석 차수는 0차부터 200차까지, 중간 고조파 해석 차수는 0.5차부터 200.5차까지입니다.

IEC 측정 모드 시에는 IEC 규격에 준거한 측정을 실현하므로 광대역 측정 모드와 다른 내부 연산 처리를 하고 있습니다. 따라서 IEC 측정 모드 시에는 일부 기능이 제한됩니다. 참조: "2.7 측정 모드" (p.55)

고조파 측정치의 표시

고조파의 표시 방법에는 막대 그래프, 리스트, 벡터의 3종류가 있습니다.

고조파 막대 그래프의 표시

같은 채널의 전압, 전류, 유효전력에 대해 고조파 해석한 결과를 막대 그래프로 표시합니다. 또한, 표시 차수의 수치 데이터도 동시에 표시합니다.

1

표시 화면 [MEAS] > [HARMONIC] > [BAR GRAPH]

표시 차수의 측정치

W	진폭값 (Level)
%	함유율(% of Fnd)
0	위상각(Phase)

- 진폭값을 선택한 경우의 세로축 스케일은 레인지에 대한 비율을 퍼센트로 표시합니다.
- 위상각을 선택하면 회색 막대가 표시되는 경우가 있는데, 이것은 대응하는 진폭값이 작다(레인지의 0.01% 이하)는 것을 나타냅니다.

표시 설정과 표시 차수의 변경

[ltem] 박스를 탭하여 설정 창에서 막대 그래 프로 표시할 채널을 선택한다

2 [Scale] 박스를 탭하여 일람에서 세로축 표 시를 선택한다

Log	로그 표시입니다.
Linear	선형 표시입니다. 작은 레벨까지 표시할 수 있습니다. [Phase] 선택 시에는 세로축 표시가 [Linear]로 고정됩니다.

3

전 력 의

중간 고조파 막대 그래프의 표시

측정 모드가 IEC 측정 모드일 때, 중간 고조파를 표시할 수 있습니다.

[Interharmonics] 설정을 ON으로 하면 전류, 전압의 실효값 및 함유율의 중간 고조파 성분이 하늘색 그래프로 표시됩니다. 선택한 차수([Order])와 이웃하는 중간 고조파의 측정값이 수치 표시 부분에 표시 됩니다.

[Interharmonics] 박스를 탭하여 설정을 [ON]으로 한다

막대 그래프가 표시됩니다.

전력 측정 항목에는 중간 고조파 측정 항목이 없으 므로 고조파 성분만 표시됩니다. 또한, [Content] 를 [Phase] 로 설정하면 [Interharmonics]가 [OFF]가 됩니다.

고조파 리스트의 표시

고조파 해석한 결과를 항목별 수치 리스트로 표시합니다. 설정 내용은 막대 그래프 화면과 리스트 화면에 서 공통으로 사용합니다. 표시하는 차수는 리스트를 좌우로 스와이프하거나, 리스트의 좌우에 있는 [<] 또 는 [>] 마크를 탭하여 변경할 수 있습니다.

표시 화면 [MEAS] > [HARMONIC] > [LIST]

		CH 1 1P2W ①	Sync:U	1 /U1	Auto 15 V Auto 1 A		Upper: 10 Lower: 10	kHz Hz	50ms	1234 5578	USB
		f _{HRM US} :	50.00	103 Hz	U _{rma1} :8.49	929 V	U _{thd1} :55	.523 %	1/	1	Ξž
	- 1.6932									Item	
	7.2730	0.3463		0.1773		0.1191		0.0897	G	U1	Λſ
	2.2475	0.2043		0.1070		0.0725		0.0547	່ 📕		10
	1.4983	0.1954		0.1045		0.0713		0.0542	-	Content	
	1.8182	0.3030		0.1652		0.1135		0.0865	ୁ (କୁ)		
	0.0001	0.0000		0.0000		0.0001		0.0001	4	Lever	
	1.2122	0.2797		0.1581		0.1102		0.0846	_	Max Order	
	0.6423	0.1664		0.0957		0.0670		0.0515	9	Maxorder	lin.
	0.5619	0.1605		0.0936		0.0662		0.0511	-51	100th	manapair
	0.8081	0.2507		0.1484		0.1054		0.0817	\mathbf{O}		
	0.0000	0.0000		0.0001		0.0001		0.0000		Order layout	
	0.6612	0.2345		0.1425		0.1024		0.0799		All	
	0.3746	0.1404		0.0864		0.0623		0.0487			
	0.3457	0.1361		0.0847		0.0616		0.0484		Interharmonics	
14	: 0.5195	0.2138		0.1346		0.0982		0.0773			
	: 0.0001	0.0001		0.0000		0.0000		0.0001			
	0.4545	0.2019		0.1298		0.0957		0.0757			
	: 0.2644	0.1214		0.0787		0.0582		0.0462			
	: 0.2497	0.1182		0.0774		0.0577		0.0459			- 18 J
	: 0.3827	0.1864		0.1232		0.0920		0.0734			010
	0.0001	0.0000		0.0000		0.0000		0.0001			
19 20): 0.3827): 0.0001	39: 40:	39: 0.1864 40: 0.0000	39: 0.1864 59: 40: 0.0000 60:	39: 0.1864 59: 0.1232 40: 0.0000 60: 0.0000	39: 0.1864 59: 0.1232 79: 40: 0.0000 60: 0.0000 80:	39: 0.1864 59: 0.1232 79: 0.0920 40: 0.0000 60: 0.0000 80: 0.0000	39: 0.1864 59: 0.1232 79: 0.0920 99: 40: 0.0000 60: 0.0000 80: 0.0000 100:	39: 0.1864 59: 0.1232 79: 0.0920 99: 0.0734 40: 0.0000 60: 0.0000 80: 0.0000 100: 0.0001	39: 0.1864 59: 0.1232 79: 0.0920 99: 0.0734 40: 0.0000 60: 0.0000 80: 0.0000 100: 0.0001	39: 0.1864 59: 0.1232 79: 0.0920 99: 0.0734 40: 0.0000 60: 0.0000 80: 0.0000 100: 0.0001

f_{HRM U1}	동기 소스의 주파수
U _{rms1}	표시 항목의 실효치
U _{thd1}	총 고조파 왜곡률

- [Item] 박스를 탭하여 설정 창에서 리스트로 표시할 채널을 선택한다
- 2 [Content] 박스를 탭하여 일람에서 표시 내 용을 선택한다

Level	진폭값
% of Fnd	함유율
Phase	위상각

고조파 유효전력의 위상각은 고조파 전압 전류 위 상차를 나타냅니다.

3 [Max Order] 박스를 탭하여 일람에서 최대 표시 차수를 선택한다

50th, 100th, 200th, 500th

측정 중인 동기 주파수에 따라, 설정한 최대 차수 까지 표시되지 않을 수 있습니다.

중간 고조파 리스트의 표시

측정 모드가 IEC 측정 모드일 때, 중간 고조파를 표시할 수 있습니다. [Interharmonics] 설정을 ON으로 하면 중간 고조파 성분이 고조파 측정값 옆에 표시됩니다. 왼쪽에 고조파, 오른쪽에 중간 고조파의 측정값이 표시됩니다.

23-0 100		ACEG CH 1 UNUUU 1P2W	0	Sync:U1 /U1 LPF :OFF	Auto 6 Auto 1	V A	Upper: 1 Lower: 1	OkHz 2 O Hz	DOms	123	USB
		field	en us :	50.0003 Hz	U.ma1:5.4	9173 V	U _{thd1} :4	7.735 %	1/5		\equiv
									Ite	m	*****
	0 22490	0 41707		0 16000	0.00075		0.04024	0.03194		U1	Λ
	-0.32469	0.41707	14:	0.16002	0.09075	20;	0.04934	0.02104	60	ntent	-
	4.85577	0.40351		0.26100	0.08487		0.16735	0.00866		itteint	
	0.69249	0.37731		0.13995	0.07226		0.00190	0.00799		Level	WICH
	1.43304	0.33964		0.25282	0.05431		0.15656	0.01913			
	0.56024	0.29323		0.07687	0.03352		0.04331	0.02908			lin.
	0.78316	0.24007		0.25551	0.01264		0.13023	0.03521			
	0.37349	0.18388		0.00287	0.01148		0.06584	0.03823			
	0.61416	0.12699		0.23117	0.02809		0.11182	0.03706			
	0.17320	0.07308		0.06299	0.04193		0.06210	0.03275	20		
	0.53954	0.02555		0.18687	0.05027		0.11609	0.02554	Int	erharmonics	ח
	0.00577	0.02189		0.09332	0.05375		0.03630	0.01626		ON	
	0.44143	0.05261		0.15657	0.05157		0.12441	0.00676		- A12231 - A	ע
	0.11546	0.07531		0.08606	0.04503		0.00142	0.00628			
	0.33067	0.08762		0.15914	0.03465						
											e

[Interharmonics] 박스를 탭하여 설정을 [ON]으로 한다

중간 고조파 리스트를 표시할 수 있는 항목은 전 압, 전류의 실효값과 함유율입니다. 그 이외의 항목을 선택하면 [Interharmonics] 가 [OFF]가 됩니다.

전력의 수치 표시

3

고조파 리스트 표시의 레이아웃 변경

[Order layout] 설정에 의해 리스트 표시 레이아웃을 변경할 수 있습니다.

All

		feese us :	50.00	001 Hz	U_ma1:5.4	9228 V	U _{thd1} :48	.236 %	1/1		1.1.1
	0.00472								Ite	em -	
	4.94484	0.23542		0.12056		0.08101		0.06099		U1	
	0.00011	0.00004		0.00006		0.00005		0.00007			
	1.64829	0.21492		0.11492		0.07843		0.05953	Co	ontent	
	0.00007	0.00004		0.00006		0.00005		0.00006		Level	
	0.98895	0.19775		0.10984		0.07603		0.05815		- Control	
	0.00004	0.00006		0.00006		0.00004		0.00005	M	ax Order	
	0.70637	0.18308		0.10516		0.07374		0.05681		- COTOCI	
	0.00007	0.00004		0.00004		0.00006		0.00004		100th	1
	0.54936	0.17045		0.10084		0.07163		0.05550			
	0.00006	0.00005		0.00006		0.00006		0.00004	> 0	rder layout	
	0.44952	0.15945		0.09692		0.06961		0.05427		All	
	0.00006	0.00008		0.00005		0.00005		0.00004			
	0.38034	0.14977		0.09324		0.06768		0.05312	In	terharmonics	
	0.00008	0.00005		0.00005		0.00007		0.00008			
	0.32961	0.14123		0.08985		0.06586		0.05203			
	0.00008	0.00005		0.00005		0.00005		0.00005			
	0.29084	0.13360		0.08670		0.06415		0.05094			
	0.00005	0.00005		0.00005		0.00004		0.00004			
	0.26022	0.12675		0.08376		0.06255		0.04990			
	0.00006	0.00005		0.00004		0.00007		0.00004			

모든 차수를 1열에 나열하여 표시하는 레이 아웃입니다. 1종류의 측정값에 대하여 동시 에 50차 또는 100차분을 1화면에 표시합니 다.

Odd/Even

		ACEG CH 1 IVIOUU 1P2W	a	Sync:U1) LPF :OFF	/01	Auto 6 V Auto 1 A	Upper: Lower:	10kHz 10 Hz	200ms	US
		fie	RHUS	50.0002		U _{rms1} : 5.4921	6V U _{thd1} :	48.236 %	1/13	Ξ
	Level [V]	% of Fnd (%		Phase [*]		Level [V]	% of Fnd [%]	Phase [*	j Item	
						0.00481	0.097	90.000	U1	ſ
	4.94472	100.000		0.000		0.00007	0.001	- 53.493		
	1.64824	33.333		0.004		0.00008	0.002	- 16.841		
	0.98892	20.000		0.007		0.00006	0.001	98.610		
	0.70638	14.286		0.008		0.00007	0.001	26.761		
	0.54941	11.111		0.012		0.00005	0.001	-162.922		
	0.44950	9.091		0.009		0.00005	0.001	107.682		
	0.38037	7.692		0.016		0.00004	0.001	10.537		
	0.32962	6.666		0.017		0.00005	0.001	37.093	Orderlaugut	
	0.29079	5.881		0.020		0.00005	0.001	143.205	> Order tayout	
	0.26019	5.262		0.020		0.00003	0.001	-125.875	Odd/Even	
	0.23544	4.761		0.020		0.00006	0.001	142.869		
	0.21496	4.347		0.022		0.00005	0.001	33.912	Interharmonics	
	0.19772	3.999		0.030		0.00004	0.001	102.147		
	0.18308	3.703		0.035		0.00003	0.001	116.045		
	0.17045	3.447		0.028		0.00005	0.001	153.419		
	0.15946	3.225		0.025		0.00003	0.001	43.812		
	0.14980	3.029		0.036		0.00003	0.001	- 29.318		
	0.14123	2.856		0.036		0.00004	0.001	126.789		
	0.13360	2.702		0.026		0.00004	0.001	35.795		1
	0.12674	2.563		0.032		0.00003	0.001	92.948		

화면 왼쪽에 홀수차의 측정값, 오른쪽에 짝수 차의 측정값 리스트를 표시하는 레이아웃입니 다. 전압, 전류, 전력에 대하여 3종류의 측정 값(실효값, 함유율, 위상각)을 동시에 40차 분을 1화면에 표시합니다.

고조파 벡터의 표시

고조파 각 차수의 전압, 전류와 위상각을 벡터 그래프로 표시합니다.

1벡터 표시

1개의 벡터 그래프에 모든 채널의 벡터를 표시합니다.

표시 화면 [MEAS] > [VECTOR] > [VECTOR1]

- 1 표시할 채널을 탭하여 선택한다
- 2 [Order] 박스를 탭하여 Y 로터리 노브를 돌 려 표시 차수를 설정한 후, [Order] 박스를 탭하여 확정한다 녹색 점등: 1단계씩 변경

빨간색 점등: 10단계씩 변경

3 [Scale] 박스를 탭하여 Y 로터리 노브를 돌 려 배율을 설정한 후, [Scale] 박스를 탭하 여 확정한다

2벡터 표시

표시 화면 [MEAS] > [VECTOR] > [VECTOR2]

2개의 벡터 그래프에 각각 선택한 결선의 그래프를 표시합니 다.

4벡터 표시

표시 화면 [MEAS] > [VECTOR] > [VECTOR4]

4개의 벡터 그래프에 각각 선택한 결선의 그래프를 표시합니다.

표시 화면 [INPUT] > [COMMON]

Measurement mode WideBand WideBand

[Grouping] 박스를 탭하여 일람에서 고조 파 측정치에 대한 중간 고조파의 연산 방법을 선택한다

OFF	기본파의 정수배 성분만을 그 차수의 고조파로 삼습니다.
TYPE1	고조파 서브 그룹을 그 차수의 고조파 로 삼습니다. 당사 PQ3198의 고조파와 호환성이 있습니다.
TYPE2	고조파 그룹을 그 차수의 고조파로 삼 습니다.

2 [THD calculation order] 박스를 탭하여 Y 로터리 노브를 돌려 THD 연산 차수를 설정한 후, [THD calculation order] 박스를 탭하여 확정한다

녹색 점등 : 1단계씩 변경 빨간색 점등 : 10단계씩 변경

THD 연산 차수: 총 고조파를 몇 차까지 연산할 것인지에 대한 상한 차수

2~500(1 스텝씩)

- 측정 모드나 기본 주파수에 의해 해석 차수가 설정한 상한치까지 이르지 못하는 경우는 해석 차수를 상한으로 해서 연산합니다.
- 리스트나 그래프로 표시되는 고조파 측정치나 통신으로 취득되는 고조파 측정치는 여기서 설정한 상한 차수의 제한 을 받지 않습니다.

3 [THD calculation method] 박스를 탭하여 일람에서 총 고조파 왜곡률 THD의 연산식을 선택한다

이 설정은 모든 채널의 전압과 전류의 모든 고조파 측정에서 유효합니다.

THD-F	기본파당 총 고조파의 비율 IEC 규격 등에서 일반적으로 사용되는 설정입니다.
THD-R	기본파를 포함한 총 고조파당 총 고조파의 비율 크게 왜곡된 파형의 경우는 THD-F에 비해 낮은 값이 됩니다.

THD란

Total Harmonic Distortion의 약어로 총 고조파 왜곡률을 나타냅니다.

그루핑 (Grouping) 이란

고조파 측정에서는 고조파 모드나 기본파 주파수에 따라 window wave number가 결정됩니다. 이 window wave number가 1 파 이외인 경우는 기본파의 정수배 (n 배) 고조파 성분 간에 window wave number에 비례한 개수 (window wave number - 1)의 스펙트럼선 (출력 BIN)을 얻을 수 있어 이것을 중간 고조파 (차수간 고조파)라고 부릅니다.

고조파 측정에서는 이 중간 고조파를 어떻게 다루느냐에 따라 측정치에 차이가 생기므로 IEC 규격 등에서 그루핑으로 규정되어 있습니다.

일반적으로 TYPE1의 범위를 "고조파 서브 그룹", TYPE2의 범위를 "고조파 그룹"이라고 부르며 범위 내의 출력 BIN을 제곱의 합에 대한 제곱근으로 구하여 산출됩니다.

중간 고조파가 존재하지 않는 경우나 광대역 측정 모드에서 window wave number가 1파인 경우는 어느 그루핑 방식을 선택해도 측정치는 일치합니다. 중간 고조파가 존재하는 경우, 고조파 측정치는 일반적으로 "OFF < TYPE1 < TYPE2"의 관계가 있습니다.

또한, IEC 측정 모드에서의 중간 고조파 서브 그룹과 중간 고조파 그룹은 각각 다음 그림과 같이 됩니다.

또한, 그루핑이 OFF 로 설정되어 있을 때에는 중간 고조파 측정값이 제로로 되는 점에 주의해 주십시오.

3.5 효율 및 손실 측정

본 기기는 유효 전력값, 모터 파워값을 이용해 효율 η(%)과 손실 Loss(W)를 산출하여 표시할 수 있습니 다. 예를 들면, 인버터, 파워 컨디셔너 등 각종 전력 변환기의 입출력 간 효율 및 손실, 모터의 입출력 간 효율 및 손실이나 종합 효율을 동시에 산출할 수 있습니다.

연산 방식의 선택

효율 및 손실 측정의 연산 방식을 [Fixed] 또는 [Auto] 에서 선택할 수 있습니다.

2022-09-22 10	56:38 Midela							A 1 2 3 4 5 5 7 5	USB
	η1	0.057	%		η_2	100.000	%		꽦
P ₁		C	P _{fnd1}	P ₁		C	P ₁	Mode	#8896 57
P ₂			P _{fnd2}	OFF			OFF		CHARMEN
Pa		n	P _{fnd3}	OFF		n	OFF	4	<u>E. E</u>
P4			P _{fnd4}	OFF			OFF		COMMEN
P ₅	2		Pfods	OFF	5		OFF		%
P ₆	Loss.	8 24200	mW	UFF	Loss	0 00000	W		BHICKNEY
	20331	0.21200			20332	0.00000			
	η_3	100.000	%		η₄	100.000	%		-00
P ₁			P ₁	P ₁		C	P ₁		HATTON
OFF			OFF	OFF			OFF		
OFF		1	OFF	OFF			OFF		
OFF	51-		OFF	OFF			OFF		# .
OFF	2		OFF	OFF	5		OFF		000
OIT	Loss	0.00000	W	OIT	Loss.	0.00000	w		Ć,

표시 화면 [INPUT] > [EFFICIENCY]

1 [Mode] 박스를 탭하여 연산 모드를 선택한 다

Fixed	고정 모드
Auto	자동 모드

전력의 수치 표

시

3

[Fixed] 모드

설정된 입력 항목과 출력 항목에 대해서 효율과 손실을 연산하여 표시합니다. 효율 η, 손실 Loss의 연산 식은 각각 4식(η1~η4, Loss1~Loss4)까지 설정할 수 있습니다.

표시 화면 [INPUT] > [EFFICIENCY]

최신의 효율 연산값

1 연산식의 입력측 항목을 선택한다

2 연산식의 출력측 항목을 선택한다

각 그림의 왼쪽에서 입력측 전력 측정치를, 오른쪽 에서 출력측 전력 측정치를 선택합니다. 효율 연산 식 1식당 입력과 출력을 6개까지 선택할 수 있으 며, 그 6개를 가산한 값으로 효율을 계산합니다.

	. —				
입력 항목	n,	0.057 %	출력 항목		
P in1	P1	P _{fnd1}	P out1	입력측	Pin = Pin1 + Pin2 + Pin3 + Pin4
P in2	P2	P _{fnd2}	P out2		+ Pin5 + Pin6
P in3	P ₃	Pfnd3	P out3	출력측	Pout = Pout1 + Pout2 + Pout3
P in4	P4	Pfnd4	P out4		+ Pout 4 + Pout5 + Pout6
P in5	P _s	P _{fnd5}	P out5	η	100 × Pout / Pin
P in6	P ₆	P _{fnd6}	P out6	Loss	IPinl – IPoutl
	Loss ₁	8.24200 mW			
		Υ Υ			

최신의 효율 연산값

• 모터 파워(Pm)의 측정은 모터 해석 내장 모델만 선택할 수 있습니다. 모터 입력 설정 화면에서 모터 파워(Pm) 측 정이 가능하도록 설정해 주십시오.

참조: "모터 입력" (p.100)

- 전력 레인지가 다른 결선 간의 연산에서는 큰 쪽의 전력 레인지에 맞춘 데이터에 따라 산출합니다.
- 동기 소스가 다른 결선 간의 연산에서는 연산 시의 최신 데이터에 따라 산출합니다.

Tips	측정치의 편차를 줄이려면

- 변동이 심한 부하나 과도한 변화가 있는 부하의 측정에서는 측정치가 균일하지 못할 수 있습니다. 그 경우는 데이터 갱신율을 느리게 (200 ms) 한 뒤, 애버리지 기능의 이동 평균 모드와 조합해 주십시오.
- 입출력 중 어느 하나가 직류(DC)인 경우, 직류를 측정하는 채널의 동기 소스 설정을 교류 측과 공통 으로 함으로써 효율 측정치의 편차를 줄일 수 있습니다.

[Auto] 모드

입력과 출력이 시간 경과와 함께 변화하는 측정 대상에서 자동으로 입출력을 판정하여 효율과 손실을 연산 할 수 있습니다.

화면의 효율도 좌측에는 값이 양수일 때 입력 또는 음수일 때 출력으로 취급되는 항목을, 우측에는 값이 양 수일 때 출력 또는 음수일 때 입력으로 취급되는 항목을 설정해 주십시오.

설정 예

하이브리드 차량 PCU의 측정

PCU와 배터리 간(P1), 발전용 모터 간(P2), 구동용 모터 간(P3)을 본 기기로 계측합니다. 하이브리드 차량의 주행 상태에 따라 P1, P2, P3의 입출력이 시간 경과와 함께 변화합니다.

급가속 시	P1: 입력	P2 : 입력	P3: 출력
감속, 제동 시	P1: 출력	P2: 입력	P3: 입력
통상 주행 시	P1: 출력	P2: 입력	P3: 출력

각각의 주행 상태일 때의 화면과 효율, 손실의 연산식은 다음과 같습니다. P1, P2, P3의 입출력 상태에 따라 화살표 방향이 바뀝니다.

효율:η = -

감속 & 제동 시

 P_1

 P_2 OFF

OFF

OFF

OFF

손실: Loss = |P1|+ |P2| - |P3|

 η_1

93.128

216.730

68.438

%

 P_3 OFF

OFF

OFF

OFF

OFF

%

nW

효율:η**=** -

손실: Loss = - |P1|+|P2|+|P3|

Loss

|P1| |P2|+ |P3| *100

통상 주행 시 η_1

손실: Loss = - |P1|+ |P2| - |P3|

효율 및 손실의 표시

표시 화면 [MEAS] > [VALUE] > [CUSTOM]

2022-12-01 11:04:49	WideBund De De La CEC CH 1 S DE DE DE DE DE DE LA CEC	ync:U1 /U1 Manu 1.5 PF :OFF Manu 50	kV Upper: 2MHz A Lower: 10 Hz		* 1 2 3 4	USB
U _{rms1}	0.00034 k	V U _{rms1}	0.00034	k۷		
U _{rms1}	0.00034 k	V U _{rms1}	0.00034	k۷		 @
U _{rms1}	0.00034 k	V U _{rms1}	0.00034	k۷		****
U _{rms1}	0.00034 k	V U _{rms1}	0.00034	k۷		
Primary Se CH1 CH	condary 12 CH3 CH4	сн5 сн6	CH7 CH8 Moto	Others	Ň	
					tems	
$\eta_1 = \eta_2$ Loss ₁ Lo	e η ₃ η ₄ oss ₂ Loss ₃ Loss	UDF ₆ UDF ₃	UDF ₈ UDF ₉		Items Items	.
OFF		UDF ₁₁ UDF ₁ UDF ₁₆ UDF ₁	2 UDF ₁₃ UDF ₁₄ 7 UDF ₁₈ UDF ₁₉	UDF ₁₅ UDF ₂₀	Items	

- 1 화면에 표시할 항목 수를 선택한다
- 2 항목명을 탭하여 기본 측정 항목의 설정 창을 연다
- **3** [Others]를 탭한다
- 4 효율 [η₁]부터 [η₄]까지, 손실 [Loss₁]부
 터 [Loss₄]까지 중에서 1개를 선택한다

3.6 모터 측정(모터 해석 내장 모델)

모터 해석 내장 모델에서는 외부의 토크 센서 및 회전계와 조합한 모터 해석이 가능합니다. 또한, 모터 해 석용의 모터 입력부는 독립된 아날로그 DC 입력(최대 4채널) 또는 펄스 입력(최대 8채널)으로도 사용 할 수 있으며, 파형 측정의 트리거로도 사용할 수 있습니다. 참조: "트리거의 설정" (p.120)

모터 측정의 결선

본 기기의 모터 해석 내장 모델에서는 외부의 토크 센서 및 회전계와 조합한 모터 해석이 가능합니다. 모터 해석 기능을 사용하면 토크 센서나 로터리 인코더(증분형)등의 회전계에서 신호를 가져와 토크, 회전수, 모터 파워, 미끄럼의 측정을 할 수 있습니다.

또한, 이 입력을 4채널의 아날로그와 4채널의 펄스 입력으로 사용할 수도 있습니다.

토크미터 및 회전계의 연결

모터 해석 내장 모델에서는 본 기기의 뒷면에 8개의 입력 단자(절연형 BNC 커넥터)가 있습니다. 본체와 각 단자 간 및 CH A~ CH H의 각 단자도 절연되어 있으므로 접지 전위가 다른 여러 센서 등을 연결할 수 있습니다.

CH A, CH C, CH E, CH G	아날로그 DC, 주파수, 펄스 입력
CH B, CH D, CH F, CH H	주파수, 펄스 입력

이들 채널을 조합하여 모터 해석을 할 수 있을 뿐 아니라, 독립된 아날로그 신호 및 펄스 신호의 입력 채널 로도 사용할 수 있습니다.

토크미터 및 회전계의 연결 방법

준비물: L9217 접속 코드(필요 수량), 연결 기기(토크 센서, 회전계 등)

- 1 본 기기와 연결 기기의 전원이 꺼졌는지 확인한다
- 2 접속 코드로 연결 기기의 출력단자와 본 기기를 연결한다 참조: "모터 해석 연결 예" (p.97)
- 3 본 기기의 전원을 켠다
- 4 연결 기기의 전원을 켠다

결선 방법

모터 입력의 사용 방법에는 복수의 동작 모드와 연결 패턴이 있습니다.

표시 화면 [INPUT] > [MOTOR]

Motor analysis o	ntion w	iring	91	CH A	CH B	CHC	CH D	
motor anatysis o	priori il		Parameters	Torque	Speed	Torque	Speed	
CH A-D	CHE	н	Upper f lim.	2M	IHz	2M	Hz	
	снА		Lower f lim.	10	Hz	10	Hz	
Torque			Sync. source	D	ic	D	С	
Pulse	®		Input settings	Analog	Pulse	Frequency	Pulse	
	CHC		LPF/PNF	OFF	OFF	OFF	OFF	
Torque			U range	5V				
Pulse	- 0		Torque scale	+ 1.00	Nm			
			Rated torque			+ 1.00	Nm	
			Center frq.			60.00000	kHz	
Torque meter con	rection		Frq. range			30.00000	kHz	
	CHA	CHC	RPM scale					
Nonlin. correction	OFF	OFF	Pulse count		2		2	
Friction correction	OFF	OFF	No. of poles		4		4	
			Slin		6		f	

[Individual input] 모드

모터 입력을 독립된 아날로그 DC 입력이나 펄스 입력으로 사용합니다.

동작 모드	설정 가능 채널	설명
Individual input	AB, CD, EF, GH	전압 신호, 펄스 신호를 측정

전압 출력되는 센서의 신호를 측정하여 표시하거나 펄스 입력을 넣어 그 주파수를 측정하거나 파형을 표시할 수 있습니 다. 3

- [Motor analysis option wiring] 을 탭 하여 설정 창을 연다
- 2 모터 해석 옵션 채널의 동작 모드를 선택한다
- **3** [×]를 탭하여 설정 창을 닫는다

모터 해석 모드

토크 센서나 회전계로부터의 신호를 입력하여 모터 해석을 합니다.

연결 패턴	설정 가능 채널	설명
패턴 1	AB, CD, EF, GH	토크 신호와 회전수 펄스 신호를 입력하
Torque, Speed (Pulse)	최대 4 모터 동시 해석	여 모터 해석을 실행
패턴 2 Torque, Speed, Direction, Origin	ABCD, EFGH 최대 2개 모터 동시 해석	토크 신호, 회전수 펄스 신호, 회전 방향 신호, 원점 신호를 입력하여 모터 해석을 실행
패턴 3	ABCD, EFGH	토크 신호, 회전수 펄스 신호, 회전 방향
Torque, Speed, Direction	최대 2개 모터 동시 해석	신호를 입력하여 모터 해석을 실행
패턴 4	ABCD, EFGH	토크 신호, 회전수 펄스 신호, 원점 신호
Torque, Speed, Origin	최대 2개 모터 동시 해석	를 입력하여 모터 해석을 실행
패턴 5	ABCD, EFGH	토크 신호, 회전수 아날로그 DC 신호를
Torque, Speed (Analog)	최대 2개 모터 동시 해석	입력하여 모터 해석을 실행

패턴 1: 이웃하는 2채널을 한 쌍으로 하여 모터를 해석하는 모드입니다. 모터 파워나 모터 효율을 최 대 4계통까지 동시에 측정할 수 있습니다.

패턴 2, 3, 4, 5: 4채널을 한 쌍으로 하여 모터를 해석하는 모드입니다. 최대 2계통까지 동시에 측정할 수 있습니다. 모터 파워나 모터 효율을 측정할 뿐 아니라 회전 방향과 회생/역행을 조합한 해석이나 전기각 측정과 같은 고도의 해석을 하는 것도 가능합니다. 또한, 기계각 1주기에 동기한 측정도 가능합니다.

- 모터 해석 모드에서 원점 신호(Z상 펄스)를 입력하는 경우는 반드시 같은 인코더에서 출력되는 펄스를 회전수 펄스 신호로 입력해 주십시오. 회전수 펄스 신호의 상승 타이밍과 원점 신호의 상승 타이밍의 앞 뒤 관계가 바뀌면 회전수 측정이 불안정해질 수 있습니다.
- 모터 해석에서 펄스를 기준으로 한 측정을 하는 경우, 펄스 수는 모터 극대수(모터 극수의 1/2)의 정배 수가 되는 신호를 사용해 주십시오. (p.69)
- 노이즈가 큰 환경에서는 연결하는 센서와 본 기기를 같은 전위에 접지해 주십시오.

Motor analysis option wiring (모터 해석 결선)

	CH A	CH B	СН С	CH D	CH E	CH F	CH G	СНН
Individual Input	Indiv.	Indiv.	Indiv.	Indiv.	Indiv.	Indiv.	Indiv.	Indiv.
	Mot	or 1	Motor 2		Motor 3		Motor 4	
Torque Speed (Pulse)	Torque	Speed	Torque	Speed	Torque	Speed	Torque	Speed
Torque Speed Direction Origin	Torque	Speed	Direction	Origin	Torque	Speed	Direction	Origin
Torque Speed Direction	Torque	Speed	Direction	OFF	Torque	Speed	Direction	OFF
Torque Speed Origin	Torque	Speed	OFF	Origin	Torque	Speed	OFF	Origin
Torque Speed (Analog)	Torque	OFF	Speed	OFF	Torque	OFF	Speed	OFF

모터 해석 연결 예

CH A or CH E

CH B or CH F

CH C or CH G

CH D or CH H

CH A 부터 CH D에 토크미터와 회전계를 연결하는 예입니다. CH E 부터 CH H에 연결할 경우에도 같은 방법을 사용할 수 있습니다.

예1: 모터 파워 측정 예(모터 해석 모드의 패턴 5를 설정)

CH A에 토크 신호, CH C에 회전수 신호를 입력하고 모터 파워 측정이나 모터 효율을 측정합니다.

토크 신호는 아날로그 DC 신호와 펄스에 의한 주파수 입력이 가능합니다.

회전수 신호는 아날로그 DC 신호만 가능합니다. 토크 신호와 회전수 신호는 서로 다른 센서에서의 입력도 가 능합니다.

예2: 모터 파워 측정, 정회전 역회전 검출 포함(모터 해석 모드의 패턴 3을 설정)

CH A에 토크 신호, CH B에 A상 펄스 신호, CH C에 B상 펄스 신호를 입력하여 A상 펄스와 B상 펄스의 위상차에서 모 터의 정회전 역회전 방향도 살피면서 모터 파워나 모터 효율 을 측정합니다.

토크 신호는 아날로그 DC 신호와 펄스에 의한 주파수 입력이 가능합니다.

예3: 모터 파워 측정, 전기각 측정 예(모터 해석 모드의 패턴 2를 설정)

토크 출력

A상 펄스 출력

B상 펄스 출력

Z상 펄스 출력

CH A에 토크 신호, CH B에 A상 펄스 신호, CH C에 B상 펄스 신호, CH D에 Z상 펄스(원점 신호)를 입력하여 전기 각을 측정하면서 모터 파워나 모터 효율을 측정합니다.

동기 소스를 Zph.에 설정하여 전기각이 아니라 기계각 주기 에 동기시키는 것도 가능합니다.

토크 신호는 아날로그 DC 신호와 펄스에 의한 주파수 입력이 가능합니다.

정회전 역회전 검출을 하지 않는 경우는 CH C 로의 B상 펄 스는 필요 없으므로 패턴 4를 설정해 주십시오.

동기 소스 Zph.를 사용하는 경우는 CH D로의 Z상 펄스 입 력뿐 아니라 CH B로의 A상 펄스 입력도 필수입니다.

예4: 모터 파워 측정 예(모터 해석 모드의 패턴 1을 설정)

CH A or CH E	þc	토크 출력
CH B or CH F]C	회전수 출력
CH C or CH G]C	토크 출력
CH D or CH H	C	회전수 출력

CH A와 CH B에 토크 신호와 회전수 신호를 입력하고 첫 번째 모터 파워 또는 모터 효율을 측정합니다. CH C와 CH D에 토크 신호와 회전수 신호를 입력하고 두 번째 모터 파워 또는 모터 효율을 측정합니다.

토크 신호는 아날로그 DC 신호와 펄스에 의한 주파수 입력이 가능합니다.

회전수 신호는 펄스만 입력 가능합니다.

연결한 모터 입력의 설정 및 측정치의 표시

측정치의 표시나 입력의 설정 방법은 "3.6 모터 측정(모터 해석 내장 모델)" (p.94)을 참조해 주십시오.

모터 측정치의 표시

기본 표시 [BASIC] 화면에서 표시

표시 화면 [MEAS] > [VALUE] > [BASIC]

CH A Analog Sync:DC 5 V LPF: OFF Upper: 2MHz Lower: 10 Hz 50ms CH C Analog Sync:DC 5 V LPF: OFF Upper: 2MHz Lower: 10 Hz

21-10-12 12:42:0	5 WideBand	Analog Sync:DC	5 V LPF: OFF	Upper: 204z Lower:	10 Hz 50ms	1234	USR
-	0 1 4 1 5 0	Share Share	-	0 47000	N		
1 _{q1}	0.14158	Nm	1 _{q3}	0.47232	Nm		Ŵ
S _{pd1}	0.0000	M _{r/min}	S _{pd3}	0.0000	M _{r/min}		() 1111
P _{m1}	0.0000	MW	P _{m3}	0.0000	MW		
S _{lip1}	0.548	%	S _{lip3}	0.685	%		
T _{q2}	0.93456	Nm	T _{q4}	0.31703	Nm		
S _{pd2}	0.0000	M _{r/min}	S _{pd4}	0.0000	M _{r/min}		
P _{m2}	0.0000	MW	P _{m4}	0.0000	MW		
S _{lip2}	0.571	%	S _{lip4}	0.352	%		

 1 채널 선택의 ◀ CH ▶ 키를 눌러 표시를 [A-D] 또는 [E-H]로 전환한다

[A-D]와 [E-H] 어느 쪽을 선택해도 설정상 표시 가능한 모든 모터의 측정치가 표시됩니다.

[A-D] 표시의 경우, 화면 상부에 다음과 같이 표시됩니다.

CH A, CH C의 입력	상단에 [CH A], 하단에 [CH C]의 입력 설정을 나타냅니다. [Analog], [Freq], [Pulse] 중 하나가 표시됩니다.
모터 입력의 동기 소스	측정의 기본이 되는 주기(제로 크로스)를 결정하는 소스의 설정을 표시합니다. 모터 해석 옵션의 연결 설정에 따라 상하 2단으로 표시됩니다.
필터 설정	상단에 [CH A], 하단에 [CH C]의 레인지와 필터를 나타냅니다. [Analog] 설정의 경우는 레인지와 필터의 설정치를 표시합니다. [Freq]와 [Pulse]의 경우는 필터의 설정치를 표시합니다.

[E-H] 표시의 경우, 표 안의 CHA, CHC를 각각 CHE, CHH로 바꿔 읽어주십시오.

선택 표시 [CUSTOM] 화면에서 표시

표시 화면 [MEAS] > [VALUE] > [BASIC]

- 광링크 모드(광링크 인터페이스 옵션)의 경 우, [Primary] (프라이머리 기기)의 항목인 지 [Secondary] (세컨더리 기기)의 항목 인지를 선택한다
- **2** [Motor]를 탭한다
- 3 표시할 항목을 선택한다

Тq	토크 값
Spd	회전수
Pm	모터 파워
Slip	미끄럼

모터 입력의 영점 조정

다음의 경우는 입력 신호의 오프셋에 의한 오차를 제거하기 위해 영점 조정을 실행합니다.

- CH A, CH C, CH E, CH G에 아날로그 DC 전압이 입력된 경우
- 주파수로 토크 입력한 경우

다음 경우는 토크 신호나 회전수 신호가 제로 입력이 되어 있는 상태에서 영점 조정을 실행해 주십시오.

- 토크가 발생하지 않았을 때 토크 값이 표시된 경우
- 회전이 멈췄을 때 회전수가 표시되는 경우

- 채널 표시 LED에서 [A-D] 또는 [E-H]가 점등된 경우에 OADJ 키를 누르면 측정 화면의 모든 페이지 에서 모터 입력의 영점 조정을 실행할 수 있습니다.
- 입력 설정이 [Pulse] 로 되어 있는 채널에서는 영점 조정이 실행되지 않습니다.
- 영점 조정 가능한 입력 범위는 ±10% of range입니다. 범위 외의 입력이 있는 경우는 보정되지 않습니다.

모터 입력

"모터 측정의 결선" (p.94)을 참고하여 토크 센서나 회전계를 연결합니다. 그 연결에 맞춰 모터 해석을 설정해 주십시오.

표시 화면 [INPUT] > [MOTOR]

- [Motor analysis option wiring]을 탭 하여 모터 해석의 결선을 선택한다
- 2 [CH A-D] 또는 [CH E-H]를 탭하여 설정을 변경할 채널을 표시한다
- 3 [Upper f lim.] 와 [Lower f lim.] 박스를 탭하여 일람에서 주파수를 선택한다

모터 입력에 펄스를 입력하는 경우에 설정합니다.

Upper f lim.	100 Hz, 500 Hz, 1 kHz, 5 kHz, 10 kHz, 50 kHz, 100 kHz, 500 kHz, 1MHz, 2 MHz
Lower f lim.	0.1 Hz, 1 Hz, 10 Hz, 100 Hz

상한 주파수

입력하는 펄스의 최고 주파수를 초과하는 가장 낮은 주파수를 설정합니다.

[Motor analysis option wiring]의 설정이 [Individual input]인 경우, D/A 출력하는 경우의 상한치로 사용합 니다.

모터 해석 모드인 경우는 회전수나 모터 파워의 표시, D/A 출력하는 경우의 상한치를 연산하는 펄스 주파수로 사용합니다.

 회전수 상한치 =
 60 × 설정한 상한 주파수 필스 수 설정치

 모터 파워 상한치 = 토크 최대치 ×
 2 × π × 회전수 상한치 60

또한, 회전 신호가 [Analog] 로 입력되는 경우, 회전수 상한치는 회전수 스케일 값 × 전압 레인지 값으로 계산됩니다.

하한 주파수

입력하는 펄스를 측정하는 하한 주파수를 설정합니다. 다음의 동기 소스를 선택한 경우, 측정하는 하한 주파수로도 하한 주파수를 사용합니다.

Ext1, Ext2, Ext3, Ext4
Zph1, Zph3
CH B, CH D, CH F, CH H

4 [Sync. source] 박스를 탭하여 설정 창을 연다

모터 해석 항목을 연산하는 기본이 되는 주기를 결정하는 소스를 설정합니다. 여기서 선택한 소스의 구간에서 모터 해석 항목을 측정합니다. 참조: "동기 소스" (p.69)

U1~U8, I1~I8, DC, Ext1~Ext4, Zph1, Zph3 CH B, CH D, CH F, CH H

CH D또는 CH H에 원점 신호(Origin)를 설정하면 동기 소스에서 [Zph1] 또는 [Zph3]을 선택할 수 있습니다. 설정된 모터 동기 소스는 [Meas] > [Basic] 화면에서 [A-D][E-H]를 표시하고 있을 때에 화면 상부의 [Sync]에 표시됩니다.

중요

• 동기 소스에서 [DC]를 선택한 경우의 구간은 데이터 갱신율과 일치합니다.

(1 ms, 10 ms, 50 ms, 200 ms)

• 변동하는 부하로 모터 효율을 측정하는 경우에는 모터 입력의 측정 채널과 같은 동기 소스를 선택해 주 십시오. 연산 기간을 모터 입력과 모터 출력에서 일치시키면 더욱 정확한 효율 측정이 가능합니다.

5 [LPF/PNF] 박스를 탭하여 일람에서 저역 통과 필터 또는 펄스 노이즈 필터를 선택한다

LPF	OFF (20 kHz), 1 kHz	
PNF	OFF, Strong (100 kHz), Weak (1.8 MHz)	

저역 통과 필터(LPF)

설정 가능 채널

• CH A, CH C, CH E, CH G (입력이 아날로그 DC 로 설정되어 있을 때)

아날로그 DC 입력이 외란 노이즈를 받아 측정이 불안정해지는 경우에는 **[1 kHz]**로 해주십시오. 입력 설정이 아날로그 DC 입력 이외로 설정된 경우, 이 LPF 설정은 입력에 영향을 주지 않습니다.

펄스 노이즈 필터(PNF)

설정 가능 채널

• CH A, CH C, CH E, CH G (입력이 **[Pulse]** 또는 **[Frequency]**로 설정되어 있을 때) • CH B, CH D, CH F, CH H

펄스로 입력하는 주파수나 회전수의 측정치가 노이즈로 인해 불안정해지는 경우에 사용합니다.

중요

- 입력이 아날로그 DC 입력으로 설정된 채널에는 영향을 주지 않습니다.
- [Weak(1.8 MHz)](약)으로 설정한 경우는 약 1.8 MHz 이상, [Strong(100 kHz)](강)으로 설정 한 경우는 100 kHz 이상의 펄스를 검출할 수 없게 됩니다.

6 [Slip] 박스를 탭하여 일람에서 입력 주파수 소스를 설정한다

모터의 미끄럼을 연산하기 위해 모터에 입력된 측정 채널의 주파수를 설정합니다.

 $fU1,\,f11,\,fU2,\,f12,\,fU3,\,f13,\,fU4,\,f14,\,fU5,\,f15,\,fU6,\,f16,\,fU7,\,f17,\,fU8,\,f18$

미끄럼의 연산식

r/min의 경우 100 × -

2 × 60 × 입력 주파수- |회전수| × 모터 극수 설정치

2 × 60 × 입력 주파수

입력 주파수 소스는 모터에 공급되는 전압, 전류 중에서 안정된 신호를 선택해 주십시오.

101

3

전 력

의 수 치

토크 입력 설정

연결하는 토크 센서의 신호 타입을 선택합니다.

Analog	토크에 비례한 직류 (DC) 전압 신호를 출력하는 센서의 경우
Frequency	토크에 비례한 주파수 신호를 출력하는 센서의 경우

선택한 설정에 따라 다음과 같이 설정 항목이 달라집니다.

[Analog]를 선택한 경우

토크 입력을 [Analog] 로 설정한 경우는 센서에 맞춰 [U range], [Torque scale]에서 스케일 값과 단 위를 맞춰 설정합니다.

표시 화면 [INPUT] > [MOTOR]

예: 정격 토크 500 N·m, 출력 스케일 ±10 V인 토크 센서의 경우

U range	10 V
Torque scale	50.00

[U range]

연결하는 토크 센서의 출력 전압에 맞춰 선택합니 다. 토크 입력의 전압 레인지는 채널 표시 LED가 A-D 또는 E-H 점등인 경우, 레인지 키로도 조작 할 수 있습니다. A-D 점등 시: CH A는 U RANGE 키, CH C는 I RANGE 키

E-H 점등 시: CH E는 U RANGE 키, CH G는 I RANGE 키

1 V, 5 V, 10 V

[Torque scale]

텐 키 창에서 입력합니다. 토크 측정치 = 입력 전압 × 스케일링 값으로 표시 됩니다. 토크 단위의 설정과 조합하여 연결하는 토 크 센서 출력 1 V당 토크 값을 설정해 주십시오. (스케일링 값 = 토크 센서의 정격 토크 값 / 출력 풀 스케일 전압 값) 예의 경우, 스케일링 값은 50이 됩니다. (50 = 500 N•m / 10)

-9999.99~-0.01, 0.01~9999.99

[Frequency]를 선택한 경우

토크 입력을 [Frequency]로 설정한 경우는 센서에 맞춰 [Rated torque], [Center frq.], [Frq. range]에서 스케일 값과 단위를 맞춰 설정합니다.

표시 화면 [INPUT] > [MOTOR]

Motor analysis option	wiring	CHE	CH F	CH G	CHH	
	Parameters	Torque	Speed	Direction	Origin	
	Upper f lim.		2MHz			
CH	E Lower f lim.)Hz		
Torque 🔷	Sync. source	DC				
A Phase CH	F Input settings	Frequency	Pulse	Pulse	Pulse	
CH	G LPF/PNF	OFF	OFF	OFF	OFF	
B Phase	U range					
Z Phase	H Tarqua scala					
	Pated torque	A 100 A	les l			
Z-phase reference R	ising Contor fro	T 1.00	sini .			
	Centering.	60.00000 W	INZ			
	Ere man	20.00000				
Torque meter correction	n Frq. range	30.00000 k	tHz			
Torque meter correction CH E	n Frq. range RPM scale	30.00000 k	HZ			
Torque meter correction CH E Ionlin. correction OFF	n Frq. range RPM scale Pulse count	30.00000 k	2			
Torque meter correction CH E Nonlin. correction OFF Friction correction OFF	n Frq. range RPM scale Pulse count No. of poles	30.00000 k	2 4			

[Rated torque]

연결하는 토크 센서의 정격 토크를 설정해 주십시 오.

±0.01m~99999.99k

[Center frq.], [Frq. range]

[Center frq.] (중앙 주파수)에는 토크가 0이 되는 중앙 주파수를, [Frq. range] (주파수 범위)에는 센서의 정격 토크 시 주파수와 중앙 주파수와의 차분 주파수를 각각 설정해 주십시오.

1.000000 kHz~500.0000 kHz

다음의 제한을 벗어나는 수치 설정은 불가합니다. (중앙 주파수 + 주파수 범위) ≤ 500 kHz (중앙 주파수 - 주파수 범위) ≧ 1 kHz

예1: 정격 토크 500 N•m, 출력이 60 kHz ±20 kHz인 토크 센서의 경우

Rated torque	500.00
Center frq.	60.00000
Frq. range	20.00000

예2: 정격 토크 2 kN•m, 정정격 토크 15 kHz, 부정격 토크 5 kHz인 토크 센서의 경우

Rated torque	2.00 k
Center frq.	10.00000
Frq. range	5.000000

표 시

회전 신호의 입력 설정

모터 해석 모드의 연결 패턴에 따라 회전수 신호의 입력 설정이 다릅니다.

Analog	회전수에 비례한 직류(DC) 전압 신호의 경우
Pulse	회전수에 비례한 펄스 신호의 경우

설정에 따라 다음과 같이 설정 항목이 달라집니다.

입력 설정이 [Analog] 인 경우

회전 신호에 맞춰 전압 레인지, 회전수 스케일의 2개 항목을 설정합니다.

표시 화면 [INPUT] > [MOTOR]

Motor analysis o	ption wiring		CHE	CH F	CH G	CHH	
CHAD	CHEH	Parameters	Torque		Speed		
CHAO	CH CH	Upper f lim.	2MHz				
	СНЕ	Lower f lim.		10	DHz		
Torque	- °.	Sync. source		()C		
	CH F ©	Input settings	Analog		Analog		
	CHG	LPF/PNF	OFF		OFF		
Speed	• •	U range	5V		5V		
	СНН	Torque scale	+ 1.00	Nm			1
		Rated torque					
		Center fra.					
forque meter cor	rection	Frg. range					
orque meter cor	CHE	DDMl-					
onlin correction	OFF	RPM scale			+ 1.00	min	
onun. correction	OFF	Pulse count					

[U range]

연결하는 회전 신호의 출력 전압에 맞춰 선택해 주 십시오. 회전 신호 입력의 전압 레인지는 채널 표시 LED 가 [A-D], [E-H] 점등인 경우, 전류 레인지 키로 도 조작할 수 있습니다.

1 V, 5 V, 10 V

[RPM scale]

텐 키 창에서 입력합니다. 회전수 측정치 = 입력 전압 × 스케일링 값으로 표 시됩니다. 연결하는 회전 신호 출력 1 V당 값을 설정해 주십 시오.

±0.00001~99999.9

입력 설정이 [Pulse]인 경우

[Pulse count]

1 회전당 1000 펄스 증분 방식의 로터리 인코더가 연결된 경우는 1000을 설정합니다. 텐 키 창에서 입력합니다. 모터 극수 설정치의 1/2 배수를 설정하면 동기 소 스에서 Ext를 선택할 수 있습니다.

± 1~60000 (기계각 1회전당 펄스 수)

[No. of poles]

미끄럼의 연산이나 기계각에 대응한 주파수로 입 력된 회전수 신호를 전기각에 대응한 주파수로 변 환하기 위해 사용합니다. 텐 키 창에서 입력합니다.

2~254 (짝수)

토크미터 보정 기능

표시 화면 [INPUT] > [MOTOR]

Motor analysis o	ption wiring		CH A	CH B	CH C	CH D
CHAD	CHEH	Parameters	Torque	Speed	Torque	Speed
CHAD	СНА-О СНЕ-Н		2MHz 10Hz DC		2MHz 10Hz DC	
Torque 💿		Sync. source				
Pulse	сн В	Input settings	Analog	Pulse	Frequency	Pulse
	снС	LPF/PNF	OFF	OFF	OFF	OFF
Torque		U range	5V			
Pulse	- 0	Torque scale	+ 1.00	Nm		
		Rated torque			+ 1.00	Nm
		Center frq.			60.00000	kHz
Torque meter con	rection	Frq. range			30.00000	cHz
	CHA CHC	RPM scale				
Nonlin. correction	ON OFF	Pulse count		2		2
Friction correction	ON OFF	No. of poles		4		4
	Setup Setup	Slip		for		f.,

사용하는 토크미터의 교정치가 있는 경우, 교정치와 교정 한 포인트를 입력하여 토크미터의 오차를 보정할 수 있습 니다.

보정 테이블에는 "토크(N•m) -토크 값(N•m)"의 교정치 를 사용하는 비직선성 보정과 "회전수(방향 포함)(r/min) -토크(N•m)"의 교정치를 사용하는 마찰 보정의 2종류가 있습니다. 2종류를 동시에 보정하거나, 또는 어 느 1종류만을 보정할 수도 있습니다.

보정 테이블에 입력하는 값은 최대 11포인트 분입니다. 교정치의 포인트(토크 값, 보정치의 수)는 임의로 설정할 수 있습니다.

11 포인트 전부 입력할 필요는 없습니다.

중요

보정치(교정치)는 본 기기에 표시되는 측정치의 단위로 통일해 주십시오. 측정치가 보정 테이블의 범위 외인 경우 는 보정되지 않습니다.

보정 테이블의 각 값의 입력 범위: 0, ±1.00000 n ~ 999.999 T

파형 표시의 모터 입력 파형은 보정되지 않습니다.

토크(N•m)-토크 값(N•m)의 비직선성 보정의 개념도

회전수(방향 포함, r/min)-토크 보정치(N•m)의 마찰 보정의 개념도(무부하 출력 시)

Ŧ

시

연산식

토크미터 보정이 ON일 때: 토크 값 = S ×(X - 제로 보정치) - At - Bt At = atc - att* Bt = btc*

- S: 스케일링 X: 입력 신호 - 토크 환산치 At: 비직선성 보정치 Bt: 마찰 보정치 비직선성 보정 테이블의 토크 교정치 atc: att: 비직선성 보정 테이블의 토크 교정 포인트 마찰 보정 테이블의 토크 교정치 btc: *: 입력된 포인트 간의 보정치는 선형 보간하여 산출한다.
- . 미국한 또한후 한국 또하지는 한당 또한하여 한물한다.
- 교정치는 사용자가 교정하여 구하거나, 토크미터의 제조사에 문의하여 주십시오.
- 모터 해석의 영점 조정을 한 경우는 보정 기능의 ON/OFF와 상관없이 토크미터 등의 오프셋을 포함하 여 영점 조정을 실시합니다.
- 보정치는 본 기기의 영점 조정 후에 반영되므로 토크 제로 또는 회전수 제로 시에 토크 값이 제로 또는 제 로 부근에 표시되지 않는 경우가 있습니다. 통상 본 기기의 영점 조정 기능을 사용한 경우, 본 기기뿐 아 니라 시스템 전체의 오프셋을 제로로 하므로 제로 토크 입력 시의 보정치는 0으로 설정할 것을 권장합니 다.
- 토크미터의 Hysteresis 특성이나 시험 중인 드리프트를 알고 있는 경우 등에는 제로 토크 입력 시의 보 정치를 입력하여 보다 정확한 측정을 할 수 있습니다.
- 문장 내 단위 (N•m)는 설정에 따라 달라집니다.
- 측정 범위를 넘은 포인트의 보정치는 보정 연산에 사용되지 않습니다.
- 교정치가 % of full scale (% f.s.)로 기재된 경우, 입력하는 교정치는 다음과 같은 계산으로 산출해 주 십시오. 입력하는 교정치 = 토크미터의 full scale × % of full scale
- 토크미터 보정은 설정한 토크 교정 포인트의 범위 내에서만 걸립니다. 범위 외의 토크 값에 대해서도 보 정을 걸고 싶은 경우는 보다 넓은 범위의 토크 교정 포인트를 설정해 주십시오.

모터의 전기각 측정

회전 신호 입력에 펄스가 입력된 경우, 입력 채널 1~8의 [Sync. source]를 [Ext1], [Ext2], [Ext3], [Ext4] 로 설정하면 펄스를 기준으로 한 전압, 전류의 위상 변화를 볼 수 있습니다.

복수 펄스로 전기각을 측정하는 경우

- 원점 신호(Z상)를 사용하기를 권장합니다. 원점 신호(Z상)를 사용하면 원점 신호에 따라 기준 펄스가 결정되고 항상 일정한 펄스를 기준으로 한 위상 측정이 가능합니다.
- 원점 신호(Z상)의 상승을 기준으로 하는 경우, Z상 기준을 "Rising"으로 설정합니다.

원점 신호의 하강을 기준으로 하는 경우, Z상 기준을 "Falling"으로 설정합니다.

- 원점 신호(Z상)를 사용하지 않는 경우, 기준이 되는 펄스는 동기 시에 결정됩니다. 동기가 분리된 경우 는 재동기할 때마다 다른 펄스가 기준이 될 가능성이 있습니다.
- 회전 신호 입력의 펄스에 동기하여 고조파 해석을 하려면 입력 주파수의 정수배 펄스 수가 필요합니다.
 예를 들면, 4 모터에서는 2의 정수배가 되는 펄스 수, 6 모터에서는 3의 정수배가 되는 펄스 수가 필요합니다.
- 내부가 Y 결선된 모터를 3P3W3M 결선으로 측정할 경우는 △-Y 변환 기능을 사용하면 상전압, 상전류 의 위상각을 측정할 수 있습니다.

위상 영점 조정 (PHASE ADJ)

고조파 측정의 동기 소스의 펄스와 결선한 선두 채널의 전압 기본파 성분의 위상차를 제로 보정합니다.

표시 화면 [MEAS] > [VECTOR] > [VECTOR1]

- 1 채널 선택 창에서 위상각 영점 조정을 실행할 채널을 선택한다
- 2
 입력에 따른 보정치를 취득하는 경우,

 [Phase ADJ]의 [Adjust]를 탭한다
- 3 임의의 보정치를 입력하는 경우, 보정치 표시 부를 탭하여 텐 키 창에서 보정치를 입력한다
- 위상 영점 조정은 고조파 측정의 동기 소스의 설정이 [Ext1], [Ext2], [Ext3], [Ext4]로 되어 있는 경 우에만 유효합니다. 그 외의 설정으로 되어 있는 경우는 키 조작을 해도 동작하지 않습니다.
- 동기 언록 상태인 경우는 이 키 조작이 동작하지 않습니다.
- 보정치의 설정 범위는 -180°~ +180°입니다. 0°~360°에서 위상각을 다루는 환경에서는 -180°~+180°로 변환하여 입력해 주십시오.
- 보정치 표시부에는 현재의 위상 영점 조정 보정치가 표시됩니다. [Adjust]를 탭하면 보정치가 덮어쓰기 됩니다.
- 펄스를 기준으로 한 전압, 전류의 위상 측정치에서 설정한 위상 영점 조정 보정치가 차감됩니다.
- 보정치는 본 기기의 전원을 ON/OFF 해도 유지됩니다.
- [Reset]을 탭하면 보정치는 클리어되고, 기준이 되는 펄스와의 위상차를 표시하는 동작으로 되돌아갑 니다.
- 시스템 리셋을 한 경우에도 보정치는 클리어됩니다.

전기각 측정 예

- 1 모터에 통전하지 않은 상태로 부하 측에서 모터를 회전시켜 모터의 입력 단자에 발생하는 유기 전압 을 측정한다
- 2 위상 영점 조정을 한다

U1에 입력된 유기 전압 파형의 기본파 성분과 펄스 신호의 위상차를 제로로 합니다.

3 모터에 통전하여 모터를 회전시킨다 본 기기에서 측정하는 전압, 전류의 위상각은 유기 전압 위상을 기준으로 한 전기각입니다.

중요

위상차에는 회전 입력 신호의 펄스 파형 영향이나 본 기기 내부 회로의 지연이 포함되므로 위상 영점 조 정을 한 주파수와 크게 다른 주파수를 측정하는 경우는 그만큼이 측정 오차가 됩니다.
모터의 회전 방향 검출

회전 신호 입력 CH B 및 CH C 또는 CH F 및 CH G 입력 단자에 증분형 로터리 인코더의 A상 펄스 및 B상 펄스가 입력된 경우, 축의 회전 방향을 검출하고, 회전수에 극성 부호를 부가할 수 있습니다.

[Motor analysis option wiring]에서 [Torque Speed Direction Origin] 또는 [Torque Speed Direction]으로 설정하면 회전 방향을 검출합니다.

회전 방향은 A상 펄스와 B상 펄스의 상승, 하강 검출 타이밍에서 다른 쪽 레벨(High/Low)에 따라 판정 합니다.

정회전

역회전

검출한 회전 방향은 회전수의 측정치에 극성 부호로써 부가되고 모터 파워(Pm)의 측정치에도 반영됩니다.

[Motor analysis option wiring]에서 [Torque Speed Direction Origin] 또는 [Torque Speed Origin]을 선택한 후, CH1부터 CH8까지의 동기 소스를 [Zph1] 또는 [Zph3]으로 설정하면 모터 1회전(기계각 1주기)을 기준으로 한 전압, 전류의 측정치를 볼 수 있습니다.

4극 모터의 예

• 외부 동기 신호(Z상)의 상승을 기준으로 하는 경우, Z상 기준을 "Rising"으로 설정합니다.

외부 동기 신호의 하강을 기준으로 하는 경우, Z상 기준을 "Falling"으로 설정합니다.

- 모터의 극수에 상관없이 항상 모터 1회전을 연산 범위로 삼기 때문에 모터의 기계적 특성에 의한 각 극의 편차를 평균화하여 측정할 수 있습니다.
- 전압, 전류의 고조파 측정치는 "모터의 극수/2"의 차수로서 기본파의 측정치가 나옵니다. 이후, 모터의 극수/2×n차에 전압, 전류의 n차 고조파가 나옵니다.
- 전압, 전류의 주파수 측정치는 전압, 전류의 기본파 주파수를 측정합니다.
- CH A ~ CH D 또는 CH E~CH H의 측정 항목에 따라 입력해 주십시오. CH D 또는 CH H(Z상 펄 스)에 대한 원점 신호 입력뿐 아니라, CH B 또는 CH F(A상 펄스), CH C 또는 CH G(Direction 사 용 시의 B상 펄스)에 대한 회전 신호도 올바르게 입력되어 있어야 합니다.
- 로터리 인코더에서 출력되는 펄스가 아니라 임의의 펄스를 연산 범위의 기준으로 사용할 경우는 모터 해 석의 동작 모드를 [Indiv.]로 설정하고, 입력 채널 1~8의 동기 소스를 CH B, CH D, CH F, CH H로 설정하는 방법을 권장합니다. 선택한 동기 소스에 기준 펄스를 입력해 주십시오.

3.7 IEC 전압 변동 / 플리커 측정

본 기기를 IEC 측정 모드로 하면 IEC61000-4-15에 준거한 플리커 측정기로써 플리커 측정을 할 수 있 습니다.

플리커 측정의 시작은 적산의 시작에 연동합니다.

IEC 측정 모드 시에는 IEC 규격에 준거한 측정을 실현하므로 광대역 측정 모드와 다른 내부 연산 처리를 하고 있습니다. 따라서 IEC 측정 모드 시에는 일부 기능이 제한됩니다. 참조: "2.7 측정 모드" (p.55)

표시 화면 [INPUT] > [COMMON]

- 1 [Measurement mode] 박스를 탭하여 [IEC]를 선택한다
- 2 [Meas. Frequency] 박스를 탭하여 측정 대상 주파수를 설정한다

50Hz, 60Hz

플리커 측정기의 전달 함수 등이 달라지므로 적절 하게 설정해 주십시오.

IEC 측정 모드

- IEC 고조파와 IEC 전압 변동 / 플리커를 측정합니다.
- 측정 라인이 50 Hz 또는 60 Hz 인 경우에 IEC61000-4-7의 규격에 준거한 고조파 측정, IEC61000-4-15의 규격에 준거한 전압 변동 / 플리커 측정을 합니다.
- 데이터 갱신율은 200 ms 로 고정됩니다.
- 측정하는 주파수가 45 Hz 부터 66 Hz까지의 범위를 벗어나는 경우는 고조파 측정 및 전압 변동 / 플리 커 측정을 하지 않습니다.

IEC 플리커 측정의 설정

IEC 플리커 측정의 설정을 합니다.

표시 화면 [INPUT] > [FLICKER]

1 설정할 결선의 [Rated voltage] 박스를 탭 하여 정격 전압을 설정한다

Auto	직전의 입력 전압을 바탕으로 정격 전압을 자동으로 설정합니다․
Manual	수동으로 값을 설정합니다. 설정 범위: 0.001 ~ 999.999

2 [Measured voltage] 박스를 탭하여 측정

대상 전압을 설정한다

이 설정에 따라 플리커 측정기의 전달 함수 등이 달라집니다. 적절하게 설정해 주십시오.

120V, 230V

3 [Pst observation interval] 박스를 탭하

여 **Pst** 관측 기간을 설정한다

통상, 관측 기간은 10분입니다.

00분 30초 ~ 15분 00초

4 [Pst number for Plt]를 탭하여 Plt 연산 에 사용할 Pst 기간의 수를 설정한다 통상, 대상 Pst 수는 12개입니다. 1 ~ 1008

5 [Steady-state range]를 탭하여 정상 범 위 (dmin: 정상 상태로 간주하는 상대 전압 변화의 허용 범위)를 설정한다

0.10 ~ 9.99%

[Tmax threshold level] 를 탭 하 여
 Tmax 판정용 역치를 설정한다

1.00 ~ 99.99%

IEC 플리커 측정 방법

IEC 플리커 측정을 하려면 측정 대상 채널의 결선을 1P2W로 할 필요가 있습니다. 그 이외의 결선이 선 택된 경우, 올바른 값이 출력되지 않습니다.

각종 필터의 초기화가 필요하므로 설정 완료 후, 전압을 입력한 상태에서 1분 정도 경과하고 나서 측정을 시작해 주십시오.

IEC 플리커 측정은 적산의 시작과 연동하며 Plt의 연산 완료 시점에서 정지합니다. Pst 관측 기간이 10 분, Plt 연산 대상 Pst 수가 12개인 경우, 10분×12개인 120분에서 연산은 정지합니다. 플리커의 연산 이 정지한 후에도 적산은 정지하지 않으므로 주의해 주십시오.

적산의 제어 방법에 관해서는 "3.3 적산 측정" (p.75)을 확인해 주십시오.

IEC 측정 모드 시, 가산 적산은 할 수 없습니다. 적산 정지 후에 다시 적산을 시작하려면 일단 데이터 리셋 을 할 필요가 있습니다.

측정 항목 설명 d 상대 정상 전압 변화 d_{max} 최대 상대 전압 변화 상대 전압 변화가 역치를 초과하는 시간 T_{max} P_{st} 단기 플리커 값 **P**_{stMax} 단기 플리커 값 최대값 P_{lt} 장기 플리커 값 순시 플리커 값의 최대값 **P**_{instMax} $\mathsf{P}_{\mathsf{instMin}}$ 순시 플리커 값의 최소값

플리커 연산의 측정값을 저장할 경우는 **Plt** 연산 완료 시점보다 긴 기간을 저장해야 합니다.

플리커 측정값의 표시

플리커 측정 항목은 커스텀 화면에서 확인할 수 있습니다.

		ACEG CH 1 UUUUU 1P20	Sy I I LP	nc:U1 /U1 F :OFF	Auto 150 Auto 2	V A	Upper:100 Lower: 10	Hz Hz	200ms	4 <mark>1</mark>	234	USB
Primary	Second	ary								×		¥
CH1	CH2	СНЗ	CH4	CH5	СНб	CH7	CH8	Motor	Others			A /
			Integ.	Flicker	J							10
d _{c1}	d _{max1}	T _{max1}	P _{lt1}	P _{st1}	P _{stMax}	Pinst	Max1 Pinst	Min1				
												VICINA []]]
												HILD .
		P ₁₊₁		-		-						
		-									-	
		P _{st1}		3.7						8 It	ems	
		D		52	والمراجع مراجع مراجع					161	tems	
		stMa	x1							361	tems	
		PinstM:	av1	().992	2				64 1	tems	ė,
		mstine	TALL.									

시

선택 표시 [CUSTOM] 화면에서 표시

측정 항목의 설명

플리커

플리커란 일반적으로 "깜빡임"이라는 의미입니다. 큰 부하 설비가 기동하거나 일시적인 과부하 상태에서 대전류가 흐 르거나 했을 때 전압 강하가 일어나면서 각 설비가 영향을 받아 발생합니다.

조명 부하에서는 주로 조명 기구가 점멸하는 것을 말합니다. 특히 형광등, 수은등 등의 방전등이 영향을 받기 쉽습니 다. 전압 강하로 인해 일시적으로 어두워지는 빈도가 높아지면 점멸이 반복되어 사람은 시각적으로 매우 불쾌감을 느 끼게 됩니다.

단기간 플리커 값 P_{st}

단기간에 측정한 플리커에 대한 자극 반응성을 나타내는 값을 표시합니다. Pst의 측정 기간은 임의로 설정할 수 있지 만, 통상 10분입니다.

장기간 플리커 값 P_{lt}

연속한 Pst를 사용하여 장기간에 걸쳐 측정한 플리커에 대한 자극 반응성을 나타내는 값을 표시합니다. 연산의 대상이 되는 Pst의 수는 임의로 설정할 수 있지만, 통상 12개(Pst 관측 기간이 10분인 경우 2시간)의 Pst부터 연산됩니다.

순시 플리커 값 P_{inst}

입력 파형에 대하여 시감도 필터를 포함한 각종 필터 처리를 실시한 값입니다.

정상 상태

반주기마다의 전압 실효값이 약 1초 이상, 규정인 ±0.2%의 허용 대역 안에 머물며 안정된 상태입니다.

상대 정상 전압 변화 d_c

연속하는 2개의 정상값 간의 차를 나타내는 값입니다. 1회의 전압 변동 사이에 위치하는 전후 2개의 정상 상태인 전 압의 차를 정격 전압으로 나눈 값을 %로 나타낸 것입니다.

최대 상대 전압 변화 d_{max}

직전의 정상 상태 값을 기준으로 하여 1회의 전압 변동에서 최대 변동값의 절대값을 정격 전압으로 나눈 값을 퍼센트 로 나타낸 것입니다.

상대 전압 변화가 역치 레벨을 초과하는 시간 T_{max}

1회의 전압 변동 기간 중 상대 전압 변화가 역치 레벨을 초과하고 있는 시간입니다. 역치 레벨은 임의로 설정할 수 있 지만, 일반적으로는 0.20%입니다.

측정 중인 모든 채널의 전압 및 전류의 파형이나 모터 입력 파형을 표시할 수 있습니다. 파형 표시는 전력 측정과는 완전히 독립하여 동작합니다. 이 장에 기재된 조작은 전력이나 고조파 측정치에 영향을 미치지 않습니다.

4.1 파형의 표시 방법

파형 표시 (WAVE) 화면에서 표시

파형만을 화면에 표시합니다.

파형 기록 시작

표시 화면 [MEAS] > [WAVE] > [WAVE]

1 RUN/STOP 키를 누른다 『방반》 (녹색 점등)

파형의 기록이 시작되고 화면 표시가 갱신됩니다. 트리거가 걸리면 기록을 시작합니다. 참조: "4.3 파형의 기록" (p.123)

2 다시 한번 RUN/STOP 키를 누른다

/ 밝아 (빨간색 점등)

파형 기록 및 화면의 표시 갱신이 정지합니다.

측정치 표시 영역

파형 기록 상태의 표시

파형 표시에 시간이 걸리는 경우나 표시되지 않는 경우 상태의 기준이 됩니다.

트리거 위치 (p.120)

_ 파형 기록 상태

Stop	기록 정지
PreTrig.	프리트리거 파형 기록
Trigger	트리거 대기
Storage	트리거 후의 파형 기록
Compress	표시용 파형 작성
Abort	파형 기록 정지 처리

Δ

파형+측정치 표시 (WAVE+VALUE) 화면에서 표시

파형과 측정치를 화면에 표시합니다. 표시된 파형의 기록과 측정치의 측정 타이밍은 동기되고 있지 않습니다.

파형 기록 시작

표시 화면 [MEAS] > [WAVE] > [+VALUE]

파형 표시 영역

2021-06-29 14:24:42 Mideda On Dependent Component DEPENDENT OF COMPONENT	CH5 Sy 1 1P2W D LP	nc:DC /DC F :QFF	Manu 1.5kV Manu 50 A	Upper: 2MHz Lower:0.1 Hz	50ms 1 2 5 5	1 4 95: 6.02 7 8 91: ec570618 7 8 60: ec360617	Internal USII
Time Scale 6.67u	/div] Sampling	15M	[S/s] Record Length	1k Trigge	r Level		
C)				A	Ø. N	Ň
					_	1000	
						Ň	
					-26	秋	Sol 25
U _{rms1} 0	.04738	۷	U _{rms1}	0.04738	۷		
U _{rms1} 0	.04738	۷	U _{rms1}	0.04738	۷		
U _{rms1} 0	.04738	۷	U _{rms1}	0.04738	۷	3271045	
U _{rms1}	04738	۷	U _{rms1}	0.04738	۷		0,

측정치 표시 영역에는 임의로 선택한 32개의 기본 측정 항목을 표시할 수 있습니다. 참고: "1.4 기본 조작(화면의 표시 및 구성)" (p.28)

측정치의 표시 갱신을 정지하려면

HOLD 키를 눌러 측정치의 표시 갱신을 정지할 수 있습니다. 파형의 기록은 정지하지 않습니다.

측정치 표시 영역

파형의 정렬

파형을 4종류의 패턴으로 정렬할 수 있습니다.

표시 화면 [MEAS] > [WAVE]

1 [ALIGN]을 탭한다

2 [ALIGN] 중에서 하나의 패턴을 선택하여 탭 한다 확인 다이얼로그가 표시됩니다.

꼭 한 다이글로그가 표시합니다.

3 [Yes]를 탭하여 실행한다

Wiring	결선별 파형을 같은 위치에 배치합니다. 결선 패턴으로 위치가 변화합니다.
СН	채널별 파형을 같은 위치에 배치합니다.
U/I/Mt	위에서부터 전압 파형, 전류 파형, 모터 파형의 순으로 배치합니다.
Default	전압/전류 파형과 모터 파형의 2개로 나누어 배치합니다. 모터 해석 옵션이 없는 경우는 전압/전류 파형을 중앙에 배치합니다.

세로축 위치는 각 입력의 제로 위치를 기준으로 배치합니다.

- 세로축 표시 배율은 레인지와 영역의 세로축 크기에 맞춰 조정됩니다.
- 파형을 정렬할 때 파형의 색도 변경됩니다. 색은 정렬 패턴에 따라 다릅니다.

4.2 파형 표시의 변경과 기록의 설정

시간축의 설정

파형의 시간축을 **[Time scale]**, **[Sampling]** 및 **[Record length]**에서 설정합니다. 샘플링 속도와 기록 길이의 설정에 따라 시간축이 자동으로 변경됩니다.

표시 화면 [MEAS] > [WAVE] > [WAVE]

각 항목을 탭한 후, X 로터리 노브를 돌려 설정 한다

참조: "로터리 노브에 의한 수치 변경" (p.29)

중요

모터의 아날로그 파형의 샘플링은 1 MS/s 입 니다. 샘플링 속도 설정이 1 MS/s 보다 빠른 경우는 같은 값으로 보완하여 표시됩니다.

시간축

시간축의 설정 변경에 연동하여 샘플링 속도와 기록 길이가 변합니다. 샘플링 속도와 기록 길이는 설정한 시간축이 되 는 조합 중, 최단 갱신의 설정(샘플링 속도: 최고 속도, 기록 길이: 최소)으로 변경됩니다.

6.67 μs/div, 13.3 μs/div, 20 μs/div, 33.3 μs/div, 40 μs/div, 66.7 μs/div, 100 μs/div, 133 μs/div, 200 μs/div, 333 μs/div, 400 μs/div, 500 μs/div, 666 μs/div, 1 ms/div, 1.33 ms/div, 2 ms/div, 3.33 ms/div, 4 ms/div, 5 ms/div, 6.67 ms/div, 10 ms/div, 13.3 ms/div, 20 ms/div, 33.3 ms/div, 40 ms/div, 50 ms/div, 66.7 ms/div, 100 ms/div, 200 ms/div, 400 ms/div, 500 ms/div, 1 s/div, 2 s/div, 4 s/div, 5 s/div, 10 s/div, 20 s/div, 50 s/div

샘플링 속도

15 MHz, 7.5 MHz, 5 MHz, 2.5 MHz, 1 MHz, 500 kHz, 250 kHz, 100 kHz, 50 kHz, 25 kHz, 10 kHz

기록 길이

1 k, 5 k, 10 k, 50 k, 100 k, 500 k, 1 M, 5 M (단위: 워드)

1 k = 1000 샘플링 데이터, 1 샘플링 데이터 = 1 워드

설정된 샘플링 속도로 기록 길이만큼 기록하면 파형을 표시합니다. 시간축이 200 ms/div보다 느린 경우, 기록 도중의 파형을 실시간으로 표시합니다(롤 모드).

중요

U7005와 U7001의 샘플링은 각각 15 MHz, 2.5 MHz이므로 샘플링 속도를 2.5 MHz보다 크게 설정한 경우, 파형의 일정함에 차가 발생합니다.

Peak-Peak 압축

15 MS/s의 샘플링 값

본 기기는 샘플링 속도의 설정을 변경해도 내부에서는 항 상 15 MS/s로 샘플링합니다.

샘플링 속도를 늦추는 경우 15 MS/s의 파형에서 단순 하게 솎아내는 것이 아니라, 구간 내 MAX 값과 MIN 값을 저장하는 방법을 Peak-Peak 압축이라고 합니 다.

이 방법을 사용하면 샘플링 속도를 늦춰도 압축 전 파 형의 피크 정보가 남아 있는 정확한 파형이 됩니다. 저장되는 파형 데이터의 데이터 수는 1포인트당 왼쪽 그림의 MAX 값과 MIN 값의 2가지 데이터가 저장됩 니다.

15 MS/s를 500 kS/s로 Peak-Peak 압축하는 경우

에일리어싱

샘플링 속도에 대해 측정하는 신호의 변화가 빨라지면 일정 주파수를 경계로 실재하지 않는 느린 신호 변화가 기록되게 됩니다.

이러한 현상을 에일리어싱 (Aliasing)이라고 합니다.

관측되는 파형 입력 신호의 동기에 대해 샘플링 속도가 느려서 에일리어싱이 일어나고 있습니다.

세로축 배율과 표시 위치의 설정

파형 항목별로 표시를 ON/OFF 하거나, 파형의 세로축 배율과 세로축 표시 위치를 상세하게 설정할 수 있 습니다.

표시 화면 [MEAS] > [WAVE] > [WAVE]

세로축 배율과 표시 위치를 설정할 수 있는 창이 표시됩니다.

1 [MAG.&POS.]를 탭한다

2 채널의 버튼을 탭한다

선택한 채널의 버튼과 X, Y 로터리 노브가 녹색으 로 점등합니다. 여러 개의 채널을 동시에 선택할 수 있습니다.

U	전압 파형
I	전류 파형
A ~ H	모터 입력 파형

파형별 항목명이 표시됩니다.

3 X 로터리 노브, Y 로터리 노브를 돌려 설정한다

돌린 노브에 따라 세로축 배율과 세로축 표시 위치의 설정이 변합니다.

세로축 배율

 \times 1/10, \times 1/9, \times 1/8, \times 1/7, \times 1/6, \times 1/5, \times 1/4, \times 1/3, \times 2/5, \times 1/2, \times 5/9, \times 5/8, \times 2/3, \times 5/7, \times 4/5, \times 1, \times 10/9, \times 5/4, \times 4/3, \times 10/7, \times 5/3, \times 2, \times 20/9, \times 5/2, \times 10/3, \times 4, \times 5, \times 20/3, \times 8, \times 10, \times 25/2, \times 50/3, \times 20, \times 25, \times 40, \times 50, \times 100, \times 200

세로축 표시 위치

- 9999.99 div~9999.99 div

4 [MAG.&POS.] 또는 창의 범위 바깥을 탭한다

창이 닫힙니다.

세로축 배율의 일람 표시

표시 가능한 모든 파형의 세로축 배율을 일람으로 표시합니다.

표시 화면 [MEAS] > [WAVE] > [WAVE]

1 [SCALE]을 탭한다

세로축 배율의 일람 표시 창이 표시됩니다. 표시 중인 파형의 정보만 창 위에 표시됩니다.

2 다시 한번 [SCALE]을 탭한다

세로축 배율의 일람 표시 창이 닫힙니다.

트리거의 설정

여기서 말하는 트리거 (Trigger)란 파형 기록을 시작하는 조건을 설정하는 기능입니다. 트리거에 설정한 조건이 성립하고 파형 기록이 시작되는 것을 "트리거가 걸린다"고 표현합니다.

표시 화면 [MEAS] > [WAVE] > [WAVE]

[TRIGGER]를 탭한다 트리거의 설정 창이 표시됩니다.

2 버튼을 탭한다

해당 항목의 설정이 가능해집니다. 각 설정의 내용은 "설정 항목의 선택 범위와 설명" (p.121)을 참조해 주십시오.

3 설정을 완료한 후, [TRIGGER] 또는 창의 범위 바깥을 탭한다 트리거의 설정 창이 닫힙니다.

설정 항목의 선택 범위와 설명

항목	선택 범위	설명
Auto trigger	ON	이전 트리거가 걸린 후부터 약 100 ms 이내에 다음 트리거가 걸 리지 않을 경우 강제로 파형 기록이 시작됩니다. DC의 입력 파형 을 관측하는 경우 등에 유효합니다.
	OFF	설정한 조건이 성립했을 때만 파형 기록이 시작됩니다.
Pre trigger[%]	0%~100% (10% 스텝으로 설정할 수 있습니다)	기록 길이에 대해 트리거가 걸리기 전의 파형을 얼마만큼 할당할 것인지 설정합니다. 프리트리거 ■ 트리거 위치 프리트리거 설정분 기록 길이 X 로터리 노브를 돌려 설정합니다. 참조 : "로터리 노브에 의한 수치 변경" (p.29)
Trigger type	Level (레벨)	스토리지 파형의 레벨 변동으로 트리거가 걸립니다. 레벨 트리거의 상세 설정을 할 수 있습니다.
	Event (이벤트)	선택한 측정 항목의 값 변동으로 트리거가 걸립니다. 이벤트 트리거의 상세 설정을 할 수 있습니다.
	트리거의 소스가 되는 파형을	설정합니다.
Source	U1~U8	전압 파형
	I1~I8	전류 파형
	CH A~CH H, Ext1~Ext4	모터 파형(모터 해석 내장 모델만 선택 가능) 모터 입력의 동작 모드에 따라 선택 가능 항목이 바뀝니다.
ZCF (제로 크로스 필 터)	ON, OFF	트리거 소스를 전압 파형이나 전류 파형으로 설정한 경우, 파형에 노이즈 필터를 걸어 노이즈를 제거한 후의 파형으로 트리거를 거는 기능입니다. 노이즈가 있는 파형에서 안정된 트리거 타이밍을 얻고자 하는 경우 는 ON으로 설정합니다. 특히 PWM 파형을 관측하는 경우에 효과가 있습니다. 표시 파형에는 영향을 주지 않습니다. [Source]로 CH A~CH H 또는 Ext1~Ext4 가 선택된 경우는 강 제로 OFF가 됩니다.
Slope	Rising	파형의 상승으로 트리거가 걸립니다.
Slope	Falling	파형의 하강으로 트리거가 걸립니다.
Level[%]	-300%~+300%	트리거를 거는 레벨을 소스의 레인지에 대한 [%]로 설정합니다. 창 내 우측에 레벨 모니터가 표시됩니다. 트리거 소스에 모터 입력 파형의 펄스[Pulse]가 설정되어 있을 때는 이 설정이 사용되지 않습니다. Y 로터리 노브를 돌려 설정합니다. 녹색 점등: 0.1 단계씩 변경 빨간색 점등: 1 단계씩 변경 참조: "로터리 노브에 의한 수치 변경" (p.29)

4

파 형

Ŧ

시

4.3 파형의 기록

파형을 연속해서 기록하기

1 RUN/STOP 키를 누른다

트리거 대기가 됩니다. 트리거가 걸리면 기록을 시작합니다. 기록 길이만큼 파형을 기록한 후, 반복 트리거 대기가 됩니다.

2 RUN/STOP 키를 누른다

기록을 정지합니다.

- RUN/STOP 키를 눌러 스토리지를 정지한 경우, 파형 저장이 동작하지 않는 경 우가 있습니다.
- 파형 저장은 반드시 SINGLE 키로 취득한 파형에 대해 실행해 주십시오.

파형을 한 번만 기록하기

SINGLE 키를 누른다

트리거 대기가 됩니다. 트리거가 걸리면 기록을 시작합니다.

기록 길이만큼 파형이 기록되면 기록이 정지됩니다

트리거 대기일 때 [RUN/STOP]을 누르면 기록이 정지됩니다.

수동으로 트리거 걸기

1 트리거 대기일 때 MANUAL 키를 누른다

누른 타이밍에 트리거가 걸려 기록을 시작합니다.

파형 데이터의 측정값 (커서 측정)

2개의 커서를 사용하여 선택한 파형의 커서 측정값을 표시합니다.

결선별 전압 파형, 전류 파형 및 모터 입력 파형의 커서 측정값과 2개의 커서 간 차분을 표시할 수 있습니다.

표시 화면 [MEAS] > [WAVE] > [WAVE]

커서 값 표시 창

- **1** [CURSOR]를 탭하여 커서를 표시한다
- 2 X 로터리 노브, Y 로터리 노브로 커서 위치를 이동시키고, 커서 측정값의 MAX 값/MIN 값을 차례로 표시 한다

▼.<u>×</u>.▲

X 커서의 이동

노브를 돌리면 다음 순서로 표시됩니다.

MIN 값 표시, 커서 이동, MAX 값 표시, MIN 값 표시, 커서 이동, MAX 값 표시

Y 커서의 이동

동작은 X 로터리 노브와 같습니다. 커서 선을 드래그하여 이동할 수도 있습니다.

커서 표시 창에 아래의 항목이 표시됩니다.

- X 커서 측정값 (레벨과 시간축), MAX/MIN 표기
- Y 커서 측정값 (레벨과 시간축), MAX/MIN 표기
- X 커서와 Y 커서의 측정값 차분 △ (레벨의 차분과 시간축의 차분)
- X 커서와 Y 커서의 시간축 차분의 역수 1/∆
- 표시된 파형은 1도트당 MAX 값, MIN 값의 2가지 데이터가 존재합니다. 따라서 커서 측정에서는 MAX 값 표시 또는 MIN 값 표시의 표시 전환이 가능합니다. 참조: "시간축의 설정" (p.117), "Peak-Peak 압축" (p.118)
- 커서 측정은 다음 파형에 관한 화면에서 선택할 수 있습니다.
- **[WAVE]** 화면 (파형 표시)
- [WAVE+ZOOM] 화면 (파형+줌 표시)
- [WAVE+VALUE] 화면 (파형+측정값 표시)
- [WAVE+FFT] 화면 (파형+FFT 해석)

파형의 확대 (줌 기능)

표시된 파형을 시간축(가로축) 방향으로 확대하여 표시할 수 있습니다.

파형 표시부에 황색으로 표시된 구간(확대 영역)의 파형을 시간축 방향으로 확대하여 확대 표시부에 표시합 니다. 확대율이 일정 이상인 경우, 2 점간을 직선으로 보간합니다.

표시 화면 [MEAS] > [WAVE] > [+ZOOM]

1 SINGLE 키로 파형을 취득한다

참조: "4.1 파형의 표시 방법" (p.115)

- **2** [Zoom] 아이콘을 탭한다
- 3 X 로터리 노브로 확대 배율(확대 영역의 크 기)을 선택한다 선택 가능한 확대 배율은 스토리지 포인트 수에 따 라 다릅니다 (x2 ~ x1M)
- 4 Y 로터리 노브로 확대 영역의 위치를 이동시 킨다

확대 영역의 위치가 좌우로 움직입니다. Y 로터리 노브를 밀어 넣으면 확대 영역의 이동 속 도가 3단계로 변합니다.

가장 저속인 상태에서는 스토리지 데이터 1포인트 단위로 확대 영역을 갱신합니다. 시

중요

- 녹색 파선은 위치 및 배율 설정 변경 후의 확대 영역을 표시한 것입니다.
- 화면 하부에 표시된 것은 흰색 실선의 확대 영역 내 파형입니다.
- 줌 기능 사용 시에는 SINGLE 트리거로 파형을 취득해 주십시오. (p.123)

이럴 때는

		10 1P2W	1 LPF :OFF	701	Manu 50 A		Lower:	10 Hz	50m3	* 5 6 7 8	US
Time scale	500m	[s/div]	Sampling	10k	[S/s]	Record	length	50k		ALIGN	000 000 000
										MAG. APOS.	ſ
										TRIGGER	Ve
										SAVE SAVE	HAR
Zoom Time	scale 25	i0.0m [s/o	div]								
R											
										(H)	
											-

💦 가 표시되는 경우	기동 시 등, 표시할 파형 데이터가 존재하지 않는 경우에 표시됩니다.
[ZOOM Time scale]이 빨간색 문자	확대 표시부에 확대 파형이 표시된 상태에서 설정을 변경한 후, 표시와 줌
로 표시되는 경우	의 설정이 일치하지 않는 경우 빨간색 문자로 표시됩니다.

4.4 FFT 해석(파워 스펙트럼 해석) 기능

기록한 파형을 토대로 FFT 해석(파워 스펙트럼 해석)을 실시하고, 해석 결과를 표시합니다. 선택한 1결 선의 전압과 전류를 FFT 해석하여 최고 6 MHz까지 그래프나 수치로 표시할 수 있습니다. 모터 해석 내장 모델에서는 아날로그 입력 신호의 FFT 해석도 가능합니다. 인버터의 캐리어 주파수를 관측하거나, 상용 전원 라인이나 DC 전원에 실리는 고주파 노이즈를 관측하는 경우에 편리합니다. 전압과 전류를 FFT 해석 한 경우는 각각의 연산 결과를 바탕으로 전력 FFT 해석 결과를 표시할 수 있습니다.

파형과 FFT 해석 결과의 표시

FFT 해석을 하는 파형과 FFT 해석 결과를 동시에 표시합니다. 파형 표시부에 표시된 창(아래 그림 참조) 내의 파형에 대해 FFT 해석을 합니다. 따라서 파형이 표시되지 않은 상태에서는 FFT 해석이 불가합니다.

표시 화면 [MEAS] > [WAVE] > [+FFT]

1 [FFT SETUP]을 탭한다

FFT 해석에 관한 설정을 수행할 창이 표시됩니 다. 4

파

형

표

시

2 [Source]를 탭한다

여기서 선택한 CH의 파형에 대해 FFT 해석을 합니다.

CH1 ~ CH8, CH12 ~ CH78, CH123 ~ CH678, Motor (모터 해석 내장 모델만)

3 SINGLE 키로 파형을 취득한다

"4.1 파형의 표시 방법" (p.115) 참조 FFT 그래프 표시부에 창 내 파형의 FFT 해석 결 과가 표시됩니다.

그래프 축	
세로축	레벨(% of range 또는 rms 값) 을 로그 표시
가로축	주파수를 리니어 표시

그래프 색	
황색	전압 또는 CH A
적색	전류 또는 CH C
오렌지색	전력 또는 CH E
녹색	CH G

4 [FFT SETUP] 또는 창의 범위 바깥을 탭한 다

창이 닫힙니다.

FFT 그래프 표시부에 대해서

- 창의 위치나 포인트 수의 설정을 변경한 후에는 설정의 변경 내용이 창의 내용과 일치할 때까지 시간이 걸리는 경우가 있습니다.
- FFT 해석을 할 때는 SINGLE 트리거로 파형을 취득해 주십시오. 참조: "파형을 한 번만 기록하기" (p.123)

창의 크기 및 위치

창의 위치를 좌우로 이동하거나, FFT 해석을 할 포인트 수를 변경하여 창 크기를 변경할 수 있습니다.

표시 화면 [MEAS] > [WAVE] > [+FFT]

FFT 그래프 표시부 (p.127)

- 녹색 파선은 위치 및 포인트 수의 설정 변경 후 창 위치를 나타 낸 것입니다.
- 화면 하부에 표시된 것은 흰색 실선의 창 내 파형의 FFT 해석 결과입니다.

1 [FFT SETUP]을 탭한다

FFT 해석에 관한 설정을 수행할 창이 표시됩니 다.

2 [Area]을 탭한다

수치를 탭하면 로터리 노브가 녹색으로 점등합니 다.

3 X 로터리 노브로 FFT 해석을 할 포인트 수(창 의 크기)를 설정한다

1 k, 5 k, 10 k, 50 k, 100k, 500k, 1M, 5M

로터리 노브를 돌려서 선택한 후, 노브를 눌러서 확정

4 Y 로터리 노브로 창의 위치를 변경한다 녹색 파선의 위치가 좌우로 움직입니다.

5 [FFT SETUP] 또는 창의 범위 바깥을 탭한
 다
 창이 닫힙니다.

중요

- U7001의 샘플링은 최대 2.5 MS/s이므로 U7001을 포함하는 결선의 FFT 연산 시에 샘플링 속도를 2.5 MS/s보다 큰 값으로 설정하면 FFT 창 폭을 2.5 MS/s에 맞추기 위해서 필요한 창 크기가 커집니다. 따라서 샘플링 속도, 기록 길이, FFT 창 폭의 설정에 따라서는 FFT 결과가 표시되지 않을 수 있습니다. FFT 연산을 할 때는 샘플링 속도를 2.5 MS/s 이하로 설정할 것을 권장합니다.
- 마찬가지로 모터 입력의 아날로그 파형의 샘플링은 최대 1 MS/s 이므로 FFT 연산을 할 때는 1 MS/s 이하로 설정할 것을 권장합니다.

이럴 때는

인쇄 확인

빨간색 파선이 표시되는 경우	창 위치가 적당하지 못합니다. 이 상태에서는 FFT 해석을 할 수 없습니다. 창 위치 설정을 다시 해주십시오. 예
	• 포인트 수>기록 길이로 되어 있는 경우 • 창 크기와 포인트 수가 일치하지 않는 경우
🙀 가 표시되는 경우	RUN/STOP 키로 스토리지를 정지하면 표시되는 경우가 있습니다. SINGLE 키로 파형을 취득해 주십시오. (p.123)
퉳 가 표시되는 경우	FFT 해석에 시간이 걸리는 경우에 표시될 수 있습니다.
[Area]이 빨간색 문자로 표시되는 경우	FFT 해석 결과가 표시된 상태에서 [Area]의 설정을 변경해서 FFT 해석 결과의 표시와 [Area]의 설정이 달라졌습니다.

샘플링 속도(Sampling)의 설정에 따라 FFT 해석이 가능한 최고 주파수가 다음과 같이 바뀝니다. (표 안 의 주파수 - 주파수 분해능)이 최대 해석 주파수입니다.

샘플링 속도 설정별 최대 해석 주파수

샘플링	15 MS/s	7.5 MS/s	5 MS/s	2.5 MS/s	1 MS/s	500 kS/s	250 kS/s	100 kS/s	50 kS/s	25 kS/s	10 kS/s
최고 주파수 (U7005) (전압, 전류, 전력)	6 MHz	3 MHz	2 MHz	1 MHz	400 kHz	200 kHz	100 kHz	40 kHz	20 kHz	10 kHz	4 kHz
최고 주파수 (U7001을 포함하는 결선) (전압, 전류, 전력)	1 MHz	1 MHz	1 MHz	1 MHz	400 kHz	200 kHz	100 kHz	40 kHz	20 kHz	10 kHz	4 kHz
최고 주파수 (모터 입력)	400 kHz	400 kHz	400 kHz	400 kHz	400 kHz	200 kHz	100 kHz	40 kHz	20 kHz	10 kHz	4 kHz

또한, 샘플링 속도 설정과 포인트 수 설정의 조합으로 FFT 해석하는 주파수 분해능이 다음과 같이 변화합니다.

샘플링 속도와 포인트 수 설정 조합 시의 주파수 분해능

U7005 전압/전류 파형

샘플링 포인트수	15 MS/s	7.5 MS/s	5 MS/s	2.5 MS/s	1 MS/s	500 kS/s	250 kS/s	100 kS/s	50 kS/s	25 kS/s	10 kS/s
1000	15 kHz	7.5 kHz	5 kHz	2.5 kHz	1 kHz	500 Hz	250 Hz	100 Hz	50 Hz	25 Hz	10 Hz
5000	3 kHz	1.5 kHz	1 kHz	500 Hz	200 Hz	100 Hz	50 Hz	20 Hz	10 Hz	5 Hz	2 Hz
10000	1.5 kHz	750 Hz	500 Hz	250 Hz	100 Hz	50 Hz	25 Hz	10 Hz	5 Hz	2.5 Hz	1 Hz
50000	300 Hz	150 Hz	100 Hz	50 Hz	20 Hz	10 Hz	5 Hz	2 Hz	1 Hz	0.5 Hz	0.2 Hz
100000	150 Hz	75 Hz	50 Hz	25 Hz	10 Hz	5 Hz	2.5 Hz	1 Hz	0.5 Hz	0.25 Hz	0.1 Hz
500000	30 Hz	15 Hz	10 Hz	5 Hz	2 Hz	1 Hz	0.5 Hz	0.2 Hz	0.1 Hz	0.05 Hz	0.02 Hz
1000000	15 Hz	7.5 Hz	5 Hz	2.5 Hz	1 Hz	0.5 Hz	0.25 Hz	0.1 Hz	0.05 Hz	0.025 Hz	0.01 Hz
5000000	3 Hz	1.5 Hz	1 Hz	0.5 Hz	0.2 Hz	0.1 Hz	0.05 Hz	0.05 Hz	0.01 Hz	0.005 Hz	0.002 Hz

U7001을 포함하는 결선 전압/전류 파형

샘플링 포인트수	15 MS/s ~ 2.5 MS/s	1 MS/s	500 kS/s	250 kS/s	100 kS/s	50 kS/s	25 kS/s	10 kS/s
1000	2.5 kHz	1 kHz	500 Hz	250 Hz	100 Hz	50 Hz	25 Hz	10 Hz
5000	500 Hz	200 Hz	100 Hz	50 Hz	20 Hz	10 Hz	5 Hz	2 Hz
10000	250 Hz	100 Hz	50 Hz	25 Hz	10 Hz	5 Hz	2.5 Hz	1 Hz
50000	50 Hz	20 Hz	10 Hz	5 Hz	2 Hz	1 Hz	0.5 Hz	0.2 Hz
100000	25 Hz	10 Hz	5 Hz	2.5 Hz	1 Hz	0.5 Hz	0.25 Hz	0.1 Hz
500000	5 Hz	2 Hz	1 Hz	0.5 Hz	0.2 Hz	0.1 Hz	0.05 Hz	0.02 Hz
1000000	2.5 Hz	1 Hz	0.5 Hz	0.25 Hz	0.1 Hz	0.05 Hz	0.025 Hz	0.01 Hz
5000000	0.5 Hz	0.2 Hz	0.1 Hz	0.05 Hz	0.05 Hz	0.01 Hz	0.005 Hz	0.002 Hz

모터 입력 파형

샘플링 포인트수	15 MS/s ~ 1 MS/s	500 kS/s	250 kS/s	100 kS/s	50 kS/s	25 kS/s	10 kS/s
1000	1 kHz	500 Hz	250 Hz	100 Hz	50 Hz	25 Hz	10 Hz
5000	200 Hz	100 Hz	50 Hz	20 Hz	10 Hz	5 Hz	2 Hz
10000	100 Hz	50 Hz	25 Hz	10 Hz	5 Hz	2.5 Hz	1 Hz
50000	20 Hz	10 Hz	5 Hz	2 Hz	1 Hz	0.5 Hz	0.2 Hz
100000	10 Hz	5 Hz	2.5 Hz	1 Hz	0.5 Hz	0.25 Hz	0.1 Hz
500000	2 Hz	1 Hz	0.5 Hz	0.2 Hz	0.1 Hz	0.05 Hz	0.02 Hz
1000000	1 Hz	0.5 Hz	0.25 Hz	0.1 Hz	0.05 Hz	0.025 Hz	0.01 Hz
5000000	0.2 Hz	0.1 Hz	0.05 Hz	0.05 Hz	0.01 Hz	0.005 Hz	0.002 Hz

중요

- U7001의 샘플링은 최대 2.5 MS/s이므로 FFT 해석이 가능한 최대 해석 주파수가 U7005의 전압/전 류 파형과 다릅니다.
- 모터 입력의 아날로그 파형 샘플링은 최대 1 MS/s 이므로 FFT 해석이 가능한 최대 해석 주파수가 전 압/전류 파형과 다릅니다.

FFT 연산은 [WAVE+FFT] 화면을 표시 중인 경우에만 수행합니다. 그 때문에 이 화면에서는 파형의 표 시 갱신 등이 늦어지는 경우가 있습니다.

.

FFT 해석 결과의 수치

FFT 해석 결과의 수치를 전압, 전류 및 전력 각각의 극대치(전력의 경우, 절대값의 극대치)가 큰 것부터 차례로 10개 픽업하여 주파수와 레벨을 표시합니다. (이하 FFT 피크 값 표시라고 표기합니다) 모터 해석 내장 모델에서는 아날로그 입력 신호의 FFT 해석 결과에 대해서도 마찬가지로 표시합니다.

표시 화면 [MEAS] > [WAVE] > [+FFT]

		f[Hz] 0.032004	Urms1[V] 1.8475	r (Ha) 0. 00000M	1 ms1 (A) 0. 5756 0.	f [Hz] .00000M	P1(#) 0.706	N
	i tes per parties per pe	0.06400M 0.09600M	1.7516 1.5995			03200M 06400M	0.023	A.aro
	and a subsequences	0. 12800M	1. 3903		0.0364 0	17600M	0.013	
		0.16000M	1.1303 1.0722			20800M	0.012	
		0.17600M	1.0511			.09600M .11200M	0.012	
		0.14400M	0.9591	0.032004	0.0274 0.	.27200M	0.009	N
								k to
							10	icers
Ulimar							•	SR.
	hinidada.	titulit tar.	Luddel	LI I Laci			11.0	
		112220000000			1000000000	UNUUN	dillili i	at.

1 [FFT TOP10]을 탭한다

FFT TOP10 창이 표시됩니다.

표시 항목	레벨
표시자릿수	6자리, 대상 파형의 레인지에 연동 합니다.

표시 항목	주파수
표시자릿수	6자리 또는 7자리, 주파수 분해능 에 따라 변동합니다.

Δ

FFT 해석 결과 표시의 ON/OFF

FFT 해석 결과의 표시를 ON/OFF 할 수 있습니다.

표시 화면 [MEAS] > [WAVE] > [+FFT]

2023-11-01 13:56:46 Octoolog Ututtottottottottot	MideBand	CH 123 3P3W3M	Sync:U1 ① LPF :OFF	/U1 A	uto 15 V uto 10 J	BS	Upper: Lower: 1	290Hz 0 Hz	50ms		USB
Time scale	2 1m	[s/div]	Sampling	5M	[S/s]	Record	length	50k		**	
Constanting of the		unilimini auditataa					din munimi diliktrata	and the second		N	N
			nan in	888)		開業書	na n'n			×	6
										6	
	~~~	~~~~	~~~	~~	~~	~~	~~	~~		2₩	
945 CH1 200								FFT vis Urms1	sible ON	动动	
" Hilima	Ĵ.L.							Irms1	ON	ieni Izri	~
		lindle		danda			atomatala	P1	ON		ป
			e opened to				<b>WARK</b>	Cursor	OFF	4 537	tierer
			ALL ALLS	and the s			U.M. Carl	1.04	STEW CALL	HING.	<u></u>

- **1** [FFT Visible]을 탭한다
- 2 표시 항목별로 [ON] 또는 [OFF]를 탭하여 전환한다

## 특정 주파수 범위의 FFT 해석 결과 표시

커서를 사용하여 선택한 주파수의 FFT 해석 결과를 표시할 수 있습니다.

#### 표시 화면 [MEAS] > [WAVE] > [+FFT]



- 1 [FFT Visible]을 탭한다
- 2 [Cursor] 박스를 탭하여 커서를 표시한다
- **3** Y 노브로 커서를 이동한다

커서는 드래그하여 이동할 수도 있습니다. [**f]**를 탭하여 텐 키로 입력할 수도 있습니다.

## FFT 피크 값 표시의 하한 주파수

FFT 피크 값 표시를 하는 하한 주파수를 설정합니다. 하한 주파수는 0 Hz ~ 6000 kHz까지 1 kHz 스텝으로 설정할 수 있습니다.

#### 표시 화면 [MEAS] > [WAVE] > [+FFT]



- **2** [Lower freq.] 박스를 탭하여 노브로 하한



1 MS/s 이하일 때는 10 kHz씩 변경합니다.

4

파 형

Ŧ 시

FFT 피크 값 표시의 수치는 전압, 전류 및 모터 입력 파형에 대해 양쪽에 이웃하는 데이터가 자신의 데이 터보다 레벨이 낮을 때를 피크 값으로 인식하여 피크 값 레벨이 높은 쪽에서부터 10개의 데이터를 취득합 니다. 전력의 경우는 절대값을 취득한 값으로부터 피크 값을 취득합니다.

이때 FFT 해석 하한 주파수 설정보다 낮은 주파수는 피크 값 표시를 하지 않습니다.



## 윈도우 함수의 설정

FFT 해석의 윈도우 함수를 설정합니다.

#### 표시 화면 [MEAS] > [WAVE] > [+FFT]



#### **1** [FFT SETUP]을 탭한다

#### 2 [Window function] 박스를 탭하여 윈도 우 함수를 선택한다

<b>Rectangular</b>	측정 파형의 주기가 FFT 연산 구간
(렉탱귤러)	의 정배수가 될 때 유효합니다.
<b>Hanning</b> (해닝)	렉탱귤러가 유효하지 않은 경우에 주 파수 분해능을 중시할 때 유효합니 다.
<b>Flat Top</b>	렉탱귤러가 유효하지 않은 경우에 레
(플랫 톱)	벨 분해능을 중시할 때 유효합니다.

#### 윈도우 함수란

FFT 연산은 측정 파형을 설정 샘플링 속도로 설정 포인트 수만큼 잘라 내어 실행합니다. 이 파형을 잘라 내는 처리를 "윈도우 처리"라고 합니다.

FFT 연산에서는 이 유한 구간에서 잘라 내어진 파형이 주기적으로 반복된다고 가정합니다. 본 기기에서는 흰색 실선 으로 둘러싸인 구간이 이 창에 해당합니다.



FFT의 연산 포인트 수가 측정 파형 주기와 일치하지 않는 경우는 창 내 파형의 양 가장자리가 불연속이 되어 누설 오 차라고 불리는 오차가 발생하며, 실제로는 존재하지 않는 FFT 해석 결과가 검출됩니다.

이 누설 오차를 억제하기 위해 고안된 것이 윈도우 함수입니다. 윈도우 함수는 잘라낸 파형의 양 가장자리가 매끄러워 지도록 연결하는 처리를 합니다.

## FFT 해석 결과 표시의 세로축 스케일

FFT 연산 결과 표시의 세로축 스케일을 %f.s. 또는 rms 값으로 설정할 수 있습니다.

#### 표시 화면 [MEAS] > [WAVE] > [+FFT]

#### [% f.s.]를 선택 시



#### [rms]를 선택 시

2023-09-13 11:11:25   //debuo octoologicalitation 1-7   4/c ututtottottottottottottotto	CH 123 Sync:U1 /U1 Manu 15 V Upper: 2MHz 200ms     3P3MSM (1) LPF:OFF Manu 10 A 255 Lower: 10 Hz		USB
Time scale 1m	[s/div] Sampling 5M [S/s] Record length 50k	*	
	na na mana amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr' Ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'	N	N
	INCOMPANYALI (I KAOMPAN) PRILINGKA (I A	Ж	(C) VICTOR
		_ <u>Ň</u>	
Mater 1			
- They	Winner	hillin	
Marlink	L. TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT		¢,

#### **1** [FFT SETUP]을 탭한다

2 [Value scale] 박스를 탭하여 세로축 스케 일을 선택한다

% f.s., rms

FFT 해석(파워 스펙트럼 해석)기능

## 5 각종 기능

## 5.1 시간 제어 기능

자동 저장, 적산 기능을 시간으로 제어할 수 있습니다. 제어 방법에는 타이머 제어와 실시간 제어의 2종류 가 있습니다. 적산 제어 방법에 따라 설정 가능한 내용이 다릅니다. 참조: "시간 제어 기능과 조합한 적산 측정" (p.81) "측정 데이터의 자동 저장" (p.164)

#### 타이머 제어

타이머 제어 시간이 지나면 자동으로 자동 저장과 적산을 정지합니다.

• 실시간 제어 시간이 타이머 제어 시간보다 길게 설정된 경우, 적산은 실시간 제어의 시작 시각에서 시작 하여 타이머 제어로 종료합니다. (실시간 제어의 정지 시각은 무시됩니다)

• 타이머 제어 종료 전에 START/STOP 키를 누르면 적산은 정지하고 적산값은 유지됩니다. 이 상태에 서 다시 한번 START/STOP 키를 누르면 적산을 다시 시작하고 타이머 설정 시간만큼 적산합니다. (가 산 적산)

#### 타이머 설정치

**[Timer]**가 ON일 때에 설정할 수 있습니다. 텐 키 창 (p.30) 에서 수치를 입력합니다. 설정 가능 범위: 0 hour 0 min 1 sec~9999 hour 59 min 59 sec

## 실시간 제어

시각을 지정하여 제어를 시작 또는 정지할 수 있습니다.

- 실시간 제어 시간을 타이머 제어보다 길게 설정한 경우, 적산은 실시간 제어의 시작 시각에서 시작하여 타이머 제어로 종료합니다. (실시간 제어의 정지 시각은 무시됩니다)
- 설정된 시각이 과거인 경우에는 실시간 제어를 시작할 수 없습니다.
- 실시간 제어 중에 적산을 정지한 경우, 실시간 제어는 OFF가 됩니다.

#### 시작 시각과 정지 시각

[Real time control] 이 ON일 때에 설정할 수 있습니다. 텐 키 창 (p.30) 에서 수치를 입력합니다. 연도는 서기, 시간은 24시간제, 1분 단위로 설정합니다.
예: 2022년 1월 11일 오후 1시 11분 → [2022/1/11 13:11:00]

#### 설정 시각의 상한

Start time	2099년 12월 31일 23시 59분 59초
Stop time	2099년 12월 31일 23시 59분 59초

### 시간 제어 기능의 설정 방법

#### 적산 제어가 모든 결선인 경우

#### 표시 화면 [SYSTEM] > [TIME CONTROL]



- 1 [Integration control] 박스의 [All Channel]을 탭한다
- 2 (타이머 제어하는 경우) [Timer] 박스를 [ON]으로 한다
- 3 (실시간 제어하는 경우)
   [Real time control] 박스를 [ON]으로 한 다
- 4 [Start time] 박스를 탭하여 적산 시작 시각 을 설정한다
- 5 [Stop time] 박스를 탭하여 적산 정지 시각 을 설정한다

#### 적산 제어가 결선별인 경우

#### 표시 화면 [SYSTEM] > [TIME CONTROL]



- 1 [Integration control] 박스의 [Each Wiring]을 탭한다
- 2 (타이머 제어하는 경우) 제어할 채널의 [Timer] 박스를 [ON]으로 한 후, [Setup]을 탭하여 타이머 설정치를 설정한다
- 3 (실시간 제어하는 경우)
   제어할 채널의 [Real time control] 박스 를 [ON]으로 한 후, [Setup]을 탭하여 시 작 시각, 정지 시각을 설정한다
- 4
   [Control channel] 박스를 탭하여 제어할

   채널을 [ON]으로 한다

#### 시간 제어 기능을 사용해 적산 및 저장을 하기 전에

- 데이터의 자동 저장, 적산 기능을 실행하기 전에 반드시 시계(현재 시각)를 설정해 주십시오. 참조: "6 시스템 설정" (p.153)
- 자동 저장, 적산 기능 각각에 개별 설정하는 것은 불가합니다.
- 적산 제어 설정이 모든 결선인 상태일 경우, 적산 기능은 반드시 동작합니다. 시간 제어 종료 후에는 DATA RESET 키를 눌러 적산값을 리셋해 주십시오.
- 적산 제어 설정이 결선별인 상태에서는 자동 저장을 할 수 없습니다.

## 5.2 애버리지 기능

측정치를 평균화하여 표시하는 기능입니다. 측정치가 변동하여 표시의 편차가 클 때 이 기능을 사용하면 표시치를 안정적으로 읽어낼 수 있습니다. 애버리지 동작 중에는 화면 상부의 설정 인디케이터에 애버리지 마크가 점등합니다. 참조: "측정 화면의 표시" (p.32)

#### 평균화의 설정

평균화 모드에는 지수화 평균과 이동 평균의 2종류가 있습니다. 지수화 평균은 응답 속도의 설정에 따른 시정수에 가중치를 부여하여 평균화하는 모드입니다. 이동 평균은 최신 데이터에서 평균 횟수만큼 거슬러 올라간 데이터까지를 평균화하는 모드입니다.

#### 표시 화면 [INPUT] > [COMMON]





#### 1 [Averaging mode] 박스를 탭하여 일람에 서 평균화 모드를 선택한다

OFF	평균화 OFF
EXP	지수화 평균(응답 속도를 설정)
MOV	이동 평균(평균 횟수를 설정)

데이터 갱신율의 설정을 1 ms로 변경한 경우에는 평균화 모드가 OFF로 변경됩니다. 데이터 갱신율의 설정이 1 ms일 때에 평균화 모 드를 OFF 이외로 설정하면 데이터 갱신율의 설정 이 10 ms로 변경됩니다.

#### 2 ([EXP]를 선택한 경우)

[Response speed] 박스를 탭하여 일람에 서 응답 속도를 선택한다

#### FAST, MID, SLOW

표시 갱신율에는 영향을 주지 않습니다. 데이터 갱 신율의 설정에 따라 응답 속도는 달라집니다.

데이터	응답 속도		
갱신율	FAST	MID	SLOW
10 ms	0.1 s	0.8 s	5 s
50 ms	0.5 s	4 s	25 s
200 ms	2.0 s	16 s	100 s

#### 3 ([MOV]를 선택한 경우)

[Averaging count] 박스를 탭하여 일람에 서 평균 횟수를 선택한다

8, 16, 32, 64

능

## 애버리지의 동작

- 피크 값, 적산값과 데이터 갱신율 10 ms 이하의 고조파 데이터를 제외한 모든 측정치에 기능합니다. 전 압 피크 값, 전류 피크 값의 경우, 지수화 평균일 때는 최신 데이터의 피크 값이, 이동 평균일 때는 최신 데이터에서 평균 횟수만큼 거슬러 올라간 데이터 기간 내의 피크 값이 표시됩니다.
- 표시치뿐 아니라, USB 메모리에 저장되는 측정치나 통신으로 취득되는 측정치, 아날로그 출력되는 측 정치에도 적용됩니다.
- 결선, 레인지 등, 측정치에 관한 설정을 변경한 경우는 평균화 연산이 다시 시작됩니다.
- 애버리지와 자동 레인지를 병용한 경우, 올바른 값으로 안정될 때까지의 시간이 평소보다 길어질 수 있습니다.
- 애버리지 동작 중의 적산 측정치는 애버리지 전의 측정치에서 연산됩니다.
- 홀드 기능으로 측정치를 홀드하는 중에도 내부의 애버리지 연산은 계속됩니다.
- 피크 홀드 기능은 애버리지 동작 후의 측정치에 적용됩니다.

#### 오버로드 시의 동작

.....

이동 평균 중에 오버로드가 발생한 경우는 평균치도 오버가 됩니다. 지수화 평균 중에 오버로드가 발생한 경우는 내부 연산값을 사용하여 평균화 연산이 계속됩니다.

- 결선이나 채널별로 설정을 전환하는 것은 불가합니다.
- 설정에 따라 레인지 변경 후의 측정치 무효 기간이 변화합니다.
- 파형 화면에 표시되는 파형이나 D/A 출력의 파형에는 영향을 주지 않습니다.
- 측정치별 평균화 연산 방법은 연산 사양의 애버리지 항목을 참조해 주십시오. 참조: "10.5 연산식 사양" (p.283)

#### 중요

- 결선이나 채널별로 설정을 전환하는 것은 불가합니다.
- 파형 화면에 표시되는 파형이나 D/A 출력의 파형에는 영향을 주지 않습니다.
- 측정치별 평균화 연산 방법은 연산 사양의 애버리지 항목을 참조해 주십시오.

참조: "10.5 연산식 사양" (p.283)

## 5.3 홀드 기능

HOLD 키를 누르면 모든 측정치의 표시 갱신을 정지하고, 누른 시점의 데이터를 유지할 수 있습니다. 그 상태에서 화면을 전환하면 데이터를 유지한 시점의 다른 측정 데이터도 볼 수 있습니다. 또한, 외부 제어 신호의 HOLD 신호로 HOLD 키와 같은 동작을 시킬 수도 있습니다. 참조: "8.3 외부 신호로 적산을 제어" (p.204)

홀드 동작 중에는 HOLD 키에 빨간불이 켜지고, 화면의 동작 상태 인디케이터에 [HOLD]가 점등합니다. 참조: "1.4 기본 조작(화면의 표시 및 구성)" (p.28)



**PEAK HOLD** 키를 누를 때마다 그 시점에서의 측정치를 표시할 수 있습니다. 내부에서 측정, 연산, 애버리지는 계속 이루어집니다.

#### 홀드 상태의 해제

홀드 동작 중에 다시 한번 HOLD 키를 누르면 홀드 상태가 해제됩니다.

## 홀드 중의 동작

- 다음 측정치에도 홀드 중의 측정치가 적용됩니다.
  - (1) USB 메모리에 저장되는 측정치
  - (2) 통신으로 취득되는 측정치
  - (3) 아날로그 출력되는 측정치
- 파형과 시계, 피크 오버 표시는 갱신됩니다.
- PEAK HOLD 키를 누르면 최신 내부 데이터로 데이터가 갱신됩니다.
- 본 기기에서는 시간 제어 기능의 인터벌 시간이 되어도 데이터가 갱신되지 않고 유지됩니다.
- 애버리지나 적산의 연산은 내부에서 계속 이루어집니다.
- 레인지나 LPF 등 측정치에 영향을 주는 설정을 변경하는 것은 불가합니다.
- 레인지 설정이 AUTO 인 경우, HOLD 키를 눌렀을 때의 레인지로 고정됩니다.
- 홀드 기능과 피크 홀드 기능의 병용은 불가합니다.
- 파형 화면에 표시되는 파형이나 D/A 출력의 파형에는 영향을 주지 않습니다.
- 홀드 시에 유지되는 데이터는 **HOLD** 키를 눌렀을 때 표시 중인 데이터가 아니라, **HOLD** 키를 누른 시 점에 내부 유지되고 있는 데이터 갱신율별 데이터입니다.

## 5.4 피크 홀드 기능

**PEAK HOLD** 키를 누르면 피크 홀드 상태가 됩니다. 과거의 최대치를 초과한 항목만 갱신됩니다. 돌입 전류 등 순간적으로 수치가 커지는 현상을 놓치지 않고 포착하려는 경우에 사용합니다.

피크 홀드 중에는 **PEAK HOLD** 키에 빨간불이 켜지고, 화면의 동작 상태 인디케이터에 **[PEAK HOLD]**가 마크가 점등합니다.

참조: "공통의 화면 표시" (p.31)



과거의 최대치를 초과하면 그 항목의 표시치가 갱신됩니다. 내부에서 계측은 계속되고 있습니다.

#### 피크 홀드 상태의 해제

피크 홀드 중에 다시 한번 PEAK HOLD 키를 누르면 피크 홀드 상태가 해제됩니다.

5

각 종

기능

## 피크 홀드 중의 동작

• 다음 측정치에도 피크 홀드 중의 측정치가 적용됩니다.

- (1) USB 메모리에 저장되는 측정치
- (2) 통신으로 취득되는 측정치
- (3) 아날로그 출력되는 측정치
- 파형과 시계, 피크 오버 표시는 갱신됩니다.
- 표시가 오버로드한 경우는 [----]로 표시됩니다. 이 경우, 한 차례 피크 홀드를 해제하여 오버로드 하지 않는 레인지로 전환해 주십시오.
- 측정치의 절대치로 최대치를 판단합니다(단, 전압 피크 값, 전류 피크 값은 제외). 예를 들면 "+50 W" 입력 후에 "-60 W"가 입력된 경우, 절대치에서는 "-60 W" 쪽이 크므로 표시는 [-60 W]가 됩니다.
- HOLD 키를 누른 경우, 피크 홀드 값은 리셋되고 그 시점에서 새롭게 피크 홀드가 시작됩니다.
- 본 기기에서는 시간 제어 기능의 인터벌 시간이 되어도 피크 홀드 값이 리셋되지 않고 유지됩니다.
- 애버리지 연산 중에는 애버리지 연산 후의 측정치가 피크 홀드됩니다.
- 레인지나 LPF 등 측정치에 영향을 주는 설정을 변경하는 것은 불가합니다.
- 레인지 설정이 [AUTO] 인 경우, PEAK HOLD 키를 눌렀을 때의 레인지로 고정됩니다.
- 홀드 기능과 피크 홀드 기능의 병용은 불가합니다.
- 파형 화면에 표시되는 파형이나 D/A 출력의 파형에는 영향을 주지 않습니다.
- 최대치의 발생 시각은 표시하지 않습니다.
- 적산값은 피크 홀드되지 않습니다.
### 5.5 델타 변환 기능

3상 측정 라인의 델타 결선과 Y 결선(스타 결선)을 상호 변환하여 측정하는 기능입니다. 서로 다른 채널 간의 15 MHz에서 샘플링한 전압 파형 데이터에서 연산식에 따라 변환합니다.

∆-Y 변환

결선이 3P3W3M 또는 3V3A일 때, 이 기능을 ON으로 설정할 수 있습니다.

내부가 Y 결선된 모터에서 중성점을 따지 못하고 델타 결선된 상태에서도 Y 결선으로 모터 코일에 걸리는 상전압을 이용한 측정이 가능합니다.

전압 파형, 각종 전압 측정치, 고조파 전압은 모두 선간 전압으로써 입력되는데, 상전압으로써 연산됩니다.

3P3W3M의 경우







- △-Y 변환은 가상 중성점을 이용해 전압 파형을 벡터 변환한 후 해석합니다.
- 실제의 상전압과 다를 수 있습니다.
- 결선 화면의 벡터도는 3P4W의 벡터도와 같습니다. 3V3A일 때는 상순만 반대가 됩니다.
- 3V3A 결선의 유효전력은 2전력계법이지만, 변환 후에는 3전력계법이 됩니다.
- 피크 오버는 변환 전의 값을 사용하여 판정합니다.
- 전압 레인지가 AUTO 레인지일 때 전압의 레인지 변경은 레인지를 1/√3 배(약 0.57735배)하여 판정합 니다.

Y-∆ 변환

결선이 3P4W일 때, 이 기능을 ON으로 설정할 수 있습니다. Y 결선으로 상전압을 입력한 상태에서 선간 전압으로써 측정할 수 있습니다.

전압 파형, 각종 전압 측정치, 고조파 전압은 모두 상전압으로써 입력되는데, 선간 전압으로써 연산됩니다.

Y-∆ 변환 이미지도

#### 3P4W의 경우





- 결선 화면의 벡터도는 3P3W3M의 벡터도와 같습니다.
- 피크 오버와 전압 피크 값의 표시 범위는 변환 전의 값을 사용해 판정합니다.
- 전압 레인지가 AUTO 레인지일 때 전압의 레인지 변경은 변환 후의 측정치로 판정합니다.

#### 표시 화면 [INPUT] > [CHANNEL]

022-12-01 10:42:24	Wideland							۸H
	CH1	CH2	СНЗ	CH4	CH5	CH6	CH7	CH8
Sync. source	U1	U	2	U	14		U6	
- HRM	U1	u	2		14	U6		
U range	Manual	Mar	nual	Mar	nual		Manual	
	1500V	150	V00	150	00V		1500V	
I range	Manual	Mar	nual	Mar	nual		Manual	
	50A	50	)A	50	0A		50A	
LPF 🚺	OFF	OFF		OFF		OFF		
VT ratio U phase shift CT ratio I phase shift Δ-Y Conv. U rectification I rectification Upper f lim. Lower f lim. Integ. mode	1.00000 OFF 1.00000 OFF RMS RMS 2MHz 10Hz RMS	1.00 OFF 1.00000 OFF OI RI 2M 10 RI RI 2M	0000 OFF 1.000000 OFF FF 4S 4S HIZ HIZ HIZ HIZ	1.00 OFF 1.00000 OFF 01 R1 1M 10 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1	0000 OFF 1.00000 OFF FF MS MS IHZ IHZ MS	OFF 1.00000 OFF	1.00000 OFF 1.00000 OFF OFF RMS RMS 1MHz 10Hz RMS	OFF 1.00000 OFF

1 설정하려는 채널의 채널 상세 표시 영역을 탭 하여 설정 창을 연다



- 2 [△ Conv.] 박스를 탭하여 Y-△ 변환을 [ON] 으로 한다
- **3** [×]를 탭하여 설정 창을 닫는다

### 5.6 전력 연산식

전력의 무효전력, 역률, 전력 위상각의 연산식을 당사 기존 기종에 맞춰 선택하는 기능입니다. 왜곡파의 3상 교류에서 피상전력과 무효전력의 연산식은 통일된 정의가 존재하지 않으므로 측정기에 따라 연산식이 다릅니다. 기존 기종과의 호환성을 높이기 위해 기종에 맞춰 3가지 선택지에서 선택할 수 있습니 다.

참조: "10.5 연산식 사양" (p.283)

#### 표시 화면 [INPUT] > [COMMON]



 
 Image: Power calculation method] 박스를 탭 하여 일람에서 연산식 타입을 선택한다

#### 중요

 TYPE 1, TYPE 2, TYPE 3은

 당사 PW6001 파워 아날라이저의 각 연산식

 TYPE과 호환성이 있습니다.

#### 연산식 타입

TYPE1	3V3A 이외를 선택 시 당사 제품 PW3390, 3390, 3193 각각의 TYPE1과 호환성이 있습니다				
	3V3A를 선택 시	당사 제품 3192, 3193 각각의 TYPE2와 호환성이 있습니다.			
TYPE2	당사 제품 3192, 3193 각각의 TYPE2와 호환성이 있습니다.				
TYPE3	역률 부호에 유효전력 부호를 사용합니다.				

대상 기종이 없는 경우나 어떤 타입을 골라야 할지 모르는 경우는 **[TYPE1]**을 선택해 주십시오. 유효전력 은 전압과 전류 파형의 샘플링 값에서 직접 구하므로 파형이 왜곡된 경우에도 연산식에 의한 차이는 없습니 다.

### 5.7 사용자 정의 연산(UDF)

### 사용자 정의 연산(UDF)의 설정

본 기기의 측정치, 수치 및 함수를 조합하여 연산식을 설정할 수 있습니다. 설정한 연산값을 측정 화면에서 표시하거나 설정한 연산값끼리를 이용해 연산할 수 있습니다. 데이터 갱신율을 1 ms로 설정하면 연산식은 항상 [------]가 됩니다. 사용자 정의 연산을 사용하는 경우는 데이터 갱신율을 1 ms 이외로 설정해 주십시오.

#### 표시 화면 [INPUT] > [UDF]







1 설정할 UDF를 탭하여 선택한다

1-4, 5-8, 9-12, 13-16, 17-20

2 [Name] 박스를 탭하여 키보드로 UDF 명을 설정한다

여기에 입력한 이름은 측정 화면에서 UDF를 표시 했을 때도 반영됩니다.

**3** [UDFn] 박스를 탭한다 설정 창이 표시됩니다.

4 항목명을 탭하여 선택한다 설정 창이 표시됩니다.





항목 선택 창의 기본 측정 항목을 선택할 수 있습 니다. (항목으로 다른 UDF 연산 결과도 선택할 수 있습니다)

선택 항목을 삭제할 경우는 [Others]에 있는 [OFF]를 선택합니다.

[NUM]을 탭하여 텐 키로 수치를 입력할 수도 있 습니다.

#### 5 함수를 설정한다

선택지	함수명	유효 범위
neg	부 (마이너스)	-
sin	사인*	-
cos	코사인*	-
tan	탄젠트*	-
abs	절대값	-
log10	상용로그	item > 0
log	로그	item > 0
ехр	지수함수	-
sqrt	제곱근	item > 0
asin	역사인*	-1 <= item <= 1
acos	역코사인*	-1 <= item <= 1
atan	역탄젠트*	-
sqr	제곱	-

* 다루는 각도의 단위는 °(degree)입니다. radian이 아닙니다

항목의 값이 유효입력 범위 외인 경우는 무효값이 됩니다.

#### 6 사칙연산 항목을 선택한다

#### **+**, - , *****, /

- 식 안의 사칙연산 순서는 사칙연산 규칙에 따릅니 다.
- ()를 사용하는 연산을 하고자 하는 경우에는 2식 을 사용해 주십시오.

연산 예: **(P1 + P2) / P123** 을 계산하려는 경우 UDF1 = P1 + P2 UDF2 = UDF1 / P123



5





#### 7 [MAX] 박스를 탭하여 UDF 값의 MAX 값 (최대치)을 선택한다

Auto	연산 결과의 값에 따라 최대치가 자 동으로 설정됩니다.
Fixed	텐 키로 수치를 입력합니다.
	<b>[+1.00000]으로 설정한 경우</b> UDF 표시 자릿수: X.XXXXX 유효 측정 범위: 0.00000 ~ ±1.00000
	<b>[+10000.0]으로 설정한 경우</b> UDF 표시 자릿수: XX.XXXX k 유효 측정 범위: 0.0000 k ~ ±10.0000 k

D/A 출력 항목으로 [UDF]를 선택하는 경우는 UDF 값의 MAX 값(최대치)을 [Fixed]로 설정 해 주십시오. [Auto]로 설정하면 풀 스케일의 값 이 항상 출력되는 상태가 됩니다. 표시치에서 산출한 값과 UDF의 값이 반올림 오차 에 의해 다를 수 있습니다.

#### **8** [Integ] 박스를 탭하여 적산 선택한다

ON	적산을 시작하는 동안 연산 결과의
	값을 적산하여 표시합니다.
	적산 정지 중에는 UDF의 값이 변
	화하지 않으며, 적산 리셋에 의해
	UDF의 값도 리셋됩니다. 최대치인
	±999.999Y가 되면 적산이 되지 않
	습니다.





#### 9 [Unit] 박스(단위)를 탭하여 키보드로 단위 를 입력한다

여기서 입력한 단위는 측정 화면에서 UDF를 표시 했을 때도 반영됩니다.

#### 중요

사용자 정의 연산과 광링크 모드를 병용하여 연산식에 세컨더리 측정값을 포함한 경우는 동기가 끊어지 지 않도록 주의해 주십시오.

잘못해서 동기가 끊어진 경우는 본래의 값과 다른 값이 됩니다. 연산식의 결과가 표시되어 있어도 다음에 나타낸 동작이 됩니다.

세컨더리의 측정값을 포함한 연산식은 영향을 받습니다. 그 연산식을 포함하는 다른 연산식도 영향을 받 습니다.

- 효율 연산이나 사용자 정의 연산에 세컨더리의 측정값을 선택한 상태에서 동기가 끊어지면 세컨더리 측정값을 포함한 연산식의 결과는 화면상에 표시되지 않습니다. (p.62)
- 상기 조건에서 세컨더리 측정값은 "0"으로써 연산을 하고, 그 결과를 다른 사용자 정의 연산식에 반영 합니다.

### 사용자 정의 연산(UDF) 설정 데이터의 저장

본 기기의 UDF 설정 정보를 UDF 설정 파일로 저장합니다.

저장위치	USB 메모리, FTP 서버
파일명	임의로 설정(최대 8문자), 확장자는 JSON 예 : PW8001.JSON

#### 표시 화면 [INPUT] > [UDF]

2022-08-05 12:51:04 [MiddeBand] University of the second s				♣ 5 6 7 <b>T</b> USB
$UDF_1 = U_{rms1} \cdot I_{rms1}$				म् <u>म</u>
Name power	MAX Auto	Integ OFF	UDF1 7.29360 m	
$UDF_2 = P_1 * P_1 + Q_1 *$	Q1			
Name	MAX Auto	Integ OFF	UDF ₂ 53.1965 u	1-4 /0 5-8
UDF3 = sqrt(UDF ₂ )				9 - 12
Name	MAX Auto	Integ OFF	UDF3 7.29359 m	13 · 16
UDF4 = OFF				Save file
Name	MAX Auto	Integ OFF	UDF4 0.00000	

1 [Save file]을 탭한다

키보드 창이 표시됩니다.

2 파일명을 입력한다

자동 저장이 실행되고 있는 경우는 저장할 수 없습 니다.

### 사용자 정의 연산(UDF) 설정 데이터의 로딩

저장된 UDF 설정 파일을 불러와서 UDF 설정을 복원합니다.

#### 표시 화면 [INPUT] > [UDF]



1 [Load file]을 탭한다

UDF 설정 파일 로딩 창이 표시됩니다.

- **2** UDF 설정 파일이 저장된 폴더를 탭한다
- 3 UDF 설정 파일을 선택한 후, [OK]를 탭한 다



#### FTP 서버에서 UDF 설정 파일을 불러올 경우

 4
 [FTP]를 탭한다

 FTP 서버의 파일 창이 표시됩니다.



- 5 UDF 설정 파일이 저장된 폴더를 탭한다
- 6 UDF 설정 파일을 선택한 후, [OK]를 탭한 다

자동 저장이 실행되고 있는 경우는 로딩할 수 없습 니다. 6 시스템 설정

## 6.1 설정 확인 및 변경

본 기기의 버전 확인이나 표시언어, 비프음 등의 설정을 변경할 수 있습니다.

#### 표시 화면 [SYSTEM] > [CONFIG]

									%
Language		English	1 7	7 Time/o	date setti	ngs 2	021-10-2	15:58:16	- So
Time zone	GI	MT +09:00	6	Time/	date form	at y	yyy MM de	1	THE CONTROL
Text format		CSV		Delimi	ter		-		Carla Lave
Beep tone		OFF			-				
Startup coroop	105					System	reset		
Startup screen		WIKING							Ľ
Model	PW8001-15								
Serial number Version number	000000000								
	СН 1			CH 4		СН 6		сна	
Unit	U7005	U7005	U7005	U7005	U7001	U7001	U7001	U7001	
Serial number	666666666	000000000	000000000	000000000	000000000	000000000	000000000	000000000	
Sensor	Probe1	Probe1	Probe1	Probe1	Probe1	Probe1	Probe1	Probe1	
Rate	50A AC/DC	50A AC/DC	50A AC/DC	50A AC/DC	SOA AC/DC	50A AC/DC	50A AC/DC	50A AC/DC	

MAC 어드레스는 [SYSTEM] > [COM] 화면에서 확인할 수 있습니다.

#### (1) 언어

Japanese, English, Chinese

#### (2) 타임존

GMT +14:00 ~ GMT - 12:00

#### (3) 텍스트 저장 형식

CSV	측정 데이터는 콤마(,) 구분, 소수점은 피리어드(.)
SSV	측정 데이터는 세미콜론(;) 구분, 소수점은 콤마(,)

#### (4) 비프음

ON	키와 터치패널의 조작음을 울립니다.
OFF	키와 터치패널의 조작음을 울리지 않습니다.

#### (5) 기동 화면 선택

WIRING	전원 투입 시에 결선 화면을 표시합니다.
LAST	전원 투입 시에 전회 전원을 껐을 때의 화면을 표시합니다.

#### (6) 상세 정보

Model	본체의 형식 번호
Serial number	본체의 제조번호: 제조번호는 9자리 숫자로 구성되어 있습니다. 이 중 왼쪽에서 2자리가 제 조년도(서력의 뒤 2자리), 다음 2자리가 제조월을 나타냅니다.
Version number	본체의 버전
Unit	본체 뒷면에 연결된 각 입력 유닛의 형식 번호
Serial number	각 입력 유닛의 제조번호
Sensor	각 입력 유닛에 접속된 전류 센서
Rate	각 입력 유닛에 접속된 전류 센서의 출력률
Serial number	각 입력 유닛에 접속된 전류 센서의 제조번호

#### (7) 시계 설정

#### 2020-01-01 00:00:00 ~ 2099-12-31 23:59:59

본 기기에 내장된 시계의 날짜와 시각을 설정합니다. 실시간 제어나 파일 정보는 이 시계로 관리합니다. 날짜와 시각이 정확한지 확인한 후 본 기기를 사용해 주십시오. 참조: "텐 키 창" (p.30)

#### (8) 날짜 포맷

yyyy MM dd	연(서력 4자리)월일
MM dd yyyy	월 일 년 (서력 4자리)
dd MM yyyy	일 월 년(서력 4자리)

#### (9) 날짜 구분 문자

-	하이픈
1	슬래시
	피리어드

Tips 타임존			
본 기기를 / GMT: Gre	사용할 지역의 타임존에 맞춰 주십 eenwich mean time(그리니치 3	시오. 표준시)	
국가(수도)	표준시각과의 차(서머 타임)	국가(수도)	표준시각과의 차(서머 타임)
뉴질랜드(웰링턴)	GMT+12:00 (+13:00)	그리스(아테네)	GMT+2:00 (+3:00)
호주(캔버라)	GMT+10:00 (+11:00)	독일(베를린)	GMT+1:00 (+2:00)
일본(도쿄)	GMT+9:00	프랑스(파리)	GMT+1:00 (+2:00)
한국(서울)	GMT+9:00	네덜란드(암스테르담)	GMT+1:00 (+2:00)
중국(북경)	GMT+8:00	이탈리아(로마)	GMT+1:00 (+2:00)
대만(타이페이)	GMT+8:00	폴란드(바르샤바)	GMT+1:00 (+2:00)
싱가포르(싱가포르)	GMT+8:00	스위스(베른)	GMT+1:00 (+2:00)
몽골(울란바토르)	GMT+8:00	체코(프라하)	GMT+1:00 (+2:00)
인도네시아(자카르타)	GMT+7:00	벨기에(브뤼셀)	GMT+1:00 (+2:00)
태국(방콕)	GMT+7:00	스웨덴(스톡홀름)	GMT+1:00 (+2:00)
인도(뉴델리)	GMT+5:30	덴마크(코펜하겐)	GMT+1:00 (+2:00)
파키스탄(이슬라마바드)	GMT+5:00	노르웨이(오슬로)	GMT+1:00 (+2:00)
아랍에미리트(아부다비)	GMT+4:00	스페인(마드리드)	GMT+1:00 (+2:00)
오만(무스카트)	GMT+4:00	헝가리(부다페스트)	GMT+1:00 (+2:00)
이란(테헤란)	GMT+3:30 (+4:30)	오스트리아(빈)	GMT+1:00 (+2:00)
루마니아(부쿠레슈티)	GMT+2:00 (+3:00)	슬로베니아(류블랴나)	GMT+1:00 (+2:00)
핀란드(헬싱키)	GMT+2:00 (+3:00)	이집트(카이로)	GMT+2:00
카타르(도하)	GMT+3:00	남아프리카공화국(프리토리아)	GMT+2:00
터키(앙카라)	GMT+3:00	영국(런던)	GMT+0:00 (+1:00)
러시아(모스크바)	GMT+3:00	포르투갈(리스본)	GMT+0:00 (+1:00)
우크라이나(키이우)	GMT+2:00 (+3:00)	미국(워싱턴)	GMT-5:00 (-4:00)

### 6.2 본 기기의 초기화

본 기기의 동작이 이상할 경우에는 "11.2 문제가 발생했을 경우" (p.301)를 확인해 주십시오. 원인을 알 수 없는 경우는 시스템 리셋 또는 부팅키 리셋을 해주십시오.

#### 시스템 리셋

본 기기의 언어 설정과 통신 설정 이외의 설정을 공장 출하 시의 상태로 초기화합니다. 참조: "6.3 공장 출하 시의 설정" (p.156)

#### 표시 화면 [SYSTEM] > [CONFIG]



부팅키 리셋

본 기기의 언어 설정과 통신 설정도 포함하여 모든 설정을 공장 출하 시의 상태로 초기화합니다. 전원 투입 직후의 OS 기동 시에 SYSTEM 키가 눌러져 있으면 부팅키 리셋이 작동합니다.

### 6.3 공장 출하 시의 설정

공장 출하 시의 초기 설정은 다음과 같습니다. 측정화면의 설정, 기록 데이터의 설정도 초기화됩니다.

설정 항목	초기설정		설정 항목	초기설정
전류 입력	Probe 1		모터 해석 옵션	Torque, Speed
결선	1P2W		결선 설정	
동기 소스	U1, U2, U3, U4, U5, U6, U7,		토크 입력	Analog
	U8(탑재된 유닛 수에 따름)		(모터) LPF	OFF
U 레인지	1500 V		모터 전압 레인지	5 V
U AUTO 레인지	OFF		회전수 입력	Pulse
U 정류 방식	RMS		토크 스케일 값	1.0
VT 비	1.0(OFF)		펄스 수	2
전압 프로브 위상 보정	OFF		모터 극수	4
I 레인지	센서 정격		슬립 입력 주파수	fU1
I AUTO 레인지	OFF		위상 영점 조정	0.000
I 정류 방식	RMS		출력 레인지	1 V f.s.
CT 비	1.0(OFF)		적산 풀 스케일	1
LPF	OFF		출력 항목	D/A1~D/A16: WAVE U1,
센서 위상 보정	OFF*1			I1U2, I2, U3, I3••••U8, I8
적산 모드	RMS			D/A17~D/A20: Trend Urms1
상한 주파수	U7001: 1 MHz			(탑재된 유닛 수에 따름)
	U7005: 2 MHz		석산 제어	All channel
하한 주파수	10 Hz		타이머	OFF
ZC HPF	OFF		타이머 설정	1min
델타 변환	OFF		실시간 제어	OFF
데이터 갱신율	50 ms		자동 저장	OFF
측정 모드	Wide Band(광대역)		데이터 저장 인터벌	1 s
그루핑	TYPE1		수동 저장	OFF
THD 연산 차수	500차		화면 복사	OFF
THD 연산 방식	THD-F		코멘트 입력	OFF
평균화 모드	OFF		설정 정보 동기 저장	OFF
제로 서프레스	OFF		DHCP*2	OFF
전력 연산식	TYPE1		IP 주소* ²	192.168.1.1
효율 연산 모드	Fixed		서브넷 마스크 *2	255.255.255.0
UDF 설정	연산 항목: OFF		디폴트 게이트웨이*2	0.0.0.0
	함수:		GP-IB 어드레스* ²	1
	사칙연산 항목:		RS-232C 연결처* ²	RS-232C
	UDF명:		RS-232C 통신 속도* ²	115200 bps
	MAX 값: +1.00000 k(Auto) 저사: OFF		광링크, BNC 동기	OFF
	역전. OFF 단위·		CAN 설정	CAN 모드: CAN
효율 연산 Pin, Pout	P1			동신 속도: 500 kbps
표시언어*2	English			│ 셈글딩 포인트: 80% │ 추려 ロロ・OEE
비표음	ON		 ELOI不 *2	
기도 하면 서택	Wiring(격서 하며)		니 너 컴퓨션	GIVI 1 +09.00
			□ 텍스트 서상 영식 **	050
(エリ) つり エニ	00		날짜 포맷 **	vvvvMMdd

*1: 자동 인식 기능이 내장된 전류 센서의 접속 시에는 자동으로 AUTO로 설정됩니다.

날짜 구분 문자 *²

-

*2: 시스템 리셋으로는 초기화되지 않는 항목입니다. "부팅키 리셋" (p.155) 으로만 초기화됩니다.

# 7 데이터 저장과 파일 조작

USB 메모리 내의 데이터 저장 및 읽어오기는 다음의 키로 실행합니다.

7	조작					
SAVE	측정 데이터를 수동으로 저장한다					
START / STOP	측정 데이터를 자동 저장한다					
화면의 터치패널 <b>[Save]</b>	파형 데이터를 저장한다					
COPY	화면 복사를 저장한다					
FILE	설정 데이터, 설정 파일을 저장한다 설정 데이터, 설정 파일을 읽어온다 데이터를 <b>USB</b> 메모리에 저장한다					

### 7.1 USB 메모리

USB 메모리에 데이터를 저장할 수 있습니다. USB 메모리는 Mass Storage Class에 대응하는 것만을 사용해 주십시오.

**[HIOKI/PW8001]**이라는 폴더에 데이터가 저장됩니다. 이후 본 기기는 이 폴더 하위에 모든 파일을 작성 합니다. 또한, 그 아래에 하위 폴더를 작성할 수도 있습니다.



#### 중요

- USB 메모리에는 수명이 있습니다. 장기간 사용하거나 빈번하게 사용하면 데이터의 저장이나 불러오 기가 되지 않을 수 있습니다. 이 경우는 새것을 구매해 주십시오.
- USB 메모리 내에 저장된 데이터는 고장이나 손해의 내용 및 원인에 상관없이 보상되지 않습니다. USB 메모리 내의 중요한 데이터는 반드시 백업을 해두십시오.

#### 본 기기에 대응하는 USB 메모리



커넥터	USB 타입 A 커넥터
전기적 사양	USB3.0
공급 전원	최대 500 mA
포트 수	1
대응 <b>USB</b> 메모리	USB Mass Storage Class 대응
파일 시스템	FAT16, FAT32

USB 메모리를 인식하지 못하는 경우, [FILE] 화면의 리로드 버튼() 응 눌러 주십시오. 그래도 인식하지 못하는 경우에는 다른 USB 메모리를 시험해 보십시오. 본 기기는 시판되는 모든 USB 메모리에 대응하지는 않습니다.

#### USB 메모리의 포맷

참조: "USB 메모리의 포맷" (p.178)

#### USB 메모리의 분리 방법

								🐭 <b>1</b> [EJECT]를 탭한다
								2 확인 다이얼로그가 표시되면 [Yes]를 탭한다
								·····································
	50A AC/D							-//
Setup	Setup		Unmount I	JSB drive.		Setup	Setup	20
	6001112 Lon 10 10 10 10 10 10 10 10 10 10	20	Yes	No us 0.000kV 15 0.00kV P5 0.00kV	UG 0.000kV IG 0.01 A PG- 0.00kW		Source Land A 10 10 10 10 10 10 10 10 10 10	올바른 순서로 USB 메모리를 분리하지 않으면 USB 메모리 내의 데이터가 파손될 우려가 있습니 다.

#### 미디어의 인디케이터

화면 우측 상단에 미디어 인디케이터가 표시됩니다.

USB	[USB]가 점등(배경이 회색에서 검정색으로 변함) USB 메모리가 인식되고 있습니다.
USB	[USB]가 점등(배경이 빨간색) 사용률이 95%를 넘었습니다. 측정을 중지한 후, USB 메모리를 교체하거나 PC로 데이터를 전송 해 주십시오.
SLOW	<b>[SLOW]</b> 가 점등 쓰기 속도가 느린 USB 메모리로 인식했습니다. 인터벌 시간별로 저장할 수 있는 최대 기록 항목 수가 약 1/3이 됩니다.
ERROR	[ERROR]가 점등 USB 메모리의 용량이 부족하거나 USB 메모리의 인식 처리를 하지 못했습니다.

### 7.2 파일 조작 화면

파일 조작 화면의 표시에 대해서 설명합니다. 자동 저장 중에는 미디어 조작을 실행할 수 없습니다.



하나 위 계층으로 이동합니다. 1 파일 일람을 갱신합니다. 2 3 폴더의 계층을 표시합니다. 리스트의 헤더 부분을 탭하면 리스트 내의 파일이 그 종류에 따라 정렬됩니다. 4 예: [Date]를 탭하면 파일 작성일 순으로 정렬된다. [FileSize] 를 탭하면 파일 크기 순으로 정렬된다. 저장된 파일의 일람입니다. 5 파일 수가 많아 1개 화면에 표시할 수 없는 경우나 표시 위치를 변경할 경우에 사용합니다. 6 USB 메모리의 정보를 표시합니다. 7

#### 파일의 종류

파일의 이름	종류	내용
M8001nnn.CSV	CSV	수동 저장한 측정 데이터
F8001nnkkk.CSV	CSV	FFT 데이터
MMDDnnkkk.CSV	CSV, BIN	자동 저장한 측정 데이터 BIN 형식은 GENNECT One으로만 불러올 수 있습니다.
W8001nnnkk.CSV	TEXT, BIN, MAT	파형 데이터
PW8001.DBC	DBC	CAN 데이터베이스 정보
PW8001.JSON	JSON	UDF1-20의 설정 데이터
H8001nnn.PNG	PNG	화면 복사 데이터
MMDDnn000.SET	SET	자동 저장한 설정 데이터
xxxxxxxx.SET	SET	설정 데이터
XXXXXXXX	FOLDER	폴더
XXXXXXXX	???	본 기기에서 조작할 수 없는 파일

- 파일명의 nnn 또는 nn은 동일 폴더 내의 일련번호(000~999 또는 00~99), kk는 파일 크기가 500 MB를 넘은 경우 의 파일 분할 연번(00~999 또는 00~99), MMDD는 월일
- 설정 데이터의 파일명은 임의로 설정(최대 8문자)
- 반각 영숫자 기호만 표시할 수 있습니다. 2바이트 문자는 "?"로 치환됩니다.

-조 작

#### 설정 가능한 문자 수

입력 내용	최대 입력 문자 수	
폴더명	영숫자 기호 8문자	
코멘트	영숫자 기호 40문자	

#### 폴더 내로 이동

- 폴더 행을 탭하면 폴더 내를 표시합니다.
- 왼쪽 위의 [←]를 탭하면 하나 위 계층으로 되돌아갑니다.

#### 폴더 내의 갱신

- 원을 그리고 있는 화살표 아이콘을 탭하면 표시 중인 폴더 내의 정보를 갱신합니다.
- 파일 크기가 실제 크기와 다른 경우에 사용합니다.

### 7.3 측정 데이터의 저장

데이터를 저장하는 방법에는 수동 저장, 자동 저장의 2종류가 있습니다. 기본 측정 항목, 고조파 측정 항목의 모든 측정치를 임의로 선택해서 저장할 수 있습니다.

#### 파일 형식

수동 저장	CSV 형식(데이터 구분 문자는 선택 가능)
자동 저장	CSV 형식(데이터 구분 문자는 선택 가능) 또는 BIN 형식

#### 텍스트 저장 형식

텍스트 저장 형식은 시스템 화면에서 설정합니다. 참조: "6.1 설정 확인 및 변경" (p.153)

CSV	측정 데이터는 콤마(,) 구분, 소수점은 피리어드(.)
SSV	측정 데이터는 세미콜론(;) 구분, 소수점은 콤마(,)

#### 중요

• USB 메모리에 액세스 중에는 수동 저장 및 자동 저장을 할 수 없습니다.

• 텍스트 형식으로 작성한 파일을 표 계산 소프트로 열람할 경우, 데이터 저장 시에는 다른 이름으로 저 장해 주십시오. 덮어쓰기 저장을 하면 측정 데이터의 유효 자릿수가 적어질 수 있습니다.

### 저장할 측정 항목의 설정

수동 저장, 자동 저장 공통입니다. USB 메모리에 저장할 항목을 설정합니다. 설정한 인터벌 시간 (p.164) 별로 저장 가능한 항목 수에는 다음의 제한이 있습니다.

데이터 저장 인터벌	1 ms*	10 ms	50 ms	100 ms	200 ms	500 ms	1 s	좌기 이외
최대 기록 항목 수 (텍스트)	50	200	1000	2000	4000	10000	20000	제한 없음
최대 기록 항목 수 (바이너리)	400	4000	20000	40000	제한 없음	제한 없음	제한 없음	제한 없음

*데이터 저장 인터벌이 1 ms일 때, 고조파 측정 항목은 선택할 수 없습니다.

#### 표시 화면 [SYSTEM] > [DATA SAVE]





탭하면 모든 항목을 ON/OFF 할 수 있습니다.

탭하면 그 행의 모든 항목을 ON/OFF 할 수 있습니다.

- [Parameters] 박스를 탭하여 설정 창을 연 다
- 2 저장할 항목을 탭하여 유효[☑]로 한다

Primary	광링크 시의 프라이머리 기기의 측정 항목
Secondary	광링크 시의 세컨더리 기기의 측 정 항목

Basic	기본 측정 항목
Harmonic	고조파 측정 항목

 3 (항목의 종류에서 [Harmonic]을 선택한 경 우)

[Order Select] 박스를 탭하여 일람에서 출 력 차수를 선택한다

ALL	모든 차수
ODD	홀수 차수
EVEN	짝수 차수

Interharmonics 의 차수는 1.5, 3.5, 5.5,,, 를 ODD로, 0.5, 2.5, 4.5,,, 를 EVEN으로 취급합 니다.

#### 4 [Min Order] 박스를 탭하여 Y 로터리 노브 로 최소 차수를 설정한다

녹색 점등: 1단계씩 변경 빨간색 점등: 10단계씩 변경 참조: "로터리 노브에 의한 수치 변경" (p.29)

측정 모드가 **[WideBand]**일 때: 0 ~ 500 측정 모드가 **[IEC]**일 때: 0 ~ 200 **[Secondary]** 항목일 때: 0 ~ 50 최소 차수를 최대 차수보다 크게 설정할 수 없습니다.

#### 5 [Max Order] 박스를 탭하여 Y 로터리 노브 로 최대 차수를 설정한다

녹색 점등 : 1단계씩 변경 빨간색 점등 : 10단계씩 변경

#### 6 [×]를 탭하여 설정 창을 닫는다

#### (Tips) 연산된 시각을 확인하는 방법

측정 데이터 파일에는 반드시 시각 데이터가 격납됩니다. 시각 데이터를 나타내는 열은 [Date], [Time], [Time(ms)](데이터 인터벌 1 s 미만)입니다. 측정 모드가 [IEC]일 때, 이에 더하여 각 채널의 측정 항목이 연산된 시각을 나타내는 [Date n], [Time n], [Time(ms) n](데이터 인터벌 1 s 미만)(n은 채널 번호)의 열이 추가됩니다.

#### ms 단위로 저장하려면

데이터 저장 인터벌을 1 s 미만으로 설정하면 저장한 파일에 **[Time (ms)]**의 열이 추가됩니다. 적산 경 과 시간(Others 탭의 **[Elapsed Time]** 체크박스를 ON)을 저장한 경우라도 똑같이 데이터 저장 인터 벌을 1 s 미만으로 설정하면 **[ETime (ms)]**의 열이 추가됩니다.

#### 측정 데이터의 수동 저장

SAVE 키를 누른 시점의 각 측정치를 저장합니다. 저장할 측정 항목과 저장위치는 미리 설정해 주십시오.

저장위치	항위치 USB 메모리		
파일명         자동 작성, 확장자는 CSV           M8001nnn.CSV (nnn 은 동일 폴더 내의 일련번호 000 ~ 999)           예: M8001000.CSV (최초에 저장된 파일)			
비고	최초 저장 시에 신규 파일이 작성되고 2번째 이후는 동일 파일에 추가 기록됩니다.		
Tips         SAVE 키를 누른 순간의 표시치와 저장되는 데이터는 시간 차이로 인해 값이 일치하지 않는 경우가 있습니다. 확실하게 일치시키려면 홀드 기능을 병용해 주십시오.			

#### 표시 화면 [SYSTEM] > [DATA SAVE]

11-16 12:21:10 Minesterd States and and a state of the st	A	7
Auto-save settings		
Auto-save operation OFF Data save interval 15	Destination HIOKI/PW8001/	
Manual save settings Destination HICKI/PW8001	2 omment entry OFF	}
Waveform format TEXT	Save to FTP server OFF Setup	
Parameters Select	Measurement parameters 0/20000	
Measured value format TEXT	Basic parameters 0	
Remaining save time hour min	Harmonic parameters 0	
Screenshot settings		
Destination HIOKI/PW8001/	Comment entry OFF	
Simultaneous saving of settings OFF		

- 자동 저장 중에 수동 저장은 할 수 없습니다.
- 동일 폴더 안에는 1000개 파일까지 작성할 수 있습니다. 폴 더 안의 파일 일련번호가 1000에 이르면 에러가 표시됩니다. 새로운 저장위치를 설정해 주십시오.

- 1 "저장할 측정 항목의 설정" (p.161)
- 2 [Destination] 박스를 탭하여 키보드 창에 서 폴더명을 설정한다

   (여수자 기호 유무자까지)

(영숫자 기호 8문자까지) 참조: "키보드 창" (p.30)

- 3 코멘트를 입력할 경우, [Comment entry] 박스를 탭하여 [ON]을 선택한다 (영숫자 기호 40문자까지)
- 4 저장하고자 할 때 SAVE 키를 누른다
- 5 코멘트 입력이 ON인 경우는 키보드 창에서 입력한다 코멘트는 CSV 파일의 측정 데이터 마지막에 추가

코멘트는 CSV 파일의 측정 데이터 마지막에 추가 됩니다.

#### 6 [Enter]를 탭한다

측정 데이터가 저장됩니다.

저장과 파일

_ 조 작

#### 신규 파일이 작성되는 타이밍

다음의 설정 변경 또는 조작 실행으로 그 이후 저장 시 신규 파일이 작성됩니다.

설정	저장 폴더 결선 모드 저장 측정 항목, 텍스트 저장 형식, 코멘트 입력 설정
조작	DATA RESET 키를 누른다 (임의의 타이밍에 일련번호를 변경하고자 할 때 편리합니다)

### 측정 데이터의 자동 저장

설정한 시간에 각 측정치를 자동 저장할 수 있습니다. 사전에 설정해 둔 항목이 저장됩니다.

저장위치	USB 메모리
파일명	시작 시의 일시에서부터 자동 작성, 측정 데이터의 확장자는 CSV 또는 BIN, 설정 데이터의 확 장자는 SET MMDDnnkkk.CSV, MMDDnn000.SET (MM: 월, DD: 일, nn: 동일 폴더 내의 일련번호 00~99, kkk: 파일 크기가 500 MB를 초과한 경우의 파일 분할 연번 000~999) 예: 110400000.CSV (11월 4일의 맨 처음에 저장된 파일) 참조: "자동 저장 시의 폴더 및 파일 구조" (p.167)

#### 중요

• 수동 저장, 파형 저장 또는 화면 복사 중에 자동 저장이 시작되는 경우, 자동 저장 여러 회 분량의 데이 터가 소실될 수 있습니다.

• 결선별 적산 설정 시에는 자동 저장 파일이 작성되지 않습니다. (p.75)

#### 표시 화면 [SYSTEM] > [DATA SAVE]

Auto-save settings		
Auto-save operation	Destination HICKI/PW8001/	
Data save interval	2	
Manual save settings		
Destination HI0KI/PW8001	Comment entry	OFF
Waveform format TEXT	Save to FTP server OFF	Setup
Parameters 7 Select	Measurement parameters	8/20000
Measured value format TEXT	Basic parameters	
Remaining save time 544 hour 48 min	Harmonic parameters	
Screenshot settings		
n and a state of the		OFF

- 자동 저장 중에는 수동 저장, 파형 저장을 할 수 없습니다.
- 최대 기록 항목 수는 데이터 저장 인터벌 시간에 따라 다릅니다.데이터 저장 인터벌 시간이 길어지면 최대 기록 항목 수가증가합니다. 참조: "저장할 측정 항목의 설정" (p.161) "파일의 복사" (p.177)
- 데이터 갱신율이 1 ms일 때는 UDF의 값이 무효값이 되므로 무효값이 저장됩니다.
- 데이터 저장 인터벌이 1 ms일 때는 고조파 측정치를 저장할 수 없습니다(선택할 수 없습니다).

- 1 "저장할 측정 항목의 설정" (p.161)
- 2 [Auto-save operation] 박스를 탭하여 [ON]으로 한다
- 3 [Data save interval] 박스를 탭하여 데이 터 저장 인터벌을 설정한다

데이터 갱신율 [Meas. Interval] (p.68) 의 설 정에 따라 선택지가 달라집니다.

(데이터 갱신율이 1 ms일 때) OFF, 1 ms, 10 ms, 50 ms, 100 ms, 200 ms, 500 ms, 1 s, 5 s, 10 s, 15 s, 30 s, 1 min, 5 min, 10 min, 15 min, 30 min, 60 min (데이터 갱신율이 10 ms일 때) OFF, 10 ms, 50 ms, 100 ms, 200 ms, 500 ms, 1 s, 5 s, 10 s, 15 s, 30 s, 1 min, 5 min, 10 min, 15 min, 30 min, 60 min (데이터 갱신율이 50 ms일 때) OFF, 50 ms, 100 ms, 200 ms, 500 ms, 1 s, 5 s, 10 s, 15 s, 30 s, 1 min, 5 min, 10 min, 15 min, 30 min, 60 min (데이터 갱신율이 200 ms일때) OFF, 100 ms*, 200 ms, 500 ms*, 1 s, 5 s, 10 s, 15 s, 30 s, 1 min, 5 min, 10 min, 15 min, 30 min, 60 min * IEC 측정 모드일 때만

4 [Destination] 박스를 탭하여 키보드 창에서 폴더명을 설정한다 (영숫자 기호 8문자까지)

(영국지 기보 8 문지까지) 참조: "키보드 창" (p.30)

5 저장할 시간을 설정한다

참조: "5.1 시간 제어 기능" (p.137), "시간 제어에 의한 자동 저장의 동작" (p.168)

#### **6** START/STOP 키를 누른다

자동 저장이 시작됩니다. 설정한 폴더가 자동으로 작성되고 거기에 데이터가 저장됩니다.

7 정지하고자 할 때는 다시 한번 START/STOP 키를 누릅니다.

### 기록 가능 시간과 데이터

[Auto-save operation] 을 [ON] 으로 설정하면 사용 중인 USB 메모리의 남은 저장 가능 시간이 표시 됩니다. USB 메모리의 저장 가능 용량, 기록 항목 수, 데이터 저장 인터벌 시간으로부터 대략의 시간을 산출하여 표시합니다.

#### 텍스트 형식과 바이너리 형식의 기록 가능 시간의 기준

데이터 출력 인터벌이 50 ms인 경우

기록 측정 항목 수(개)	32 GB(1배)		64 GB(약 2배)		128 GB(약 4배)	
/USB 용량	텍스트	바이너리	텍스트	바이너리	텍스트	바이너리
100	301 h	996 h	602 h	1992 h	1204 h	3984 h
200	158 h	517 h	316 h	1034 h	632 h	2068 h
500	65 h	212 h	130 h	424 h	260 h	848 h
1000	33 h	107 h	66 h	214 h	132 h	428 h
2000	16 h	54 h	32 h	108 h	64 h	216 h
5000	7 h	21 h	14 h	42 h	28 h	84 h

파일 분할을 고려하고 있지 않습니다. 파일 분할을 고려하면 기록 가능 시간이 다소 짧아집니다. 텍스트 형식의 측정 데이터 1개는 최대 13바이트, 바이너리 형식의 데이터 1개는 4바이트입니다. 파형 데이터 크기의 기준은 다음 표와 같습니다. 500 MB씩 분할합니다.

파형 데이터 용량	텍스트 형식	바이너리 형식	
1CH, 1000 point	26 kB	6 kB	
1CH, 5 Mpoint	130 MB	20 MB	
24CH, 1000 point	456 kB	118 kB	
24CH, 5 Mpoint	2270 MB	548 MB	

#### 신규 파일이 작성되는 타이밍

USB 메모리 저장 시에는 적산 시작 시에 신규 파일이 작성됩니다.

예1: 1 파일당 약 500 MB를 넘으면 새 파일이 작성됩니다.

- (1회 측정당 최대 1000파일 저장)
- 예2: 적산을 정지하고 DATA RESET 키를 누르면 다음 적산 시작 시에 신규 파일이 작성됩니다.
  - (1 폴더당 최대 100 파일 저장)

예3: 1 파일당 1 M 샘플링분의 데이터를 넘으면 새 파일이 작성됩니다.

예4: 바이너리 형식 저장인 경우에만 적산 정지 시, 전압, 전류 레인지의 변경 시에 새 파일이 작성됩니다.

참조: "자동 저장 시의 폴더 및 파일 구조" (p.167)

#### 자동 저장 시의 폴더 및 파일 구조

11월 4일에 저장위치에 [AAA] 라는 폴더를 작성하여 자동 저장한 경우를 예로 설명합니다.

예1



#### 시간 제어에 의한 자동 저장의 동작

시간 제어 동작 중에는 각종 설정을 변경할 수 없습니다. 자동 저장 중에 USB 메모리의 용량이 가득 찬 경 우, 에러가 표시되고 그 이후는 저장 동작을 하지 않습니다. 참조: "5.1 시간 제어 기능" (p.137)



### 7.4 파형 데이터의 저장

[MEAS] > [WAVE] 화면의 [SAVE]를 탭하면 화면에 표시된 파형 데이터를 USB 메모리에 저장할 수 있습니다.

[Destination], [Comment entry]의 설정은 측정 데이터의 수동 저장과 공통입니다.

저장위치	USB 메모리
파일명	파일명은 자동 작성됩니다. 확장자는 CSV, BIN, MAT(파형 저장 형식의 설정에 의존)에서 선택합니다. • W8001nnnkk.CSV (nnn은 동일 폴더 내의 일련번호, kk는 파일 분할 번호입니다) 예: W800100000.CSV (최초에 저장된 파일) • W8001nnnkk.BIN 예: W800100000.BIN (최초에 저장된 파일) • W8001nnnkk.MAT

#### 저장 설정

#### 표시 화면 [SYSTEM] > [DATA SAVE]

022-11-16 12:21:30 Mideland Torrection and the second s		
Auto-save settings Auto-save operation OFF Data save interval 1s	Destination HICKI/PW8001/	<u>8</u>
Manual save settings Destination HICKI/PM8001	Comment entry	⊃2 ³
Parameters Select Measured value format TEXT Remaining save time hour min	Measurement parameters 0/. Basic parameters 0 Harmonic parameters 0	20000
Screenshot settings Destination H10K1/P#8001/ Simultaneous saving of settings OFF	Comment entry OFF	<u>ද</u>

동일 폴더 안에는 1000개 파일까지 작성할 수 있습니 다. 폴더 안의 파일 일련번호가 1000에 이르면 에러가 표시됩니다. 새로운 저장위치를 설정해 주십시오.

#### 1 [Destination] 박스를 탭하여 키보드로 폴더 명을 설정한다

(영숫자 기호 8문자까지) 참조: "키보드 창" (p.30)

- **2** [Comment entry] 박스를 탭하여 코멘트 입력의 ON/OFF를 선택한다
- 3 [Waveform format] 박스를 탭하여 일람 에서 형식을 선택한다

ТХТ	CSV 형식 (텍스트 데이터)		
BIN	GENNECT One의 뷰어로 표시 가능 한 바이너리 형식		
MAT	MATLAB* 형식 (MAT 형식) *: 타사 상표		

### 저장 시의 조작

표시 화면 [MEAS] > [WAVE] > [+FFT]



 1
 SINGLE 키를 눌러 파형을 취득한다

 기록 길이만큼 파형이 기록되면 RUN/STOP 키

가 빨간색으로 점등합니다. 참조: "4.3 파형의 기록" (p.123)

#### 2 [SAVE] > [Waveforms]를 탭한다

USB 메모리를 인식하지 못하는 경우에는 회색으 로 표시되면서 탭을 할 수 없습니다.

3 코멘트 입력이 ON인 경우는 키보드 창에서 입력한다

(영숫자 기호 40문자까지) 참조: "키보드 창" (p.30)

입력을 결정하면 데이터가 저장됩니다.

CSV 파일의 측정 데이터 앞에 다음이 추가됩니다.

- SAMPLING(샘플링 속도)
- POINT(기록 길이)
- COMMENT(입력한 코멘트 문자열)
- RUN/STOP 키를 눌러 파형을 취득한 경우, 파형을 저장할 수 없는 경우가 있습니다.
- BIN 저장에 관한 상세는 "7.10 BIN 저장 형식" (p.186)을 참조해 주십시오.
- 파형 표시가 OFF 로 되어 있는 항목은 저장되지 않습니다.
- 자동 저장 중에 파형 데이터는 저장할 수 없습니다.
- 전압, 전류, 모터 해석 옵션의 파형 데이터는 Peak-Peak 압축된 MAX/MIN 데이터의 세트로 저장됩니다.
- 저장 중에 다이얼로그가 표시됩니다. 저장을 중지하려면 다이얼로그의 [Cancel]을 탭해 주십시오.

### 7.5 FFT 데이터의 저장

[WAVE] > [+FFT] 화면에 표시된 FFT 데이터를 [Save] > [FFT]를 누른 타이밍에 저장합니다. 저장 위치, 코멘트 입력 설정은 측정 데이터의 수동 저장과 공통입니다.

저장위치	USB메모리
파일명	자동 작성, 확장자는 CSV만 F8001nnkkk.CSV (nn은 동일 폴더 내의 일련번호 00~99, kkk는 파일 분할의 연번 000~999) 예: F800100000.CSV (최초에 저장된 파일)

#### 저장 설정

#### 표시 화면 [SYSTEM]> [DATA SAVE]



#### 1 저장위치를 탭하여 폴더를 설정한다 참조: "키보드 창" (p.30)

2 [Comment entry]을 탭하여 ON/OFF를

ON	저장 시에 코멘트 입력
OFF	저장 시에 코멘트 입력하지 않음

(영숫자 기호 8문자까지)

#### 중요

파형 저장 형식에서 [BIN] 또는 [MAT]를 선택한 경우에도 FFT 데이터는 CSV 형식으로 저장됩니다. MATLAB* 형식(MAT 형식) * 타사 상표

#### 저장 시의 조작

표시 화면 [MEAS] > [WAVE] > [+FFT]



- 1 SINGLE 키를 눌러 파형을 취득한다 기록 길이만큼 파형이 기록되면 RUN/STOP 키 가 빨간색으로 점등합니다.
- 2 [SAVE] > [Waveforms]를 탭한다 USB 메모리를 인식하지 못하는 경우에는 회색으 로 표시되면서 탭을 할 수 없습니다.
- 3 코멘트 입력이 ON인 경우는 키보드 창에서 입력한다

(코멘트 입력: ON 인 경우) 키보드 창 (p.30) 에서 입력합니다.

입력을 결정하면 데이터가 저장됩니다.

CSV 파일의 FFT 데이터 앞에 다음이 추가됩니다.

- HIOKI [Model Name] (버전)
- SAMPLING SPEED (샘플링 속도)
- SIZE (창의 크기)
- COMMENT (입력한 코멘트 문자열)
- FFT 표시가 OFF 로 되어 있는 항목은 저장되지 않습니다.
- 자동 저장 중, 스토리지 동작 중에는 FFT 데이터를 저장할 수 없습니다.
- 파형 데이터 또는 FFT 해석 데이터가 무효일 때는 저장할 수 없습니다.
- 폴더 안의 파일 일련번호가 100에 이르면 에러가 표시됩니다. 새로운 저장위치를 설정해 주십시오 (p.171).
- 입력 가능한 코멘트의 문자 수는 영숫자 기호 최대 40 문자입니다.
- 저장 중에 다이얼로그가 표시됩니다. 저장을 중지하려면 다이얼로그의 [Cancel]을 탭해 주십시오.

### 7.6 화면 복사의 저장과 로딩

#### 화면 복사의 저장

**COPY** 키를 누르면 누른 시점의 표시 화면을 USB 메모리에 PNG 파일 형식으로 저장할 수 있습니다. 자동 저장 중에도 화면 복사를 저장할 수 있습니다. 단, 자동 저장 동작이 우선되며, 인터벌이 1초 미만인 경우 화면 복사는 실행되지 않습니다.

#### 저장위치

USB 메모리에 저장합니다.

#### 파일명

파일명은 자동 작성됩니다. 확장자는 PNG 형식입니다. H8001nnn.PNG (nnn은 동일 폴더 내의 일련번호 000~999) 예: H8001000.PNG (최초에 저장된 파일)

#### 표시 화면 [SYSTEM] > [DATA SAVE]



동일 폴더 안에는 1000개 파일까지 작성할 수 있습니 다. 폴더 안의 파일 일련번호가 1000에 이르면 에러가 표시됩니다. 새로운 저장위치를 설정해 주십시오. [Destination] 박스를 탭하여 폴더를 설정한
 다
 (영숫자 기호 8문자까지)

(영숫자 기오 8 군자까지) 참조: "키보드 창" (p.30)

#### 2 [Comment entry] 박스를 탭하여 선택한 다

(영숫자 기호 40 문자까지)

OFF	코멘트 입력하지 않음
TEXT	키보드 창에서 코멘트를 입력합니다.
PNG	화면에 수기로 코멘트를 입력합니다. (코멘트는 화면 복사에 추가되어 저장 됩니다)

#### 3 [Simultaneous saving of settings]의 ON/OFF를 선택한다

OFF	저장하지 않음
ON	각 채널의 측정 조건 설정을 이미지로 저장한다

4 COPY 키를 눌러 코멘트를 입력한다



#### (TEXT를 선택한 경우)

키보드 창에서 입력합니다.

입력을 결정하면 데이터가 저장됩니다.



#### (PNG를 선택한 경우)

수기로 코멘트를 입력합니다.

**[SAVE]**를 탭하면 수기 코멘트가 달린 데이터가 저장됩 니다.

[CLEAR]를 탭하면 수기 코멘트가 삭제됩니다.

[CANCEL]을 탭하면 저장을 중지합니다.

#### 화면 복사의 로딩

저장된 화면 복사를 읽어와서 화면에 표시합니다.

#### 표시 화면 [FILE]

2021- 04[0 0110	10-13 10:40:48 WideCand Protection ACEG				1 2 3 4 USB
		/8001 Type	Date	FileSize	
4	H8001000.PNG M8001000.CSV SETTING.SET W800100000.CSV	PNG CSV SET CSV	2021-10-13 10:23 2021-10-13 10:23 2021-10-13 10:32 2021-10-13 10:37	103.6 KB 4.566 KB 102.2 KB 383.8 MB	Make Folder Delete Rename Copy Save Setting Copen PNG Format Update
м	edia Infomation Media Size: 15.82 GB	Used: 384.0 MB	Free: 15.44 GB		FTP send

- **1** FILE 키를 누른다
- 2 화면 복사가 저장된 폴더를 탭한다
- **3** PNG 파일을 탭한다
- **4** [Open PNG]를 탭한다

### 7.7 설정 데이터의 저장과 로딩

#### 설정 데이터의 저장

본 기기의 각종 설정 정보를 USB 메모리에 설정 파일로 저장합니다.

저장위치	USB 메모리
파일명	임의로 설정 (최대 8 문자), 확장자는 SET 예: SETTING1.SET

#### 표시 화면 [FILE]



**1** 저장하려는 폴더를 탭한다

2 [Save setting]을 탭하여 파일명을 입력한 다

참조: "키보드 창" (p.30)

- 언어설정과 통신설정은 저장할 수 없습니다.
- 자동 저장이 실행되고 있는 경우는 저장할 수 없습니다.

#### 설정 데이터의 로딩

저장된 설정 파일을 불러와서 설정을 복원합니다.

#### 표시 화면 [FILE]

2021-10-13 10:43:26 Hideband				A TO THE USB
C USB/HIOKI/P No. Name 1 H8001000.PNG 2 MS001000.CSV 3 SECTING SET		Date 2021-10-13 10:23 2021-10-13 10:23 2021-10-13 10:32	FileSize 103.6 KB 4 566 KB	Make Folder Delete
4 W800100000.CSV	CSV	2021-10-13 10:37	383.8 MB	Rename Copy Save Setting Load Setting Open PNG Format Update FTP send
Media Infomation Media Size: 15.82 GB	Used: 384.0 MB	Free: 15.44 GB		

- 1 설정 파일이 저장된 폴더를 탭한다
- 2 설정 파일을 선택한 후, [Load Setting]을 탭한다

확인 다이얼로그가 표시됩니다.

#### **3** [Yes]를 탭한다

설정을 복원하는 경우에는 유닛, 옵션 구성이 동일 해야 합니다. 동일하지 않은 경우, 설정 파일을 읽 어올 수 없습니다.

읽어올 설정 파일의 전류 센서 구성과 설정을 복원 할 PW8001의 현재 전류 센서 구성이 다른 경우, 다음의 설정은 복원되지 않습니다.

- 결선의 설정
- 전류 센서와 관련된 설정

설정 파일을 읽어온 후, 복원한 설정을 한번 더 확 인해 주십시오. 7

설정 데이터의 저장과 로딩

#### 설정 데이터의 확인

설정 파일에 격납된 각종 설정 정보를 확인합니다.

- **1** FILE 키를 누른다
- 2 설정 파일이 저장된 폴더를 탭한다
- **3** 설정 파일을 선택한 후, [Open PNG]를 탭한다

#### Tips PC에서 설정 데이터를 확인하려면

PC에서도 일반적인 뷰어 프로그램을 열어 설정 정보를 확인할 수 있습니다.

### 7.8 파일 및 폴더의 조작

### USB 메모리 내의 파일 및 폴더 조작

USB 메모리 내의 파일 및 폴더를 조작합니다.

#### 표시 화면 [FILE]

2021-10-13 10:38:07 WildeBand				8 1 2 3 4 8 5 5 6	JSB
🖉 🛞 USB/HIOKI/PW8001					-
No. Name	Туре	Date	FileSize		
1 H8001000.PNG 2 M8001000.CSV 3 SETTING.SET 4 W800100000.CSV	PNG CSV SET CSV	2021-10-13 10:23 2021-10-13 10:23 2021-10-13 10:32 2021-10-13 10:37	103.6 KB 4.566 KB 102.2 KB 383.8 MB	Make Folder Delete Rename Copy Save Setting Load Setting Open PNG Format	
Media Infomation Media Size: 15.82 GB Used:	384.0 MB	Free: 15.44 GB		FTP send	ē,

폴더의 작성

- 1 [Make Folder]를 탭하여 키보드 창을 연다
- 2 폴더명을 입력한다(최대 8문자)
  - 참조: "키보드 창" (p.30)
- 3 [Enter]를 탭하여 키보드 창을 닫는다

#### 파일 및 폴더의 삭제

- 1 삭제할 파일 또는 폴더를 탭한다
- **2** [Delete] 를 탭한다
- 3 확인 다이얼로그가 표시되면 [Yes] 를 선택한다
   "HIOKI"와 "HIOKI/PW8001" 폴더는 삭제할 수 없습니다.

#### 파일명 및 폴더명의 변경

- 1 이름을 변경할 파일 또는 폴더를 탭한다
- 2 [Rename]을 탭하여 파일명을 입력한다(최대 8문자) 참조: "키보드 창" (p.30)

#### 파일의 복사

- 1 [Copy]를 탭하여 복사 위치 폴더의 선택 다이얼로그를 연다
- 2 복사 위치 폴더를 선택한 후, [Yes]를 탭한다 같은 이름의 파일이 존재할 때는 덮어쓰기 할 수 없습니다. 파일명을 변경하여 다시 한번 복사해 주십시오.

#### USB 메모리의 포맷

사용할 USB 메모리를 포맷합니다. 포맷을 실행할 때에는 FTP 서버의 연결을 끊어 주십시오.

#### 표시 화면 [FILE]



#### 중요

포맷을 실행하면 USB 메모리에 저장된 모든 데이터가 삭제되며 원래대로 되돌릴 수 없습니다. 내용을 잘 확인한 후 실행해 주십시오. 또한, USB 메모리 내의 중요한 데이터는 반드시 백업해 두기를 권장합니다.

### 파일의 수동 전송(FTP 서버에 업로드)

선택한 파일을 FTP 서버에 업로드합니다.

- **1** FILE 키를 누른다
- 2 전송할 파일을 탭하여 선택한다
- 3 [FTP send]를 탭하여 FTP 클라이언트 설정 다이얼로그를 연다
- 4 FTP 클라이언트를 설정한다

참조: "9.4 FTP 클라이언트로 데이터를 송신" (p.228)

5 [Send]를 탭한다

### 7.9 측정치의 저장 데이터 형식

#### 헤더 구성

수동 저장, 자동 저장으로 측정 데이터를 파일에 저장했을 때의 헤더(첫 행에 저장되는 항목명)는 다음과 같습니다.

. . . . . . . . . . . . . . . .

- 표 위에서부터 차례로, 왼쪽부터 오른쪽으로 선택된 항목을 출력합니다.
- 측정 데이터는 헤더 다음 행부터 헤더 순번에 따라 출력합니다.
- 선두 4종류 (Date, Time, Status, Status1~8)와 고조파 상태 (HARM Status)는 항목 선택에 상관없 이 반드시 출력합니다.
- Status 1~Status 8은 실장된 입력 유닛만큼 출력합니다.
- 모터 채널의 상태 (StatusM)는 모터 해석 옵션이 실장된 경우에 출력합니다.

출력 항목	본 기기 표기	헤더와 표시 순서
연월일		Date
시각		Time
시각(ms)		Time(ms) (인터벌 설정이 1초 미만으로 설정된 경우에만 출력됩니다)
경과시간		Etime
경과시간(ms)		Etime(ms) (인터벌 설정이 1초 미만으로 설정된 경우에만 출력됩니다)
플리커 연산 구간의 선두 연월일 (IEC 측정 모드일 때만)		Date1, Date2, Date3, Date4, Date5, Date6, Date7, Date8
플리커 연산 구간의 선두 시각 (IEC 측정 모드일 때만)		Time1, Time2, Time3, Time4, Time5, Time6, Time7, Time8
플리커 연산 구간의 선두 시각 (ms) (IEC 측정 모드일 때만)		Time (ms) 1, Time (ms) 2, Time (ms) 3, Time (ms) 4, Time (ms) 5, Time (ms) 6, Time (ms) 7, Time (ms) 8 (인터벌 설정이 1초 미만으로 설정된 경우에만 출력됩니다)
상태		Status
채널 상태		Status1, Status2, Status3, Status4, Status5, Status6, Status7, Status8
모터 상태		StatusM
<b>기본 측정 항목</b> 광링크 모드의 세컨더리 측 헤더 세컨더리 측의 기본 측정 항목은	는 기본 측정 프라이머리 큭	항목의 각 헤더에 SC가 붙습니다. 특의 기본 측정 항목 뒤에 출력됩니다.
전압 실효치	Urms	Urms1, Urms2, Urms3, Urms4, Urms5, Urms6, Urms7, Urms8 Urms12, Urms23, Urms34, Urms45, Urms56, Urms67, Urms78 Urms123, Urms234, Urms345, Urms456, Urms567, Urms678
전압 평균치 정류 실효값 환산치	Umn	Umn1, Umn2, Umn3, Umn4, Umn5, Umn6, Umn7, Umn8 Umn12, Umn23, Umn34, Umn45, Umn56, Umn67, Umn78 Umn123, Umn234, Umn345, Umn456, Umn567, Umn678
전압 교류 성분	Uac	Uac1, Uac2, Uac3, Uac4, Uac5, Uac6, Uac7, Uac8
전압 단순 평균치	Udc	Udc1, Udc2, Udc3, Udc4, Udc5, Udc6, Udc7, Udc8
전압 기본파 성분	Ufnd	Ufnd1, Ufnd2, Ufnd3, Ufnd4, Ufnd5, Ufnd6, Ufnd7, Ufnd8
전압 파형 피크 +	Upk+	PUpk1, PUpk2, PUpk3, PUpk4, PUpk5, PUpk6, PUpk7, PUpk8
전압 파형 피크 -	Upk-	MUpk1, MUpk2, MUpk3, MUpk4, MUpk5, MUpk6, MUpk7, MUpk8
총 고조파 전압 왜곡률	Uthd	Uthd1, Uthd2, Uthd3, Uthd4, Uthd5, Uthd6, Uthd7, Uthd8

출력 항목	본 기기 표기	헤더와 표시 순서	
전압 리플률	Urf	Urf1, Urf2, Urf3, Urf4, Urf5, Urf6, Urf7, Urf8	
전압 불평형률	Uunb	Uunb123, Uunb234, Uunb345, Uunb456, Uunb567, Uunb678	
전류 실효치	Irms	Irms1, Irms2, Irms3, Irms4, Irms5, Irms6, Irms7, Irms8 Irms12, Irms23, Irms34, Irms45, Irms56, Irms67, Irms78 Irms123, Irms234, Irms345, Irms456, Irms567, Irms678	
전류 평균치 정류 실효값 환산치	Imn	Imn1, Imn2, Imn3, Imn4, Imn5, Imn6, Imn7, Imn8 Imn12, Imn23, Imn34, Imn45, Imn56, Imn67, Imn78 Imn123, Imn234, Imn345, Imn456, Imn567, Imn678	
전류 교류 성분	lac	lac1, lac2, lac3, lac4, lac5, lac6, lac7, lac8	
전류 단순 평균치	Idc	Idc1, Idc2, Idc3, Idc4, Idc5, Idc6, Idc7, Idc8	
전류 기본파 성분	lfnd	Ifnd1, Ifnd2, Ifnd3, Ifnd4, Ifnd5, Ifnd6, Ifnd7, Ifnd8	
전류 파형 피크 +	lpk+	Plpk1, Plpk2, Plpk3, Plpk4, Plpk5, Plpk6, Plpk7, Plpk8	
전류 파형 피크 -	lpk-	Mlpk1, Mlpk2, Mlpk3, Mlpk4, Mlpk5, Mlpk6, Mlpk7, Mlpk8	
총 고조파 전류 왜곡률	lthd	Ithd1, Ithd2, Ithd3, Ithd4, Ithd5, Ithd6, Ithd7, Ithd8	
전류 리플률	Irf	Irf1, Irf2, Irf3, Irf4, Irf5, Irf6, Irf7, Irf8	
전류 불평형률	lunb	lunb123, lunb234, lunb345, lunb456, lunb567, lunb678	
유효전력	Р	P1, P2, P3, P4, P5, P6, P7, P8 P12, P23, P34, P45, P56, P67, P78 P123, P234, P345, P456, P567, P678	
기본파 유효전력	Pfnd	Pfnd1, Pfnd2, Pfnd3, Pfnd4, Pfnd5, Pfnd6, Pfnd7, Pfnd8 Pfnd12, Pfnd23, Pfnd34, Pfnd45, Pfnd56, Pfnd67, Pfnd78 Pfnd123, Pfnd234, Pfnd345, Pfnd456, Pfnd567, Pfnd678	
피상전력	S	S1, S2, S3, S4, S5, S6, S7, S8 S12, S23, S34, S45, S56, S67, S78 S123, S234, S345, S456, S567, S678	
기본파 피상전력	Sfnd	Sfnd1, Sfnd2, Sfnd3, Sfnd4, Sfnd5, Sfnd6, Sfnd7, Sfnd8 Sfnd12, Sfnd23, Sfnd34, Sfnd45, Sfnd56, Sfnd67, Sfnd78 Sfnd123, Sfnd234, Sfnd345, Sfnd456, Sfnd567, Sfnd678	
무효전력	Q	Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8 Q12, Q23, Q34, Q45, Q56, Q67, Q78 Q123, Q234, Q345, Q456, Q567, Q678	
기본파 무효전력	Qfnd	Qfnd1, Qfnd2, Qfnd3, Qfnd4, Qfnd5, Qfnd6, Qfnd7, Qfnd8 Qfnd12, Qfnd23, Qfnd34, Qfnd45, Qfnd56, Qfnd67, Qfnd78 Qfnd123, Qfnd234, Qfnd345, Qfnd456, Qfnd567, Qfnd678	
역률	λ	PF1, PF2, PF3, PF4, PF5, PF6, PF7, PF8 PF12, PF23, PF34, PF45, PF56, PF67, PF78 PF123, PF234, PF345, PF456, PF567, PF678	
기본파 역률	λfnd	PFfnd1, PFfnd2, PFfnd3, PFfnd4, PFfnd5, PFfnd6, PFfnd7, PFfnd8 PFfnd12, PFfnd23, PFfnd34, PFfnd45, PFfnd56, PFfnd67, PFfnd78 PFfnd123, PFfnd234, PFfnd345, PFfnd456, PFfnd567, PFfnd678	
전압 위상각	θU	Udeg1, Udeg2, Udeg3, Udeg4, Udeg5, Udeg6, Udeg7, Udeg8	
전류 위상각	θI	Ideg1, Ideg2, Ideg3, Ideg4, Ideg5, Ideg6, Ideg7, Ideg8	
전력 위상각	φ	DEG1, DEG2, DEG3, DEG4, DEG5, DEG6, DEG7, DEG8 DEG12, DEG23, DEG34, DEG45, DEG56, DEG67, DEG78 DEG123, DEG234, DEG345, DEG456, DEG567, DEG678	
전압 주파수	fU	FU1, FU2, FU3, FU4, FU5, FU6, FU7, FU8	
전류 주파수	fl	FI1, FI2, FI3, FI4, FI5, FI6, FI7, FI8	
적산 +방향 전류량	lh+	PIH1, PIH2, PIH3, PIH4, PIH5, PIH6, PIH7, PIH8	
적산 - 방향 전류량	lh-	MIH1, MIH2, MIH3, MIH4, MIH5, MIH6, MIH7, MIH8	
	출력 항목	본 기기 표기	헤더와 표시 순서
---------------	--------------------------	------------	-----------------------------------------------------------------------------------------------------------------------------------------------------
	적산 +, - 방향 전류량 합	lh	IH1, IH2, IH3, IH4, IH5, IH6, IH7, IH8
	적산 + 방향 전력량	WP+	PWP1, PWP2, PWP3, PWP4, PWP5, PWP6, PWP7, PWP8 PWP12, PWP23, PWP34, PWP45, PWP56, PWP67, PWP78 PWP123, PWP234, PWP345, PWP456, PWP567, PWP678
	적산 - 방향 전력량	WP-	MWP1, MWP2, MWP3, MWP4, MWP5, MWP6, MWP7, MWP8 MWP12, MWP23, MWP34, MWP45, MWP56, MWP67, MWP78 MWP123, MWP234, MWP345, MWP456, MWP567, MWP678
	적산 +, - 방향 전력량 합	WP	WP1, WP2, WP3, WP4, WP5, WP6, WP7, WP8 WP12, WP23, WP34, WP45, WP56, WP67, WP78 WP123, WP234, WP345, WP456, WP567, WP678
	효율	η	Eff1, Eff2, Eff3, Eff4
	손실값	Loss	LOSS1, LOSS2, LOSS3, LOSS4
	토크	Τq	Tq1, Tq2, Tq3, Tq4
	회전수	Spd	Spd1, Spd2, Spd3, Spd4
	모터 파워	Pm	Pm1, Pm2, Pm3, Pm4
	미끄럼	Slip	Slip1, Slip2, Slip3, Slip4
	독립 입력 모드 시의 자유 입력	СН	CHA, CHB, CHC, CHD, CHE, CHF, CHG, CHH
사용자 정의 연산 UDF		UDF	UDF1, UDF2, UDF3, UDF4, UDF5, UDF6, UDF7, UDF8, UDF9, UDF10, UDF11, UDF12, UDF13, UDF14, UDF15, UDF16, UDF17, UDF18, UDF19, UDF20
	단기 플리커 값	Pst	Pst1, Pst2,, Pst8
	단기 플리커 값 최대값	PstMax	PstMax1, PstMax2, PstMax3, PstMax4, PstMax5, PstMax6, PstMax7, PstMax8
	장기 플리커 값	Plt	Plt1, Plt2, Plt3, Plt4, Plt5, Plt6, Plt7, Plt8
	순시 플리커 값의 최대값	PinstMax	PinstMax1, PinstMax2, PinstMax3, PinstMax4, PinstMax5, PinstMax6, PinstMax7, PinstMax8
	순시 플리커 값의 최소값	PinstMin	PinstMin1, PinstMin2, PinstMin3, PinstMin4, PinstMin5, PinstMin6, PinstMin7, PinstMin8
	상대 정상 전압 변화	dc	DC1, DC2, DC3, DC4, DC5, DC6, DC7, DC8
	최대 상대 전압 변화	dmax	DMax1, DMax2, DMax3, DMax4, DMax5, DMax6, DMax7, DMax8
	상대 전압 변화가 역치를 초과하는 시간	Tmax	TMax1, TMax2, TMax3, TMax4, TMax5, TMax6, TMax7, TMax8
	고조파 측정 항목		
	상태		HRMStatus

출력 항목		본 기기 표기	헤더와 표시 순서
	고조파 전압 실효치	Uk	HU1L000, HU2L000, HU3L000, HU4L000, HU5L000, HU6L000, HU7L000, HU8L000
	고조파 전압 함유율	HDUk	HU1D000, HU2D000, HU3D000, HU4D000, HU5D000, HU6D000, HU7D000, HU8D000
	고조파 전압 위상각	θUk	HU1P000, HU2P000, HU3P000, HU4P000, HU5P000, HU6P000, HU7P000, HU8P000
	고조파 전류 실효치	lk	HI1L000, HI2L000, HI3L000, HI4L000, HI5L000, HI6L000, HI7L000, HI8L000
	고조파 전류 함유율	HDIk	HI1D000, HI2D000, HI3D000, HI4D000, HI5D000, HI6D000, HI7D000, HI8D000
0차	고조파 전류 위상각	θlk	HI1P000, HI2P000, HI3P000, HI4P000, HI5P000, HI6P000, HI7P000, HI8P000
	고조파 유효전력	Pk	HP1L000, HP2L000, HP3L000, HP4L000, HP5L000, HP6L000, HP7L000, HP8L000, HP12L000, HP23L000, HP34L000, HP45L000, HP56L000, HP67L000, HP78L000, HP123L000, HP234L000, HP345L000, HP456L000, HP567L000, HP678L000
	고조파 전력 함유율	HDPk	HP1D000, HP2D000, HP3D000, HP4D000, HP5D000, HP6D000, HP7D000, HP8D000, HP12D000, HP23D000, HP34D000, HP45D000, HP56D000, HP67D000, HP78D000 HP123D000, HP234D000, HP345D000, HP456D000, HP567D000, HP678D000
	고조파 전압 전류 위상차	θk	HP1P000, HP2P000, HP3P000, HP4P000, HP5P000, HP6P000, HP7P000, HP8P000, HP12P000, HP23P000, HP34P000, HP45P000, HP56P000, HP67P000, HP78P000, HP123P000, HP234P000, HP345P000, HP456P000, HP567P000, HP678P000
n차	(중략)	-	말미 3자리가 차수의 n
	고조파 전압 실효치	Uk	HU1L500, HU2L500, HU3L500, HU4L500, HU5L500, HU6L500, HU7L500, HU8L500
	고조파 전압 함유율	HDUk	HU1D500, HU2D500, HU3D500, HU4D500, HU5D500, HU6D500, HU7D500, HU8D500
	고조파 전압 위상각	θUk	HU1P500, HU2P500, HU3P500, HU4P500, HU5P500, HU6P500, HU7P500, HU8P500
	고조파 전류 실효치	lk	HI1L500, HI2L500, HI3L500, HI4L500, HI5L500, HI6L500, HI7L500, HI8L500
	고조파 전류 함유율	HDIk	HI1D500, HI2D500, HI3D500, HI4D500, HI5D500, HI6D500, HI7D500, HI8D500
500차	고조파 전류 위상각	θlk	HI1P500, HI2P500, HI3P500, HI4P500, HI5P500, HI6P500, HI7P500, HI8P500
	고조파 유효전력	Pk	HP1L500, HP2L500, HP3L500, HP4L500, HP5L500, HP6L500, HP7L500, HP8L500, HP12L500, HP23L500, HP34L500, HP45L500, HP56L500, HP67L500, HP78L500, HP123L500, HP234L500, HP345L500, HP456L500, HP567L500, HP678L500
	고조파 전력 함유율	HDPk	HP1D500, HP2D500, HP3D500, HP4D500, HP5D500, HP6D500, HP7D500, HP8D500, HP12D500, HP23D500, HP34D500, HP45D500, HP56D500, HP67D500, HP78D500, HP123D500, HP234D500, HP345D500, HP456D500, HP567D500, HP678D500
	고조파 전압 전류 위상차	θk	HP1P500, HP2P500, HP3P500, HP4P500, HP5P500, HP6P500, HP7P500, HP8P500, HP12P500, HP23P500, HP34P500, HP45P500, HP56P500, HP67P500, HP78P500, HP123P500, HP234P500, HP345P500, HP456P500, HP567P500, HP678P500

출력 항목		본 기기 표기	헤더와 표시 순서
	고조파 동기 주파수	fHRM	HF1, HF2, HF3, HF4, HF5, HF6, HF7, HF8
0.5차	중간 고조파 전압 실효값	iUk	IHU1L000, IHU2L000, IHU3L000, IHU4L000, IHU5L000, IHU6L000, IHU7L000, IHU8L000
0.5차	중간 고조파 전압 함유율	iHDUk	IHU1D000, IHU2D000, IHU3D000, IHU4D000, IHU5D000, IHU6D000, IHU7D000, IHU8D000
0.5차	중간 고조파 전류 실효값	ilk	IHI1L000, IHI2L000, IHI3L000, IHI4L000, IHI5L000, IHI6L000, IHI7L000, IHI8L000
0.5차	중간 고조파 전류 함유율	iHDIk	IHI1D000, IHI2D000, IHI3D000, IHI4D000, IHI5D000, IHI6D000, IHI7D000, IHI8D000
n차	(중략)	-	말미 3자리가 차수의 n
200.5차	중간 고조파 전압 실효값	iUk	IHU1L200, IHU2L200, IHU3L200, IHU4L200, IHU5L200, IHU6L200, IHU7L200, IHU8L200
200.5차	중간 고조파 전압 함유율	iHDUk	IHU1D200, IHU2D200, IHU3D200, IHU4D200, IHU5D200, IHU6D200, IHU7D200, IHU8D200
200.5차	중간 고조파 전류 실효값	ilk	IHI1L200, IHI2L200, IHI3L200, IHI4L200, IHI5L200, IHI6L200, IHI7L200, IHI8L200
200.5차	중간 고조파 전류 함유율	iHDIk	IHI1D200, IHI2D200, IHI3D200, IHI4D200, IHI5D200, IHI6D200, IHI7D200, IHI8D200

# Status 데이터

상태 정보는 측정 데이터 저장 시의 측정 상태를 나타내며 32비트의 16 진수 값으로 표현됩니다. Status는 Status1~Status8, StatusM의 논리합입니다.

예: Status2의 비트 11(ZU)이 ON, StatusM의 비트 17(ZM)이 ON인 경우, Status의 비트 11과 비 트 17이 ON이 됩니다.

#### 각 채널 상태 (Status1~Status8)

각 채널의 상태는 Status1~Status8입니다.

예: 채널 3의 상태는 Status3

비트 31	비트 30	비트 <b>29</b>	비트 28	비트 27	비트 26	비트 25	비트 <b>24</b>
_	_	_	_	_	_	_	_
비트 23	비트 22	비트 21	비트 20	비트 19	비트 18	비트 17	비트 16
_	_	_	_	_	_	_	_
비트 15	비트 14	비트 13	비트 12	비트 11	비트 10	비트 9	비트 8
_	UCU	ZP	ZI	ZU	DP	DI	DU
비트 7	비트 6	비트 5	비트 4	비트 3	비트 2	비트 1	비트 0
_	_	_	_	RI	RU	PI	PU

32비트의 할당은 다음과 같습니다.

비트	약칭	내용	
비트 14	UCU	연산 불능(레인지 변경 직후로 측정 데이터가 무효인 경우 등)	
비트 13	ZP	전력 연산(동기 소스)의 강제 제로 크로스 있음	
비트 12	12         ZI         전류 주파수의 강제 제로 크로스 있음		
비트 11	트 11 ZU 전압 주파수의 강제 제로 크로스 있음		
비트 <b>10</b> DP		전력 연산(동기 소스)의 데이터 갱신 없음	
비트 9	DI	전류 주파수의 데이터 갱신 없음	
비트 8	DU	전압 주파수의 데이터 갱신 없음	
비트 3	RI	전류 오버로드	
비트 <b>2</b>	RU	전압 오버로드	
비트 1	PI	전류 피크 오버	
비트 0	PU	전압 피크 오버	

예: 비트 12 (ZI, 전류 주파수의 강제 제로 크로스 있음)와 비트 2 (RU, 전압 오버로드)가 ON인 경우, 16 진수 값으로는 "1004"로 표현합니다.

# 모터 채널의 상태 (StatusM)

32비트의 할당은 다음과 같습니다.

비트 31	비트 30	비트 29	비트 28	비트 27	비트 26	비트 25	비트 24
_	_	UCUG	ZMG	RMG	UCUE	ZME	RME
비트 23	비트 22	비트 21	비트 20	비트 19	비트 18	비트 17	비트 16
_	_	UCUC	ZMC	RMC	UCUA	ZMA	RMA
비트 15	비트 14	비트 13	비트 12	비트 11	비트 10	비트 9	비트 8
_	_	_	_	_	_	_	_
비트 <b>7</b>	비트 6	비트 5	비트 4	비트 3	비트 2	비트 1	비트 0
_	_	_	_	_	_	_	_

비트	약칭	내용
비트 29	UCUG	CHG 연산 불능(레인지 변경 직후로 측정 데이터가 무효인 경우 등)
비트 28	ZMG	CHG 모터 동기 소스의 강제 제로 크로스 있음
비트 27	RMG	CHG 아날로그 입력하고 있는 경우의 오버로드
비트 <b>26</b>	UCUE	CHE 연산 불능(레인지 변경 직후로 측정 데이터가 무효인 경우 등)
비트 25	ZME	CHE 모터 동기 소스의 강제 제로 크로스 있음
비트 24	RME	CHE 아날로그 입력하고 있는 경우의 오버로드
비트 <b>21</b>	UCUC	CHC 연산 불능(레인지 변경 직후로 측정 데이터가 무효인 경우 등)
비트 20	ZMC	CHC 모터 동기 소스의 강제 제로 크로스 있음
비트 19	RMC	CHC 아날로그 입력하고 있는 경우의 오버로드
비트 18	UCUA	CHA 연산 불능(레인지 변경 직후로 측정 데이터가 무효인 경우 등)
비트 17	ZMA	CHA 모터 동기 소스의 강제 제로 크로스 있음
비트 16	RMA	CHA 아날로그 입력하고 있는 경우의 오버로드

#### 고조파 상태(HARMStatus)

상태는 측정 데이터 저장 시의 측정 상태를 나타내며 32비트의 16진수 값으로 표현됩니다. 고조파 측정 데이터의 상태는 Status 중 하나입니다. 32비트의 할당은 다음과 같습니다. (약칭 뒤의 1~8은 채널 번호)

비트 31	비트 30	비트 29	비트 28	비트 27	비트 26	비트 25	비트 24
_	_	_	_	_	_	_	_
비트 23	비트 22	비트 21	비트 20	비트 19	비트 18	비트 17	비트 16
UCU8	UCU7	UCU6	UCU5	UCU4	UCU3	UCU2	UCU1
비트 15	비트 14	비트 13	비트 12	비트 11	비트 10	비트 9	비트 8
ZH8	ZH7	ZH6	ZH5	ZH4	ZH3	ZH2	ZH1
비트 <b>7</b>	비트 6	비트 5	비트 4	비트 3	비트 2	비트 1	비트 0
RF8	RF7	RF6	RF5	RF4	RF3	RF2	RF1

비트	약칭	내용
비트 16~비트 23	UCU	연산 불능(레인지 변경 직후로 측정 데이터가 무효인 경우 등)
비트 8~비트 15	ZH	고조파 파형의 강제 제로 크로스 있음
비트 0~비트 7	RF	주파수 오버 레인지

# 측정치의 데이터 포맷

일반 측정치	±□□□□□□□□E±□□ 소수점을 포함한 가수부 7자리 지수부 2자리 (가수부는 맨 앞의 +와 선행하는 0은 생략)		
적산값	±□□□□□□□□ 소수점을 포함한 : (가수부는 맨 앞의	±ㅁㅁ 가수부 7자리 지수부 2자리   +와 선행하는 0은 생략)	
시간	연월일 시분초 경과시간 경과시간(ms)	0000/00/00 00:00:00 00000:00:00 000	
	오버 값	오버로드 또는 피크 오버로 인해 표시값이 []가 될 경우, 저장되는 값 은 +99999.9E+99입니다.	
	에러 값	레인지 변경이나 연산이 불가능한 수치 등으로 인해 표시치가 []가 될 경우, 저장되는 값은 +77777.7E+99입니다.	

# 7.10 BIN 저장 형식

자동 저장 파일, 파형 파일의 저장 형식으로 선택할 수 있는 BIN 형식은 GENNECT One에서만 불러올 수 있습니다.

GENNECT One에 대해서는 "9.9 GENNECT One (PC 애플리케이션 소프트)" (p.243)를 참조해 주십시오.

8 외부기기의 연결

# 8.1 동기 측정

BNC 동기 모드 또는 광링크 모드 중 어느 한쪽을 사용하여 여러 대의 PW8001을 동기 측정할 수 있습니다. 세컨더리 기기의 데이터 갱신 타이밍 및 제어는 프라이머리 기기에 동기합니다.

동기 모드	설명	동기 가능 대수
BNC synchronization	데이터 갱신, 적산, HOLD 등의 타이밍만 동기합니다.	4대까지 (프라이머리 1대, 세컨더리 3대까지)
Optical link	동기한 데이터 갱신율마다 세컨더리 기기의 측정 항목 일부를 프 라이머리 기기로 전송하여 최대 16채널의 전력계로서 동작합니 다. 프라이머리와 세컨더리를 구별하지 않고 최대 16채널의 측정 항 목 데이터를 자유롭게 화면에 표시할 수 있습니다. 효율적으로 연산하여 파일에 저장할 수 있습니다.	2대 (프라이머리 1대, 세컨더리 1대)

# BNC 동기

4대까지의 PW8001을 옵션인 9165 접속 케이블(BNC 케이블)로 연결하면 동기 측정을 할 수 있습니다. 이 기능을 사용하면 프라이머리 기기로 설정된 PW8001을 조작하는 것만으로 세컨더리 기기로 설정 된 PW8001을 제어하고 여러 계통을 동시 측정할 수 있습니다.

세컨더리 기기로 설정된 PW8001은 다음 내용에 대해서 프라이머리로 설정된 PW8001의 타이밍 및 조 작에 따릅니다.

- 내부의 연산 및 데이터 갱신
- 적산의 시작, 정지 및 리셋
- 표시 홀드 (HOLD/PEAK HOLD) 및 홀드 중의 데이터 갱신
- 영점 조정
- SAVE
- COPY
- 현재 시각

#### 기기의 연결

	⚠주 의
	■ 전원이 켜진 상태에서 케이블을 꽂거나 빼지 않는다
	본 기기를 손상시킬 우려가 있습니다.
V	■ 전용의 동기 측정 이외 신호는 입력하지 않는다
	동기 측정에서는 본 기기 전용의 신호가 사용됩니다. 오동작이나 고장의 원인이 됩니다.
	■ 동기 측정하고 있는 PW8001의 접지(어스)는 공통으로 한다
0	접지가 다르면 프라이머리 기기의 GND와 세컨더리 기기의 GND 사이 또는 세컨더리 기 기끼리의 GND 사이에 전위차가 발생합니다. 전위차가 있는 상태에서 접속 케이블(동기 용)을 연결하면 오동작이나 고장의 원인이 됩니다.

동기 측정 중에는 제어 신호가 9165 접속 케이블로 전송됩니다. 접속 케이블을 뽑으면 신호가 멈춰 세컨 더리 기기가 의도하지 않은 동작을 할 가능성이 있으므로 동기 측정 중에는 접속 케이블을 절대로 빼지 마 십시오.

준비물: PW8001 ×2대, 9165 접속 케이블 ×1개

- 1 PW8001 2대의 전원이 OFF가 되어 있는 것을 확인한다
- **2** 각 PW8001 의 EXT SYNC 단자끼리를 9165 접속 케이블로 연결한다
- **3** PW8001 2대의 전원을 ON으로 한다 (순서 불문)



#### 3대 이상의 PW8001로 동기 측정할 경우

BNC 분기 커넥터(잭 - 플러그 - 잭 T 분기) 등을 사용하여 본 기기끼리가 병렬이 되도록 연결해 주십시오.



#### 동기 측정의 설정

#### 표시 화면 [SYSTEM] > [COM]

thernet	DHCP	OFF	HTTP/FTP server
	IPv4 address	192.168. 1. 1	Authentication: OFF
	Subnet mask	255. 255. 255. 0	Setup
	Default gateway	0. 0. 0. 0	FTP client
	MAC address	00:01:67:14:80:68	Automatic data uploads: OFF
P-IB	Address	1	
S-232C	Host	RS-232C	
	Baud rate	115200 bps	
nterlock	Optical link	OFF	
	BNC synchronization	OFF	

# 1 [Interlock]의 [BNC synchronization] 박스를 탭하여 설정한다

동기 상태는 화면 오른쪽 위의 동작 상태 인디케이 터로 확인합니다.

참조: "공통의 화면 표시" (p.31)

<i>Sync Primary</i>	BNC 동기 모드의 프라이머
(배경이 청색)	리 기기
<i>Sync Secondary</i>	BNC 동기 모드의 세컨더리
(배경이 흰색)	기기
Sync Primary	동기 에러
(배경이 빨간색)	

#### 중요

- 동기 측정할 때는 1대만 프라이머리로 설정해 주십시오.
- 프라이머리, 세컨더리의 측정 모드와 데이터 갱신율을 일치시키고, 적산값을 리셋한 후 동기 측정을 시작해 주십시오.
- 프라이머리, 세컨더리의 측정 모드 및 데이터 갱신율이 일치하지 않는 경우나 적산리셋 상태가 되지 않은 경우에는 동기할 수 없습니다.
- 동기 측정 중에 프라이머리에 동기하는 상기 항목은 세컨더리로 제어 및 설정 변경을 할 수 없습니다.
- 적산 중, 적산 정지 중에 동기 에러가 발생하면 세컨더리는 즉시 적산을 정지하고, 적산값은 리셋되므 로 주의해 주십시오.
- 홀드 중, 피크 홀드 중에 동기 에러가 발생하면 세컨더리의 홀드, 피크 홀드는 해제되므로 주의해 주십 시오.

# 광링크 (광링크 인터페이스)

PW8001 2대를 옵션인 L6000 광접속 케이블로 연결하면 동기 측정을 할 수 있습니다. 전기신호를 사용하지 않고 광파이버를 통과하는 광신호로 동기하므로 접지 전위가 다른 PW8001끼리도 연결할 수 있습니다.

광링크 중, 세컨더리로 설정된 PW8001은 내부 연산이나 데이터 갱신 타이밍을 프라이머리로 설정된 PW8001에 따릅니다.

또한, 측정 데이터의 일부를 프라이머리로 전송합니다.

그리고 프라이머리로 설정된 PW8001은 설정 데이터의 일부를 세컨더리 기기로 전송합니다.

- 이를 통해 프라이머리 측에서 세컨더리 기기에 대해 다음과 같은 것들을 할 수 있습니다.
- 측정값 표시 (연산 측정 항목 및 플리커 측정 항목을 제외한 기본 측정 항목, 고조파 50 차까지)
- [INPUT] > [WIRING]의 설정
- [INPUT] > [CHANNEL]의 설정
- [INPUT] > [MOTOR]의 설정
- [MEAS] > [VECTOR] > [VECTOR × 1] 의 위상 영점 조정 설정
- [SYSTEM] > [CONFIG]의 유닛 및 센서 구성의 표시

또한, 세컨더리 기기의 다음 측정 항목과 트리거 소스는 프라이머리 기기와 동일하게 선택할 수 있습니다.

- 커스텀 화면의 표시 항목
- 효율 연산식의 항목
- 사용자 정의 연산의 연산 항목
- 아날로그 출력 항목
- CAN 출력 항목
- USB 메모리로의 저장 항목
- 파형 스토리지의 이벤트 트리거의 트리거 소스

#### 연결 가능한 케이블

- L6000 광접속 케이블 (옵션)
- 시판의 광파이버 케이블 (일반적인 Duplex-LC (2심 LC) 커넥터가 부착된 것으로, 50/125 µm 멀티 모드 파이버를 사용한 것, 500 m까지)

#### 중요

PW8001끼리를 연결해 주십시오. 다른 기기와 연결하면 오동작의 원인이 될 수 있습니다.

#### L6000 광접속 케이블의 취급



#### 중요

- L6000 광접속 케이블을 본 기기에 연결하는 경우는 감합부에 티끌, 먼지가 없도록 주의해 주십시오. 특히 단면에는 세심한 주의를 기울여 주십시오.
- 티끌 등이 부착한 상태에서 장착하거나 흠집이 있는 경우, 동기하지 못할 우려가 있습니다.
- L6000 광접속 케이블을 사용하지 않을 때에는 케이블의 양단에 부속의 보호 캡을 장착해 주십시오. 본 기기의 광링크 커넥터와 L6000의 감합 부분은 고정밀 가공이 되어 있습니다.

### 기기의 연결

준비물: 본 기기 (2대), L6000 광접속 케이블 (1개)



- 1 본 기기 2대의 전원이 OFF 로 되어 있는 것을 확인한 다
- 2 프라이머리 기기, 세컨더리 기기의 뒷면에 있는 광링크 커넥터에 광접속 케이블을 연결한다
- 3 프라이머리 기기, 세컨더리 기기의 순서로 전원을 ON 한다 (전원 OFF는 반대 순서로 실시한다)

#### 분리 방법

L6000의 선단 왼쪽을 밀면서 뽑아 주십시오. 무리하게 세게 잡아당기지 마십시오.

- 동기 제어 중에는 본 기기 2대의 제어 데이터가 L6000 광접속 케이블로 전송되고 있습니다. 케이블을 뽑으면 동기할 수 없게 되므로 절대로 뽑지 마십시오.
- 프라이머리 기기 또는 세컨더리 기기 중 하나의 전원이 OFF 인 경우, 동기 에러가 발생합니다.
- 프라이머리 기기와 세컨더리 기기는 같은 버전을 사용해 주십시오. 버전이 다를 경우 동기 에러가 발생합니다.

#### 동기 측정의 설정

프라이머리 기기, 세컨더리 기기 각각의 설정을 합니다. PW8001 2대를 L6000 광접속 케이블로 연결한 후, 전원이 켜진 상태에서 다음의 설정을 해주십시오.

#### 표시 화면 [SYSTEM] > [COM]

Ethernet	DHCP	OFF	HTTP/FTP server
	IPv4 address	192.168. 1. 1	Authentication: OFF
	Subnet mask	255. 255. 255. 0	Setup
	Default gateway		FTP client
	MAC address	00:01:67:14:80:68	Automatic data uploads: OFF
			Setup
GP-IB	Address	1	
RS-232C	Host	RS-232C	
	Baud rate	115200 bps	
Interlock	Optical link	OFF	
	BNC synchronization	OFF	

 [Interlock]의 [Optical Link] 박스를 탭 하여 설정한다

동기 상태는 화면 오른쪽 위의 동작 상태 인디케이 터로 확인합니다. 참조: "공통의 화면 표시" (p.31)

<u>Link Primary</u>	광링크 모드의 프라이머리
(배경이 청색)	기기
<i>Link Secondary</i>	광링크 모드의 세컨더리 기
(배경이 흰색)	기
<mark>Link Primary</mark> (배경이 빨간색)	동기 에러

#### 중요

- 데이터 갱신율은 50 ms 이상을 선택해 주십시오. 50 ms 미만에서 광동기를 유효로 하면 50 ms로 변경됩니다. 프라이머리 기기가 IEC 측정 모드일 때는 동기할 수 없습니다.
- 프라이머리 기기와 세컨더리 기기의 데이터 갱신율이 다른 경우에는 프라이머리 기기의 데이터 갱신율 을 세컨더리 기기에 설정합니다.
  - 참조: "데이터 갱신율" (p.68)



2023-09-14 14:43:02 WideBand Course footbare set on Course as the CH 1 Unterforter to the CH 1 192W (	Sync:Ul /Ul Auto 15 V ) LPF:OFF Auto 1 A	Upper: 10kHz Lower: 10 Hz	k Primary SOns	1 2 3 4 5 6 7 8 USB
U _{rms1}	8.4928	۷		
U _{rms1}	6.0020	V		<u></u>
I _{rms1}	0.00205	А		with a
I _{rms1}	0.00208	Α		Landon ( ) Balancing
P ₁	0.0006	W		
P ₁	- 0.0000	W		8 Items
$\lambda_1$	- 0.03350			36 Items
$\lambda_1$	- 0.00010			64 Items

#### 표시 화면 [MEAS] > [VALUE] > [CUSTOM]

커스텀 화면의 표시 항목으로서 세컨더리 기 기의 측정값을 선택한 경우는 항목명의 색이 반전합니다.

### 표시 화면 [INPUT] > [WIRING]

2023-10-26 11:35:5	4 WideBand	8					Link Primary		
								*	USB
Primary	CH1	CH2	СНЗ	CH4	CH5	CH6	CH7	CH8	Ŧ
Unit	U7005	U7005	U7005	U7005	U7005	U7005	U7001	U7001	
Wiring	1P2W								
l input	Probe1								
Rate	50A AC/DC								
Quick Set	Setup	smoleco							
	Source Load								
	к	N	N	N	s	N	x	N	-00
									 @
	UI 0.030 V II 0.002 A PI-0.000 W	U2 0.019 V 12 0.002 A P2-0.000 W	U3 0.054 V 13 0.002 A P3-0.000 W	U4 0.068 V 14 0.002 A P4-0.000 W	US 0.046 V 15 0.002 A PS-0.000 W	U6 0.041 V 16 0.002 A P6-0.000 W	U7 0.079 V 17 0.001 A P7 0.000 W	US 0.015 V 18 0.001 A P8-0.000 W	E C

#### Secondary CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 ユニット U7005 U7005 U7005 U7005 U7001 U7001 U7001 U7001 結線 1P2W 1P2W 1P2W 1P2W 電流入力 Probe1 Probe1 Probe1 レート 50A AC/DC 50A AC/DC 50A AC/DC 50A AC/DC 50A AC/DC 50A AC/DC SOA AC/DO 50A AC/DC Setup 簡易設定 Setup Setup Setup Setup Setu ė,

### 화면의 버튼을 탭하여 **[Primary]** 또는 **[Secondary]**를 선택합니다.

#### 중요

- 프라이머리 기기에 세컨더리 기기의 파형을 표시할 수는 없습니다.
- 동기 연결 중에는 세컨더리 기기에서 다음의 조작을 할 수 없습니다. 단, 언어나 통신 등의 일부 설정 은 변경할 수 있습니다.
  - (1) 적산의 시작, 정지 및 리셋 (CAN 출력을 포함)
  - (2) HOLD, PEAK HOLD, COPY, SAVE 등의 키 조작
  - (3) 연산이나 저장, 출력에 관한 설정 변경

# 8.2 파형, 아날로그 출력 (파형 & D/A 출력 옵션)

본 기기의 파형 & D/A 출력 옵션에서는 임의 측정치의 아날로그 출력이나 전압, 전류 파형을 그대로 파형 출력할 수 있습니다.

아날로그 출력은 데이터 갱신율에 맞춰 장시간의 변동을 기록할 수 있습니다.

파형 출력은 2.5 MS/s 또는 15 MS/s 로 샘플링된 전압, 전류 파형을 1 MS/s 로 그대로 파형 출력하여 오 실로스코프 등과 조합해서 파형을 관측할 수 있습니다.

# 본 기기와 외부기기의 연결

본 기기에 부속된 D-sub용 커넥터로 D/A 출력 단자와 용도에 따른 기기(오실로스코프, 데이터 로거, 레 코더 등)를 연결합니다.

안전을 위해 연결 전에 반드시 본 기기와 연결 기기의 전원을 꺼 주십시오. 연결 후 본 기기와 연결 기기의 전원을 켭니다.

#### 출력 회로에 대해서



각 출력 단자의 출력 임피던스는 약 100 Ω입니다. 레코더, DMM 등을 연결하는 경우, 입력 임피던스가 큰 (1 MΩ 이상) 것을 사용해 주십시오. 참조: "파형 & D/A 출력 사양(옵션)" (p.259)

#### 커넥터의 핀 배치

각 핀의 출력은 임의로 설정할 수 있습니다.



핀 번호	출력
1	GND
2	D/A1
3	D/A2
4	D/A3
5	D/A4
6	D/A5
7	D/A6
8	D/A7
9	D/A8
10	D/A9
11	D/A10
12	D/A11
13	D/A12

핀 번호	출력
14	GND
15	D/A13
16	D/A14
17	D/A15
18	D/A16
19	D/A17
20	D/A18
21	D/A19
22	D/A20
23	GND
24	GND
25	GND

#### 연결 방법

D/A 출력 단자와 용도에 따른 기기와의 연결은 본체에 부속된 커넥터 (DB-25P-NR, DB19678-2R 일본항 공전자공업 주식회사) 또는 상당품을 사용합니다. 반드시 실드되어 있는 케이블을 연결해 주십시오.

- 1 전선과 납땜형 커넥터를 확실하게 납땜한다
- 2 납땜형 커넥터와 커넥터 커버를 부속된 나사 (M2.6×6)로 D/A 출력 단자에 고정한다

커넥터가 빠지지 않도록 확실하게 고정해 주십시오. 삽입 및 제거할 경우에는 커넥터 커버를 잡아 주십시오.

3 케이블의 실드가 접지되지 않은 경우는 실드를 커넥터 커버 또는 케이블 고정부에 연결한다







# 출력 항목의 선택

D/A 출력의 출력 항목을 20개까지 선택할 수 있습니다.

#### 표시 화면 [SYSTEM] > [OUTPUT]



 1
 채널별로 출력을 [Trend]로 할지 [Wave]

 로 할지 선택한다

Trend	아날로그 출력. 표시되는 기본 측정 항 목 선택 (플리커 측정 항목은 제외) 에서 선택.
Wave	파형 출력. 출력하고자 하는 파형을 리 스트에서 선택.

(아날로그 출력 시에 적산값을 출력하는 경우)

2 [Integration f.s.] 박스를 탭하여 일람에서 풀 스케일 값을 선택한다

1/10, 1/2, 1, 5, 10, 50, 100, 500, 1000, 5000, 10000

3 [Waveform output range] 박스를 탭하여 파형 출력 시의 풀 스케일 입력에 대한 출력 전압치를 설정 한다

1 V f.s., 2 V f.s.

참조: "출력 단자" (p.195)

측정 화면, 설정 화면, 파일 조작 화면의 어느 화면에서든 설정된 항목이 상시 출력됩니다.

#### 아날로그 출력에 대해서

- 본 기기의 측정치를, 레벨 변환한 직류 전압으로서 출력합니다.
- 전압 입력, 전류 입력(전류 센서 입력)과는 절연되어 있습니다.
- 출력 채널별로 기본 측정 항목에서 1 항목을 선택하여 총 20 항목을 출력할 수 있습니다.
- 데이터 로거나 레코더와 조합하여 장시간의 변동 기록 등을 할 수 있습니다.

#### 사양

출력 전압(출력 레인지)	DC ±5 V f.s.(유효 출력 범위는 1% f.s.~110% f.s.) 항목별 출력률은 "출력률" (p.200)을 참조해 주십시오.		
출력 저항	100 Ω ±5 Ω		
출력 갱신율	선택 항목의 데이터 갱신율에 따름		

- 플러스의 오버 레인지에서는 약 6 V(단, 전압 피크, 전류 피크는 약 5.3 V)를 출력합니다. 마이너스의 오버 레인지에서는 약 -6 V(단, 전압 피크, 전류 피크는 약 -5.3 V)를 출력합니다.
- 고장 등으로 출력될 가능성이 있는 최대 출력 전압은 약 ±12 V입니다.
- VT 비, CT 비를 사용하는 경우는 레인지에 VT 비, CT 비를 곱한 값을 DC ±5 V의 범위에서 출력합니다.
- 홀드 상태, 피크 홀드 상태 또는 애버리지 중인 경우는 각각의 동작 중 값을 출력합니다.
- 홀드와 인터벌 시간이 설정된 경우 적산 시작 후에는 인터벌 시간별로 출력이 갱신됩니다.
- 측정 레인지를 AUTO 레인지로 설정한 경우, 아날로그 출력도 레인지 변화에 따라 출력률이 변화합니 다. 측정치의 변동이 심한 경우 등에는 레인지 환산을 틀리지 않도록 주의해 주십시오. 또한, 이러한 측 정에서는 MANUAL 레인지로 레인지를 고정하기를 권장합니다.
- 기본 측정 항목 이외의 고조파 해석 기능에 의한 데이터는 출력할 수 없습니다.
- 데이터 갱신율의 설정에 대해 실제로 출력되는 측정치는 ±1 ms의 오차가 있습니다.

#### (Tips) 유효전력 적산 D/A 출력의 풀 스케일 값을 변경하려면

아날로그 출력에서는 적산의 풀 스케일 값을 설정합니다. 예를 들면 풀 스케일 값에 대해 적산값이 작은 경우는 적산값이 풀 스케일 값에 도달하기까지의 시간이 길어지므로 D/A 출력 전압이 완만하게 변화합니다. 반대로 풀 스케일 값에 대해 적산값이 큰 경우는 풀 스케일 값에 도달하기까지 시간이 짧아지므로 D/A 출력 전압이 급격하게 변화합니다. 적산 풀 스케일을 설정함으로써 유효전력 적산 D/A 출력의 풀 스케일 값을 변경할 수 있습니다.

#### 파형 출력에 대해서

- 본 기기에 입력된 전압, 전류의 순시 파형을 출력합니다.
- 전압 입력, 전류 입력(전류 센서 입력)과는 절연되어 있습니다.
- 오실로스코프 등과 조합하여 기기의 돌입 전류 등 입력 파형을 관측할 수 있습니다.

#### 사양

출력 전압(출력 레인지)	±1 V와 ±2 V 중 선택 가능 파고율 2.5 이상
출력 저항	$100 \Omega \pm 5 \Omega$
출력 갱신율	1 MHz (16비트)

- 전압/전류 입력 단자로의 입력에 따른 신호가 D/A 출력 커넥터에서 출력되기까지 걸리는 시간(지연 시 간)은 약 20 µs입니다.
- 약 ±7 V에서 파형이 클립 됩니다.
- 미탑재 채널에서는 항상 0 V가 출력됩니다. 또한, D/A 출력의 설정 채널이 빨간색 문자로 표시됩니다.
- 고장 등으로 출력될 가능성이 있는 최대 출력 전압은 약 ±12 V입니다.
- VT 비, CT 비를 사용하는 경우는 레인지에 VT 비, CT 비를 곱한 값에 따른 전압을 출력합니다.
- 파형 출력은 홀드, 피크 홀드, 애버리지와는 관계없이 항상 순시값이 출력됩니다.
- 측정 레인지를 AUTO 레인지로 설정한 경우, 아날로그 출력도 레인지 변화에 따라 출력률이 변화합니 다. 측정치의 변동이 심한 경우 등에는 레인지 환산을 틀리지 않도록 주의해 주십시오. 또한, 이러한 측 정에서는 고정 레인지에서의 사용을 권장합니다.

# 출력률

아날로그 출력은 풀 스케일에 대해 DC ±5 V의 전압을 출력합니다. 풀 스케일은 아래 표와 같은 전압을 출력합니다.

✔: 극성 있음

출력 선택 항목	표기	출력 전압의 극성	정격 출력 전압
전압 실효치	Urms		레인지의 0 ~ 100% of range에 대해 DC 0 V ~ +5 V
전압 평균치 정류 실효값 환산치	Umn		레인지의 0 ~ 100% of range에 대해 DC 0 V ~ +5 V
전압 교류 성분	Uac		레인지의 0 ~ 100% of range에 대해 DC 0 V ~ +5 V
전압 단순 평균치	Udc	✓	레인지의 ±100% of range에 대해 DC ±5 V
전압 기본파 성분	Ufnd		레인지의 0 ~ 100% of range에 대해 DC 0 V ~ +5 V
전압 파형 피크 +	Upk+	✓	레인지의 ±300% of range에 대해 DC ±5 V
전압 파형 피크 -	Upk-	~	레인지의 ±300% of range에 대해 DC ±5 V
총 고조파 전압 왜곡률	Uthd		0~500%에 대해 DC 0 V ~ +5 V
전압 리플률	Urf		0~500%에 대해 DC 0 V ~ +5 V
전압 불평형률	Uunb		0~100%에 대해 DC 0 V ~ +5 V
전류 실효치	Irms		레인지의 0 ~ 100% of range에 대해 DC 0 V ~ +5 V
전류 평균치 정류 실효값 환산치	Imn		레인지의 0 ~ 100% of range에 대해 DC 0 V ~ +5 V
전류 교류 성분	lac		레인지의 0 ~ 100% of range에 대해 DC 0 V ~ +5 V
전류 단순 평균치	ldc	~	레인지의 ±100% of range에 대해 DC ±5 V
전류 기본파 성분	lfnd		레인지의 0 ~ 100% of range에 대해 DC 0 V ~ +5 V
전류 파형 피크 +	lpk+	~	레인지의 ±300% of range에 대해 DC ±5 V
전류 파형 피크 -	Ipk-	~	레인지의 ±300% of range에 대해 DC ±5 V
총 고조파 전류 왜곡률	Ithd		0 ~ 500%에 대해 DC 0 V ~ +5 V
전류 리플률	Irf		0 ~ 500%에 대해 DC 0 V ~ +5 V
전류 불평형률	lunb		0 ~ 100%에 대해 DC 0 V ~ +5 V
유효전력	Ρ	<ul> <li>✓</li> </ul>	P1, P2, P3, P4, P5, P6, P7, P8: 전압 레인지 × 전류 레인지 P12, P23, P34, P45, P56, P67, P78: (전압 레인지 × 전류 레인 지 )×2 3V3A, 3P3W3M의 P123, P234, P345, P456, P567, P678: (전 압 레인지 × 전류 레인지 )×2 3P4W의 P123, P234, P345, P456, P567, P678: (전압 레인지 × 전류 레인지 )×3 예: 3P4W, P123, 300 V 레인지, 10 A 레인지의 경우 300 V×10 A×3 = 9 kW 가 풀 스케일 ±9 kW f.s.에 대해 DC ±5 V
기본파 유효전력	Pfnd	✓	유효전력 (P)과 같음
피상전력	S		S1, S2, S3, S4, S5, S6, S7, S8: 전압 레인지 × 전류 레인지 S12, S23, S34, S45, S56, S67, S78: (전압 레인지 × 전류 레인 지)×2 3V3A, 3P3W3M의 S123, S234, S345, S456, S567, S678: (전 압 레인지 × 전류 레인지)×2 3P4W의 S123, S234, S345, S456, S567, S678: (전압 레인지 × 전류 레인지)×3 예: S34, 150 V 레인지, 10 A 레인지의 경우 150 V×10 A×2 = 3 kW가 풀 스케일 0 ~ 3 kW f.s.에 대해 DC0 V ~ +5 V
기본파 피상전력	Sfnd		피상전력(S)과 같음
무효전력	Q	✓	유효전력(P)과 같음
기본파 무효전력	Qfnd	✓	유효전력 (P)과 같음

출력 선택 항목	표기	출력 전압의 극성	정격 출력 전압	
역률	λ	✓	역률±1에 대해 DC ±5 V	
기본파 역률	λfnd	~	기본파 역률 ±1에 대해 DC ±5 V	
전압 위상각	θU	~	전압 위상각±180°에 대해 DC ±5 V	
전류 위상각	θl	~	전압 위상각(θU)과 같음	
전력 위상각	φ	~	전압 위상각(θU)과 같음	
전압 주파수, 전류 주파수	fU, fl		상한 주파수의 설정에 대해 DC +5 V	
적산 +방향 전류량	lh+		적산 +, - 방향 전류량 합(lh)과 같음	
적산 - 방향 전류량	lh-	*4	적산 +, - 방향 전류량 합(lh)과 같음	
적산 +, - 방향 전류량 합	lh	~	전류 레인지 × 적산 풀 스케일 예: 10 A 레인지에서 1시간 적산하는 경우, 10 Ah가 전류 적산 f.s. ^{*2} ±10 Ah에 대해 DC ±5 V	
적산 +방향 전력량	WP+		적산 +, - 방향 전력량 합(WP)과 같음	
적산 - 방향 전력량	WP-	*4	적산 +, - 방향 전력량 합(WP)과 같음	
적산 +, - 방향 전력량 합	WP	✓ 	WP1, WP2, WP3, WP4, WP5, WP6, WP7, WP8: 전압 레인지 × 전류 레인지 × 적산 풀 스케일 WP12, WP23, WP34, WP45, WP56, WP67, WP78: (전압 레인지 × 전류 레인지 × 적산 풀 스케일) ×2 3V3A, 3P3W3M의 WP123, WP234, WP345, WP456, WP567, WP678: (전압 레인지 × 전류 레인지 × 적산 풀 스케일) ×2 3P4W의 WP123, WP234, WP345, WP456, WP567, WP678: (전압 레인지 × 전류 레인지 × 적산 풀 스케일) ×3 예: WP123, 300 V 레인지, 10 A 레인지에서 1시간 적산하는 경 우, 9 kWh가 유효전력 적산 f.s. ±9 kWh에 대해 DC ±5 V	
효율	η		0~200%에 대해 DC 0 V~+5 V	
손실값	Loss	~	Pin = Pin1+Pin2+Pin3+Pin4+Pin5+Pin6, Pout = Pout1+Pout2+Pout3+Pout4+Pout5+Pout6 Pin과 Pout 중 큰 쪽을 P 레인지로 한다. P 레인지의 ±100% 에 대해 DC ±5 V 예: P 레인지가 3 kW인 경우, 3 kW의 ±100% 에 대해 DC ±5 V	
토크	Τq	~	아날로그 DC 입력: 전압 레인지 ×스케일 값 = 정격 토크 정격 토크의 ±100%에 대해 DC ±5 V 주파수 입력: 스케일 값 = 정격 토크 정격 토크의 ±100%에 대해 DC ±5 V	
회전수	Spd	~	아날로그 DC 입력: 전압 레인지×스케일 값 = 정격 회전수 펄스 입력: (60 ×상한 주파수) / 펄스 수 설정치 = 정격 회전수 정격 회전수의 ±100%에 대해 DC ±5 V	
모터 파워	Pm	✓	Pm 레인지의 ±100%에 대해 DC ±5 V * ³	
미끄럼	Slip	✓	±100%에 대해 DC ± 5 V	
독립 입력 모드 시의 자유 입력	CH*	✓ *1	아날로그 DC 입력: 전압 레인지의 ±100%에 대해 DC ±5 V 펄스 입력: 상한 주파수의 ±100%에 대해 DC ±5 V	
사용자 정의 연산	UDF	✓	사용자 정의 연산별로 설정하는 "MAX" 값의 ±100%에 대해 DC ±5 V	

*1: 아날로그 DC 입력은 극성이 있습니다. 펄스 주파수 입력은 극성이 없습니다.

*2: 적산값이 ±5 V를 넘는 값이 되면 아날로그 출력은 한 차례 0 V가 되고 다시 변화를 계속합니다.

*3: Pm 레인지는 모터 파워 연산식에서 토크에 정격 토크를, 회전수에 정격 회전수를 넣어 계산한 것입니다.

*4: 항상 마이너스 부호가 붙습니다.

8

외부기기의 연결





주파수

202



- (1) 적산 시작으로 아날로그 출력은 변화합니다. 적산 정지로 아날로그 출력은 유지됩니다.
- (2) 적산값이 ±5 V를 넘는 값이 되면 아날로그 출력은 일단 0 V가 되고 다시 변화를 계속합니다.
- (3) 적산 중에 표시를 홀드하면 아날로그 출력도 홀드합니다. 홀드를 해제하면 본래의 적산값에 맞춰 아 날로그 출력이 변화합니다.
- (4) 적산값을 리셋하면 아날로그 출력은 0 V가 됩니다.

# 8.3 외부 신호로 적산을 제어

본 기기는 외부 제어 인터페이스를 사용해 적산 시작, 정지, 데이터 리셋을 **0 V/5 V**의 로직 신호 또는 단 락/개방의 접점 신호로 제어할 수 있습니다.

# 🛕 위 험



외부 제어 단자에 최대 입력 전압을 초과하는 전압을 입력하지 않는다

본 기기가 파손되거나 중대한 인신사고를 일으킬 우려가 있습니다.

#### 케이블의 연결

준비물: 본 기기를 제어할 외부기기, 9444 접속 케이블

1 본 기기의 D-sub 9pin 커넥터에 9444 접속 케이블을 연결한 후 나사로 고정한다

#### 9444 접속 케이블의 다른 한쪽을 본 기기와 연결할 외부기기에 연결한다

D-sub 9 pin의 암(female) 커넥터를 사용하거나, 9444 접속 케이블의 수(male) 측 커넥터를 절단한 후, 내부 케이블의 색상을 참고하여 기기에 직접 연결한 것을 사용해 주십시오.



#### 본 기기를 제어할 기기

다음 핀 번호에 기능을 할당한 것을 준비해 주십시오. 사용하지 않는 핀은 개방 상태로 해주십시오.

핀 번호	케이블 색상	기능
1	갈색	적산의 시작/정지 이 핀을 High (5 V 또는 개방)에서 Low (0 V 또는 단락)로 했을 때 적산이 시 작됩니다. 또한, Low에서 High로 했을 때 적산이 정지합니다.
2	빨간색	미사용
3	주황색	미사용
4	황색	홀드 이 핀을 High (5 V 또는 개방)에서 Low (0 V 또는 단락)로 했을 때 표시가 홀 드됩니다. 또한, Low에서 High로 했을 때 홀드가 해제됩니다.
5	녹색	GND
6	청색	적산값의 데이터 리셋 이 핀을 200 ms 이상의 기간 Low로 했을 때 적산값을 리셋합니다. 적산이 정지 중일 때만 유효합니다.
7	자주색	미사용
8	회색	미사용
9	흰색	미사용

#### 연결처의 설정

### 표시 화면 [SYSTEM] > [COM]

4999999999999999			A 3.6.7	
Ethernet	DHCP IPv4 address Subnet mask Default gateway MAC address	OFF 192. 168. 1. 1 255. 255. 255. 0 0. 0. 0. 0 12:34:56:78:9A:BC	HTTP/FTP server Authentication: OFF Setup FTP client Automatic data uploads: OFF Setup	
GP-IB	Address	1		
RS-232C	Host Baud rate	EXT Ctrl 7		

# 1 RS-232C의 [Host] 박스를 탭하여 일람에 서 [EXT Ctrl]을 선택한다

EXT Ctrl	외부 제어 인터페이스로서 기능합니 다. 외부 기기와 연결하여 로직 신호 또 는 단락/개방의 접점 신호를 통해 본 기기를 제어할 수 있습니다.
RS-232C	RS232C 인터페이스로서 기능합니 다. 외부 기기와 연결하여 통신 커맨드 를 통해 본 기기를 제어할 수 있습니 다. 참조: "9.8 RS-232C의 연결과 설 정" (p.239)

### 외부 제어 단자의 내부 회로도



#### 제어 신호의 타이밍

외부 제어 인터페이스의 각 신호는 다음의 타이밍 다이어그램의 기간으로 검출합니다. 측정 중인 주파수나 2대 동기 상태에 따라 표시가 지연될 수 있습니다.

#### 적산의 시작, 정지

적산의 시작, 정지를 제어하는 신호입니다. 패널 키의 **START/STOP** 키와 같은 동작을 합니다.



#### 적산값의 데이터 리셋

적산값을 제로로 리셋하는 제어 신호입니다. 패널 키의 **DATA RESET** 키와 같은 동작을 합니다.



적산 중에는 이 신호가 입력되어도 무시됩니다. 이 신호는 적산 정지 후 450 ms 이상(자동 저장 ON 시는 1 s 이상) 간격을 띄워 입력해 주십시오.

#### 홀드

패널 키의 **HOLD** 키와 같은 동작을 합니다.



본 기기의 손상을 방지하기 위해 5.5 V 이상의 전압을 입력하지 마십시오. 제어 신호는 채터링이 없는 신호를 입력해 주십시오.

# 8.4 CAN 출력 기능

# CAN 출력 기능의 개요

#### CAN이란

Controller Area Network의 약자로 국제표준화기구 (ISO)에 의해 표준 규격으로 정해진 시리얼 통신 프로토콜입니다.

본 기기의 CAN 출력 기능에서는 이 통신 프로토콜을 사용하여 CAN 버스 상에 측정 데이터를 실시간으로 출력한 후, ECU(Electronic Control Unit)의 데이터와 함께 기록할 수 있습니다. CAN 로거에 집약함 으로써 데이터의 정확도가 열화하는 일 없이 일원화되어 종합적인 평가를 실현할 수 있습니다.

# CAN 출력까지의 흐름



# CAN 출력의 설정

#### CAN 통신의 설정

본 기기가 CAN 신호 송신처의 기기와 정상적으로 통신하기 위해서 CAN 프로토콜의 설정, 통신 속도의 설정, 종단 저항의 설정 등을 실시합니다.

#### 표시 화면 [SYSTEM] > [CAN OUTPUT]



[CAN OUTPUT] 아이콘은 CAN/CAN FD 옵 션 장착 시에만 표시됩니다.

[Mode] 박스를 탭하여 일람에서 CAN 프로 토콜을 선택한다

CAN	CAN 모드
CAN FD	CAN FD 모드
(ISO)	(ISO 11898-1:2015에 준거)
CAN FD	CAN FD 모드
(nonISO)	(ISO 비준거)

CAN 프로토콜을 변경하면 뒤에서 설명할 CAN 출력 항목의 설정이 초기화됩니다.

#### **2** CAN 모드를 선택한 경우

[Communications speed] 박스를 탭하여 일람에서 통신 속도를 선택한다

125 kbps, 250 kbps, 500 kbps, 1 Mbps

#### CAN FD 모드를 선택한 경우

[Arbitration speed] 박스를 탭하여 통신 속도를 선택한다

500 kbps, 1 Mbps

[Data speed] 박스를 탭하여 통신 속도를 선택한다

500 kbps, 1 Mbps, 2 Mbps, 4 Mbps

3 [Sampling point] 박스를 탭하여 텐 키로 샘플링 포인트를 설정한다

0.0%~ 99.9%

#### 4 [Other settings]를 탭한다

[Other settings] 창이 표시됩니다.

CAN communication		
Mode CAN		Other setting
Communications speed	500 kbps Sampling point 80.0	96
	Other settings	×
CAN database	Terminal resist ON	5
Parameters S		
Output parameters 0 /		
Output		
Modo Continue	Interval 1s	

5 [Terminal resist] 박스에서 ON/OFF를 선택한다

ON	종단 저항을 사용한다
OFF	종단 저항을 사용하지 않는다

#### CAN 데이터베이스의 설정

본 기기에서 출력할 CAN 신호를 설정합니다.

### 표시 화면 [SYSTEM] > [CAN OUTPUT]

				×
Use	ID	Data 1	2	
7	0x1	U _{rms1}	U _{rms2}	
	0x2	OFF	OFF	
	0x3	OFF	OFF	
	0x4	OFF	OFF	
	0x5	OFF	OFF	
	0x6	OFF	OFF	
	0x7	OFF	OFF	
	0x8	OFF	OFF	2
Mode: C Commu	AN nications :	speed: 500	ops	Quick Set Base ID Item



- [Parameters] 박스의 [Setup]을 탭한다

   설정 창이 표시됩니다.
- 2
   [Quit Set] 박스의 [Base ID]를 탭한다

   CAN 신호의 ID를 일괄 설정할 수 있습니다.

3 [Format] 박스를 탭하여 일람에서 포맷을 선택한다

Standard	표준 포맷을 사용한다
Extension	확장 포맷을 사용한다

[Base ID] 박스를 탭하여 텐 키로 기준이 되는 ID를 설정한다

[Standard] 선택 시

**0~7FF** (16진수로 입력)

[Extension] 선택 시

**0~1FFFFFFF (16**진수로 입력)

설정한 ID를 기준으로, 출력할 CAN 신호의 ID 가 1개씩 더해지며 설정됩니다. 통신할 CAN 버스에 흐르는 CAN 신호의 ID는 중복되지 않도록 설정해 주십시오.

#### 5 [Item]을 탭한다

설정 창이 표시됩니다.

6 출력할 측정 데이터를 선택한다.

7 [Apply and save .dbc file]을 탭한다



. 연 결

Jse	ID Data 1 2	
<i>.</i>	0x1 Urms1 Urms2	
	0x PW8001	
	0x 1 2 3 4 5 6 7	
	<mark>0x</mark> Clear q w e r t y	
	Ox Delete a s d f g h	Enter
	0x A/azxcvbn	
	0x Esc	
	0x	

#### 선택 가능한 측정 데이터의 종류

Basic measurement parameter	본 기기로 측정된 데이터(플리커 측정 항목은 제외)
<b>Time</b> (Others 탭에서 선택)	CAN 출력을 시작하고 나서 경과한 시간을 시, 분, 초, 밀리초로 나누어 출력합니다.
<b>Count</b> (Others 탭에서 선택)	CAN 출력을 시작하고 나서 출력한 횟수를 출력합니다.

#### 선택 가능한 측정 데이터의 수

선택할 수 있는 측정 데이터의 수는 CAN 프로토콜, 통신 속도, 출력 인터벌의 설정에 의해 결정됩니다. 선택할 수 있는 수를 변경하고자 하는 경우에는 CAN 프로토콜, 통신 속도, 출력 인터벌의 설정을 변경해 주십시오.

		선택 가능한 데이터 수			
CAN 프로토콜	통신 속도	1 ms 인터벌 설정 시	<b>10 ms</b> 인터벌 설정 시	<b>50 ms</b> 인터벌 설정 시	
CAN	125 kbps	0	4	20	
	250 kbps	0	8	40	
	500 kbps	2	16	64 (최대 수)	
	1 Mbps	4	32	64 (최대 수)	
CAN FD	□ — 500 kbps	0	32	160	
	□ − 1 Mbps	0	64	320	
	□ - 2 Mbps	0	128	512 (선택 가능한 항 목 전체)	
	□ – 4 Mbps	16	256	512 (선택 가능한 항 목 전체)	

• 100 ms 인터벌일 때는 50 ms일 때의 2배, 200 ms 인터벌일 때는 50 ms일 때의 4배가 됩니다.

• CAN FD의 출력 가능 데이터 수는 데이터 영역의 통신 속도에 의해서만 달라집니다. 중재 영역의 통신 속도에 의해 변화하지 않습니다.

• 표 안의 🗆는 임의의 수치를 나타냅니다.

8 키보드로 파일명을 설정한다 미리 USB 메모리를 삽입해 주십시오.

# DBC 파일의 작성

CAN 출력 항목의 설정 후에 DBC 파일 작성 화면으로 이동할 수 있습니다. 또한, [Save .dbc file]을 탭해도 DBC 파일 작성 화면으로 이동할 수 있습니다.

### 표시 화면 [SYSTEM] > [CAN OUTPUT]

Jse	ID Data 1 2	
1	0x1 U _{rms1} U _{rms2}	
	0× PW8001	
	0x 1 2 3 4 5 6 7 8 9 0 - = BS	
	OxClearqwertyuiop[] \	
	Ox Delete a s d f g h j k l : 'Enter	
	0x A/a z x c v b n m , . / 123	
	0x Esc ← →	
	0x	
ode: C	N Ouick Set Base ID	Item

- **1** USB 메모리를 본 기기에 삽입한다
- 2 [Save .dbc file]을 탭한다
- 3 [Destination] 박스를 탭하여 키보드로 폴 더명을 설정한다

(영숫자 기호 8문자까지)

저장위치		USB 메모리
파일명		임의 입력(최대 8문자), 확장자는 DBC 예 : PW8001.DBC
비고		파일은 수동 저장 설정의 저장 위치에서 설정한 폴더에 저장됩니다. 참조: "측정 데이터의 수동 저장" (p.163)
Tips	Tips DBC 파일이란	
	초려하 С 🛯 🛛	시승률 소사된 기기에서 분승하하기 위해 피우한 CAN 데이터베이스이 전이가 쓰여지 파

출력한 CAN 신호를 송신처 기기에서 복호화하기 위해 필요한 CAN 데이터베이스의 정의가 쓰여진 파 일입니다.

이 파일을 CAN 신호 송신처 기기의 CAN 정의에 사용해 주십시오.

DBC 파일은 현재의 CAN 데이터베이스 설정을 바탕으로 작성됩니다. 그러므로 반드시 CAN 데이터베이 스 설정 후에 DBC 파일을 작성하고, CAN 데이터베이스를 변경한 경우에는 그때마다 DBC 파일을 다시 작성해 주십시오.

#### CAN 출력의 설정

본 기기에서 CAN 출력할 방법을 설정합니다.

#### 표시 화면 [SYSTEM] > [CAN OUTPUT]



[Mode] 박스를 탭하여 일람에서 출력 모드 를 선택한다

Continue	인터벌과 출력 횟수의 설정에 따라 연속해서 출력합니다.	
OFF	CAN 출력을 실행하지 않습니다.	

출력 모드를 OFF 이외로 설정하는 동안 CAN 인 터페이스가 기동합니다. 이때, 부적절한 CAN 통 신 설정 상태로 CAN 버스에 접속하고 있으면 에 러의 원인이 되므로 주의해 주십시오.

#### 2 [Interval] 박스를 탭하여 일람에서 CAN 출력의 인터벌을 선택한다

(데이터 갱신율이 1 ms일 때) 1 ms, 10 ms, 50 ms, 100 ms, 200 ms, 500 ms, 1 s, 5 s, 10 s, 15 s, 30 s, 1 min, 5 min, 10 min, 15 min, 30 min, 60 min (데이터 갱신율이 10 ms일 때) 10 ms, 50 ms, 100 ms, 200 ms, 500 ms, 1 s, 5 s, 10 s, 15 s, 30 s, 1 min, 5 min, 10 min, 15 min, 30 min, 60 min (데이터 갱신율이 50 ms일 때) 50 ms, 100 ms, 200 ms, 500 ms, 1 s, 5 s, 10 s, 15 s, 30 s, 1 min, 5 min, 10 min, 15 min, 30 min, 60 min (데이터 갱신율이 200 ms일 때) 200 ms, 1 s, 5 s, 10 s, 15 s, 30 s, 1 min, 5 min, 10 min, 15 min, 30 min, 60 min (측정 모드가 IEC일 때)

100 ms, 200 ms, 500 ms, 1 s, 5 s, 10 s, 15 s, 30 s, 1 min, 5 min, 10 min, 15 min, 30 min, 60 min

설정한 인터벌에 대해 실제로 출력되는 데이터에는 ±1 ms의 오차가 있습니다. 설정한 인터벌로 데이터를 취급하고자 하는 경우에는 타임스탬프 정보를 참조해 주십시오.

#### **3** [Output count] 박스를 탭하여 텐 키로 CAN 신호를 출력할 횟수를 선택한다

[Infinite] 체크박스를 유효로 하면 CAN 신호가 무한횟수로 출력됩니다. 체크를 무효로 하면 CAN 신호를 출력할 횟수를 임의로 설정할 수 있습니다.

0~10000 (0은 무한횟수)

### CAN 출력의 실행

본 기기에서 CAN 출력을 실행하기 전에 다음의 절차를 완료해 주십시오.

**1** 작성한 DBC 파일을 CAN 신호 송신처의 기기로 불러온다 "DBC 파일의 작성" (p.211)

2 본 기기와 CAN 송신처의 기기를 CAN 버스로 결선한다

#### 시작

START/STOP 키를 눌러 CAN 출력을 시작합니다.

- 적산 시작과 CAN 출력은 연동하고 있습니다.
- 적산이 리셋될 때까지 설정을 변경할 수 없습니다.

#### 정지

다음과 같은 경우에 CAN 출력이 정지됩니다.

- **START/STOP** 키를 한번 더 누른다.
- 설정한 횟수만큼 CAN 출력을 실행한다.

적산 정지와 연동하고 있습니다.

#### 출력 데이터의 오버 값과 에러 값

다음의 경우, 본 기기에서 출력되는 측정 데이터가 오버 값 또는 에러 값으로 대체되어 출력됩니다.

오버 값 <b>+99999.9E+30</b>	설정 중인 레인지에 따른 표시 가능한 최대치를 넘었을 때
에러 값 <b>+77777.7E+30</b>	설정 변경 직후의 연산 불능 시

### 출력 상태의 확인

스테이터스에서 출력 상태를 확인할 수 있습니다.

None	CAN 인터페이스가 정지 중입니다.	
SetupError	pError CAN 인터페이스의 기동에 실패했습니다.	
Ready	CAN 인터페이스가 기동 중입니다. START/STOP 키를 눌러 CAN 출력을 시작할 수 있습니다.	
ОК	정상적으로 CAN 출력하고 있습니다.	
Warning	최근에 CAN 출력 에러가 발생했습니다.	
Send error	CAN 출력에 이상이 있습니다.	
Bus OFF	CAN 에러에 의해 CAN 버스로부터 분리되어 있습니다.	

#### (Tips) CAN 출력 상태가 OK 로 되지 않을 때는

다음 항목을 확인해 주십시오.

- 본 기기가 CAN 버스에 올바르게 연결되어 있다.
- CAN 신호의 송신처 기기가 올바르게 연결되어 있다.
- 종단 저항이 올바르게 배치되어 있다.
- CAN 통신이 올바르게 설정되어 있다.
- CAN 프로토콜, 통신 속도, 샘플링 포인트의 설정이 연결처 기기와 동일하게 설정되어 있다.

#### 출력한 CAN 신호의 데이터가 비정상적인 값이 될 때는

다음 항목을 확인해 주십시오.

- DBC 파일을 작성하고 나서 본 기기의 CAN 데이터베이스 설정이 변경되지 않았을 것.
- 다른 기기로부터 송신되는 CAN 신호가 있는 경우, 그 신호와 ID 번호가 중복되지 않을 것.

# 8.5 VT1005 AC/DC 고전압 디바이더

VT1005 AC/DC 고전압 디바이더는 최대 5 kV (측정 카테고리 없음)의 입력 전압을 높은 정밀도로 1000:1로 변환하여 출력하는 AC/DC 디바이더입니다.

평탄성이 좋은 주파수 특성과 안정된 온도 특성이 있으며 전압 측정 뿐만 아니라 전력계와 조합하면 고정밀 도 전력 측정에도 사용하실 수 있습니다.

### 표시 화면 [INPUT] > [CHANNEL]





1 설정하려는 채널의 채널 상세 표시 영역을 탭 하여 설정 창을 연다

2 [VT] 박스를 탭하여 텐 키로 [1000.00]을 입 력한다 파워 아날라이저에 VT1005의 비율(분압비)을 설

파워 아날라이서에 VI1005의 비율(문압비)을 설 정하면 입력치를 직독할 수 있습니다.

- **3** 전압의 위상 보정을 [ON]으로 설정한다
- **4** 주파수를 [100.0] kHz 로 설정한다
- 5 VT1005에서 사용하는 L9217 접속 코드의 길이에 적합한 위상 보정치를 입력한다

모델명(길이)	입출력간 위상차 보정치(°)
L9217 (1.6 m)	-4.01
L9217-01 (3.0 m)	-4.26
L9217-02 (10 m)	-5.52

파워 아날라이저에 위상 보정치를 설정하면 디바이 더의 위상 보정을 실행하여 고주파수 영역에서의 전력 측정 오차를 줄일 수 있습니다. 사용하는 파 워 아날라이저에 따라 설정이 다릅니다.

중요

위상 보정치는 정확하게 입력해 주십시오. 설정을 잘못하면 보정에 의해 측정 오차가 커지는 경우가 있습 니다. VT1005 AC/DC 고전압 디바이더
# 9 PC 와의 연결

본 기기는 LAN, GP-IB, RS-232C의 인터페이스를 표준 장착하고 있습니다. PC와 연결해 원격 조작, 통신 커맨드를 통해 본 기기를 제어하거나 측정 데이터를 PC로 전송할 수 있습니다.

#### 중요

인터페이스는 어느 하나를 선택하여 사용해 주십시오. 복수의 인터페이스를 동시에 사용하는 경우, 통신 이 정지하는 등 오동작의 원인이 됩니다.

#### 인터페이스의 기능 일람

인터페이스	기능	참조
	HTTP 서버 기능을 사용하여 Microsoft Edge [®] 등의 일반적인 브라우저 에서 본 기기를 원격 조작(설정, 화면 감시)	p.222
	FTP 서버 기능을 사용하여 USB 메모리에 저장한 데이터를 PC에 다운 로드	p.224
	FTP 클라이언트 기능을 사용하여 본 기기 미디어에 저장한 파형 데이터 를 네트워크 또는 원격지 PC의 FTP 서버에 자동으로 송신	p.228
LAN	통신 커맨드로 본 기기를 제어 (프로그램을 작성하여 통신 커맨드용 포트에 TCP/IP로 연결하면 본 기 기를 제어할 수 있습니다)	p.236
	GENNECT One (PC 애플리케이션 소프트)을 사용하여 본 기기를 원 격 조작하고, 측정 데이터를 PC로 전송	p.243
	Modbus/TCP 통신 기능을 사용하여 본 기기를 제어하고, 측정 데이터 를 실시간 취득	p.245
GP-IB	통신 커맨드로 본 기기를 제어	p.236
<b>B6 3330</b>	통신 커맨드로 본 기기를 제어	p.236
KJ-ZJZC	외부 신호로 적산의 시작, 정지, 데이터 리셋	p.204

GENNECT One (사용설명서 포함) 및 통신 커맨드 사용설명서는 당사 웹사이트에서 다운로드해 주십 시오.

참조: "9.9 GENNECT One (PC 애플리케이션 소프트)" (p.243)

9

## 9.1 LAN의 연결과 설정

본 기기는 LAN 인터페이스를 표준 장착하고 있습니다. 본 기기와 PC를 LAN 케이블로 연결하여 사용합니다.

. . . . . . . . . . . .

참조: "인터페이스의 기능 일람" (p.217)

## LAN 케이블의 연결

본 기기의 RJ-45 커넥터(기가비트 이더넷)에 LAN 케이블을 연결합니다.



#### LAN의 연결 방법



연결 예: 본 기기와 PC를 1대 1로 연결하는 경우(PC와 본 기기를 연결한다)



 Tips
 크로스 변환 커넥터가 없을 경우

 허브를 사용하면 크로스 변환 커넥터를 사용하지 않고도 연결할 수 있습니다.

### LAN의 설정과 네트워크 환경의 구축

#### LAN의 설정(본기기)

반드시 LAN 설정을 한 후 네트워크에 연결해 주십시오. 네트워크에 연결한 상태에서 LAN 설정을 변경하 면 LAN 상의 다른 기기와 IP 주소가 겹치거나 올바르지 않은 주소 정보가 LAN에 흘러 들어갈 우려가 있 습니다.

#### 표시 화면 [SYSTEM] > [COM]

	delland Tala a Gib Tala a Di		4	USB.
Ethernet	DHCP IPv4 address Subnet mask Default gateway MAC address	07F 192.168.1.1 255.255.255.0 0.0.0 12:34-56:78-9A-BC	HTTP/FTP server Authentication: OFF Setup FTP client Automatic data uploads: OFF Setup	×1 0 8 14 4
GP-IB	Address	1		
RS-232C	Host Baud rate	RS-232C 115200 bps		
				्र हे

## [DHCP] 박스를 탭하여 DHCP의 ON/ OFF를 선택한다

DHCP(Dynamic Host Configuration Protocol)는 기기가 IP 주소 등을 자동으로 취득 하여 설정하는 방법입니다. DHCP 서버가 같은 네트워크 내에서 동작하고 있는 경우, 이 DHCP 기능을 ON으로 하면 IP 주소, 서브넷 마스크, 디 폴트 게이트웨이의 설정을 자동으로 취득할 수 있 습니다.

#### (이후의 조작은 OFF 로 설정한 경우에만)

#### 2 [IPv4 address] 박스를 탭하여 텐 키로 IPv4 주소를 입력한다

네트워크상에서 연결되는 개별 기기를 식별하기 위한 어드레스입니다. 다른 기기와 중복되지 않도록 개별 주소를 설정 합니다.

본 기기는 IP 버전 4를 사용하고 있으며 IP 주소는 "192.168.1.1"과 같이 "."로 구분된 4개의 10 진수로 표현됩니다. DHCP가 유효한 경우에는 DHCP에 따라 자동으로 설정합니다.

#### 3 [Subnet mask] 박스를 탭하여 서브넷 마스크를 텐 키로 입력한다

IP 주소를 네트워크로 나타내는 주소부와 기기를 나타내는 주소부로 나누기 위한 설정입니다. 보통은 "255.255.255.0"과 같이 "."로 구분된 4개의 10 진수로 표현됩니다. 무효한 값을 입력한 경우, 서브넷 마스크가 변경되지 않습니다. DHCP가 유효한 경우에는 DHCP에 따라 자동으로 설정합니다.

#### 4 [Default gateway] 박스를 탭하여 디폴트 게이트웨이를 텐 키로 입력한다

통신할 PC와 본 기기가 서로 다른 네트워크에 있는 경우 게이트웨이가 되는 기기의 IP 주소를 지정합니다. 1 대 1로 연결하는 경우 등 게이트웨이를 사용하지 않을 경우는 본 기기에서 "0.0.0.0"을 설정합니다. DHCP가 유효한 경우에는 DHCP에 따라 자동으로 설정합니다.

#### 네트워크 환경의 구축 예

#### 예 1: 본 기기를 기존 네트워크에 연결한다

기존 네트워크에 연결할 경우에는 다음 설정 항목을 사전에 네트워크 시스템의 관리자(부서)로부터 할당 받아야 합니다. 다른 기기와 겹치지 않도록 해주십시오.

IP 주소	··
서브넷 마스크	··
디폴트 게이트웨이	· · · ·

#### 측정기를 기존 네트워크에 연결할 경우(다음 중 하나를 준비)

• 1000BASE-T 대응 스트레이트 케이블(최대 100 m, 시판) (100BASE/10BASE로 통신할 경우는 100BASE-TX/10BASE-T 대응 케이블도 사용할 수 있습니다)

• 9642 LAN 케이블 크로스 변환 커넥터 부속(옵션)

#### 예2: 기존 네트워크에 연결한 PC에 LAN 포트를 추가하여 본 기기를 연결한다

추가할 LAN 포트의 IP 주소, 서브넷 마스크, 디폴트 게이트웨이의 설정은 네트워크 시스템 관리자에게 확 인한 후 설정해 주십시오.

#### 예 3: 1대의 PC와 본 기기 여러 대를 허브로 연결한다

외부에 연결하지 않는 로컬 네트워크를 구성할 경우, IP 주소는 예에서 나타낸 개인 IP 주소를 사용할 것이 권장되고 있습니다.

네트워크 주소를 192.168.1.0/24 로 하여 네트워크를 구성할 경우

IP 주소	PC: 192.168.1.1 본 기기: 192.168.1.2, 192.168.1.3, 192.168.1.4, 와 같이 순서를 매김
서브넷 마스크	255.255.255.0
디폴트 게이트웨이	0.0.0.0

#### 예4: 9642 LAN 케이블로 PC와 본 기기를 1대 1로 연결한다

9642 LAN 케이블에 부속된 변환 커넥터로 PC와 본 기기를 1대 1로 연결하는 경우, IP 주소는 임의로 설 정할 수 있지만, 개인 IP 주소를 사용하기를 권장합니다.

IP 주소	PC: 192.168.1.1 본 기기: 192.168.1.2 (IP 주소를 다른 값으로 합니다)
서브넷 마스크	255.255.255.0
디폴트 게이트웨이	0.0.00

#### 측정기와 PC를 1대 1로 연결하는 경우(다음 중 하나를 준비)

- 1000BASE-T 대응 크로스 케이블(최대 100 m)
- 1000BASE-T 대응 스트레이트 케이블과 크로스 변환 커넥터 (최대 100 m)
- 9642 LAN 케이블 크로스 변환 커넥터 부속(옵션)

## 9.2 HTTP 서버에서의 원격 조작

본 기기는 HTTP 서버 기능을 표준 장착하고 있습니다. Microsoft Edge[®] 등의 일반적인 브라우저를 사용하여 본 기기를 원격 조작할 수 있습니다. 본 기기에 표시된 화면과 조작 패널이 브라우저에 표시됩니다. 조작 패널에서 LED의 점등 상황도 확인할 수 있습니다.

조작 방법은 본 기기와 동일합니다. 단, 키를 길게 누르거나 동시에 누르는 것에는 대응하고 있지 않습니다.

HTTP 서버에 의한 원격 조작 중에는 통신 커맨드를 통한 제어나 GENNECT One을 통한 제어는 하지 않도록 해주십시오. 복수의 제어를 동시에 하는 경우, 통신이 정지하는 등 오작동의 원인이 됩니다. HTTP 서버 접속 중에 본 기기의 시각 설정을 하게 되면 통신이 끊어지는 경우가 있습니다.

## HTTP 서버로의 연결

- **1** PC에서 Microsoft Edge[®] 등의 브라우저를 기동한다
- 2 주소란에 본 기기의 어드레스를 입력한다(예: http://192.168.1.1)
- 3 (본 기기의 [HTTP/FTP server settings]에서 [ON]을 선택한 경우)

사용자명과 비밀번호를 입력하여 로그인한다

메인 페이지가 표시되면 본 기기와의 연결은 성공입니다.

	HIOKI PW8001 Series HTTP SERVER Model : PW8001-15   Serial : 000000000   Version : V0.26 MAIN PAGE
1	Select an operation.           Control Mode         Remotely control the PW8001. Only one can be connected at the same time.           Number of connections : 0 / 1
	Browsing Mode Browse the PW8001 display and LED status. The number of devices can be connected at the same time is 4. Number of connections : 0 / 4 More Information +
	Copyrig t(C) 2021 HIOKI E.E. CORPORATION. All rights reserved.

메인 페이지의 [More Information]을 클릭하면 본체, 유닛, 전류 센서의 제조번호, 교정일, 조정일 등의 상세 정 보를 확인할 수 있습니다.

### 4 [Control Mode] 또는 [Browsing Mode]를 선택한다

1대의 PW8001에 총 5대의 PC를 연결할 수 있습니다.

Control Mode	브라우저에서 본 기기의 화면, 조작 패널, LED의 점등 상황을 확인할 수 있습니다.
	으라우셔 상의 와면을 클릭하면 본 기기의 터지패널, 조작 패널과 같이 본 기기를 조작할 수 있습니다.
	XY 노브 상에 마우스 커서를 두고 마우스 휠을 조작하여 XY 노브를 조작할 수 있 습니다.
	표시 갱신 간격: 200 ms, 1 sec, 5 sec, 10 sec, 30 sec
Browsing Mode	브라우저에서 본 기기의 화면, 조작 패널, LED의 점등 상황을 확인할 수 있습니다.
	탭, 키 조작은 할 수 없습니다.
	1대의 PW8001에 4대의 PC를 동시에 연결할 수 있습니다.
	표시 갱신 간격: 200 ms, 1 sec, 5 sec, 10 sec, 30 sec

HIOKI PW8	001 Serie	es HTTP	SERVER										
REMOTE CONTR	OL PAGE												
Refresh Interval :	1s *											Do	wnload Capture
								\$6 1 2 3 \$6 5 6 7	le use	MEAS		SYSTEM	FILE
	CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8	<b>評</b>	1 2	3 4 5	н 67	8 AD EH
Unit	U7005	U7005	U7005	U7005	U7001	U7001	U7001	U7001					
Wiring	3P3	W2M		3P3W3M			3P4W		10 10				SAVE
l input	Pro	be1		Probe1			Probe1		COMMON	+	+	REMOTE /LOCAL	COPY
Rate	50A A	AC/DC		50A AC/DC			50A AC/DC		°/_	U			
Quick Set	Se	tup		Setup			Setup		Brichary	-	_	HOLD	DATA RESET
	Source	Load	Source		Load	Source		Load	- <u>@</u>	AUTO	AUTO	PEAK	START /STOP
	č					\$ <b></b> _					WAVEFOR	ANALYSIS	
	ug I			ug]		لوي ۱	لوي			~	∿ •.	× *	MANUAL
	UI 0.001kV 11 0.01 A	U2 0.000 kV 12 0.02 A	U3 0.001kV 13 0.01 A	U4 0.000kV 14 0.01 A	US 0.000kV 15 0.01 A	U6 0.000kV 16 0.02 A	U7 0.000 kV	UB 0.001kV 18 0.01 A	-			$\bigcirc$	SINGLE
	"		U			U			8 8		2	FAST J'SLOW	RUN /STOP



9

## 9.3 FTP 서버에서 데이터를 취득

FTP 서버 기능을 통해 PC에서 USB 메모리 내의 파일을 취득할 수 있습니다.

- 본 기기는 FTP(File-Transfer-Protocol, RFC959 준거) 서버를 탑재하고 있습니다.
- FTP 클라이언트로서 각종 무료 소프트웨어 등도 이용할 수 있습니다.
- FTP 클라이언트에 따라서는 파일 갱신 일시가 올바르게 표시되지 않을 수 있습니다.
- 본 기기의 FTP 서버 연결은 1대만 가능합니다. 여러 대의 PC에서 동시에 연결할 수 없습니다.
- FTP 연결 후, 1분 이상 아무런 커맨드를 보내지 않으면 FTP 연결이 끊기는 경우가 있습니다. 그러한 경우에는 FTP를 다시 연결해 주십시오.
- USB 메모리를 삽입 및 제거할 경우에는 일단 FTP 연결을 해제해 주십시오.
- FTP 동작 중에는 파일을 조작하지 마십시오.

FTP 서버 기능을 사용하기 위해서는 본 기기의 설정과 LAN 케이블로 본 기기와 PC를 연결해야 합니다. 참조: "9.1 LAN의 연결과 설정" (p.218)

#### 중요

PC의 FTP 클라이언트/브라우저에 따라서는 파일 또는 폴더 이동 중에 취소를 하면 선택했던 파일이나 폴더의 전송 완료 또는 미전송에 상관없이 전부 삭제해 버리는 소프트웨어가 있습니다. 이동할 때는 충분 히 주의해 주십시오. 복사(다운로드)한 후에 삭제할 것을 권장합니다.

#### FTP 서버 기능을 사용하기 전에 확인해 둘 사항

각 미디어와	각 미디어는 FTP 상에서 디렉터리로 인식됩니다.
디렉터리의 관계	/usb USB 메모리
제한	측정 중에는 파일에 액세스할 수 없습니다.

#### 본 기기의 FTP 서버에 액세스

예로, Windows 10에서 익스플로러 (File Explorer)를 이용한 경우에 대해 설명합니다. PC 상의 익스플로러를 기동한 후 주소란에 본 기기의 어드레스를 입력한다.

본 기기의 [HTTP/FTP server Authentication]에서 [ON]을 선택한 경우에는 사용자와 비밀번호를 입력하여 로그인해 주십시오. 제3자가 실수로 파일을 삭제하는 일이 없도록 사용자명과 비밀번호를 설정해 주십시오. 참조: "FTP 서버의 접속 제한(FTP 인증)" (p.227) [ftp:// 사용자명:비밀번호@ 본 기기의 IP 주소]

사용자명이 "HIOKI", 비밀번호가 "PW8001"인 경우 ftp://HIOKI:PW8001@192.168.0.2 라고 입력

본 기기의 IP 주소가 "192.168.0.2" 인 경우:

	· 1		(	
File Computer View		$\sim$	2	
← → × ✓ ( ftp://HIOKEPW8001@192.168.0.2)    →	РС			
본 기기의 미디어가 표시됩니다.				
👰   🔜 🖸 🗢   192.168.0.2				
File Home Share View				
$\leftarrow$ $\rightarrow$ $\checkmark$ $\clubsuit$ > The Internet > 192.168.0.2			~	ō
> 🖈 Quick access usb				
> ConeDrive				
> 📃 This PC				

#### 연결되지 않을 때

본 기기의 통신 설정을 확인해 주십시오. 참조: "9.1 LAN의 연결과 설정" (p.218)

#### FTP로 파일을 조작

#### 파일 다운로드

폴더 일람에서 다운로드하려는 파일을 선택한 후, 마우스로 다운로드할 위치(익스플로러(File Explorer) 바탕 화면의 데스크톱이나 폴더)로 드래그 & 드롭* 합니다.

*: 파일을 클릭한 상태로 원하는 장소로 이동한 후 손을 떼는 동작



파일의 타임스탬프(날짜)의 초 또는 시분초는 반영되지 않는 경우가 있습니다.

#### 파일 삭제

FTP의 폴더 일람에서 마우스로 파일을 선택하여 우클릭한 후, 풀다운 메뉴에서 [Delete]를 선택합니다.



#### FTP 서버의 접속 제한(FTP 인증)

HTTP/FTP 서버의 접속을 제한할 수 있습니다.

통상적으로 본 기기의 FTP 서버는 Anonymous 인증이므로 네트워크상의 모든 기기에서 액세스할 수 있 습니다.

FTP 서버로의 접속을 제한하기 위해서는 [HTTP/FTP server settings]를 유효로 한 후, 사용자명과 비밀번호를 설정해 주십시오.

제3자가 실수로 파일을 삭제하는 일이 없도록 사용자명과 비밀번호를 설정하여 접속을 제한하는 것을 권장합니다.

#### 표시 화면 [SYSTEM] > [COM]

			1234 2011
Ethernet	DHCP IPv4 address Subnet mask Default gateway MAC address	OFF 192.168. 1. 1 255.255.255.00 0. 0. 0. 0 12:34:56:78:9A:BC	HTTP/FTP server Authentication: OFF Setup FTP Client Automatic data uploads: ON Setup
GP-IB	Address	1	
RS-232C	Host Baud rate	RS-232C 115200 bps	

021-10-22 14:48:09			****	H U58
Ethernet	HTTP/FTP server settin Authentication Username Password		HTTP/FTP server     Authentication: OFF     Setup     FTP client     Automatic data uploads: OFF     Setup	×: •) [%] •! <
GP-IB	Address	1		
RS-232C	Host Baud rate	RS-232C 115200 bps		
				े ह

- [HTTP/FTP server] 박스의 [Setup]을 탭하여 설정 창을 연다
- 2 [Authentication] 박스를 탭하여 [ON]을 선택한다
- 3 [Username] 박스를 탭하여 텐 키 창에서 사용자명을 설정한다 (반각 영숫자 12문자까지)
- 4 [Password] 박스를 탭하여 텐 키 창에서 비밀번호를 설정한다 (반각 영숫자 12문자까지)
- **5** [Apply] 를 탭하여 확정한다

## 9.4 FTP 클라이언트로 데이터를 송신

본 기기의 미디어(USB 메모리)에 저장한 파일을 PC의 FTP 서버로 송신할 수 있습니다. 본 기기에서 FTP 서버가 동작하고 있는 PC의 IP 주소를 지정합니다. 그 후, PC의 FTP 서버에 본 기기의 사용자명과 비밀번호를 등록해 주십시오. FTP 서버는 Windows[®]의 FTP 서버 등을 이용할 수 있습니다.

Tips USB 메모리의 여유 용량이 부족한 상황에서 데이터 송신을 계속하고자 하는 경우에는

[SYSTEM] > [COM] 화면에서 [Delete files after upload]를 [ON]으로 설정해 주십시오. FTP 서버로 파일을 송신한 후, 본 기기의 파일을 삭제합니다.

데이터의 송신 방법에는 자동 송신과 수동 송신이 있습니다. 참조: "수동 송신의 순서" (p.232)

## 자동 송신의 설정

본 기기의 미디어에 저장한 파일을 PC의 FTP 서버로 자동으로 송신할 수 있습니다. FTP 서버 192.168.1.1로 데이터를 송신할 경우를 예로 들어 설명합니다.



(예: 192.168.1.2)



FTP 서버 PC (예: 192.168.1.1)

#### 조작 순서

- **1** 본 기기에서 LAN 설정 및 연결을 한다 참조: "9.1 LAN의 연결과 설정" (p.218)
- 2 수신측 (PC)에서 FTP 서버를 설정한다
- 3 본 기기에서 FTP 자동 송신을 조작한다
- 4 본 기기에서 자동 저장을 설정한다 참조: "자동 송신의 설정" (p.228)
- 5 본 기기에서 측정을 시작한다
   본 기기가 자동 저장을 종료하면 PC의 FTP 서버로 파일을 자동으로 송신합니다.
- 6 본 기기와 PC의 통신 상태를 확인한다 참조: "FTP 통신 상태의 확인" (p.231)

thernet	DHCP		OFF		HTTP/FTP serv	er	
	IPv4 address		.92.168. 1.	1	Authentication	: OFF	
	Subnet mask		55. 255. 255.	0	Setup		
	Default gateway		0. 0. 0.	0	FTP client		
	MAC address	1	2:34:56:78:9/	A:BC	Setup	1 1 1 1 1 1 1 1 1 1 1 1 1 1	
P-IB	Address		1				
S-232C	Host	R	5-232C				
	Baud rate		115200 bp	s			
14:16:02 W	detand and settings					*	)4
14:16:02 M	ant settings	ON		Filenar	ne extension	*	)4
FTP clie Automa FTP see	ent settings atic file upload	ON 192.168.1	21	Filenar Seria	ne extension	* N	)4
FTP clie Automa FTP ser Port	ent settings atic file upload	ол 192.168.1 21	.21	Filenar Seria IP ad	ne extension I number		) 4
H43602 B FTP clie Automa FTP see Port Userna	ent settings ent settings entic file upload vver	ON 192.168.1 21 ONE_FT	.21 P	Filenar Seria IP ad Time	ne extension I number dress and date	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	)4
14:16:02 16 FTP cli Autom FTP see Port Userna Passwo	ent settings ent settings tric file upload ver me rrd	ON 192.168.1 21 ONE_FT	.21 ₽	Filenar Seria IP ad Time FTP co	ne extension I number dress and date mmunications st		) 4
H116-02 10 FTP clin Automa FTP see Port Userna Passwo Destina	ent settings ent settings ver me rd tion directory	ON 192.168.1 21 ONE_FT ●●●●	P	Filenar Seria IP ad Time FTP co Total I	ne extension I number dress and date mmunications str iles 0	ON ON ON ON ON	) 4
FTP clin Automa FTP see Port Userna Passive Passive	enternal ent settings titic file upload ver me me tition directory mode	ON 192.168.1 21 ONE_FT OFF	P ●	Filenar Seria IP ad Time FTP co Total I Seri	ne extension I number dress and date mmunications st. iles 0 0	ON ON ON ON ON	) 4
FTP clia Autom. FTP ser Port Userna Passwc Destina Passive Delete	ettor) ent settings atic file upload ver me rd tion directory mode files after upload	ON 192.168.1 21 ONE_FT OFF OFF	21 P	Filenar Seria IP ad Time FTP co Total 1 Sent Failed Unser	ne extension I number dress and date mmunications sta illes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CN ON ON ON ON ON ON ON ON ON ON ON ON ON	)4
FTP cli Automa FTP ser Port Userna Passwe Destina Passive Delete	ent settings ent settings titic file upload ver me rrd tion directory mode files after upload	ON 192.168.1 21 ONE_FT OFF OFF	P ●	Filenar Seria IP ad Time FTP co Total f Sent Failed Unser	ne extension I number dress and date mmunications str iles 0 0 t 0 c l Test Upload	CN CN CN CN CN CN CN CN CN CN CN CN CN C	)4

#### 표시 화면 [SYSTEM] > [COM]

- [FTP Client] 박스의 [Setup]을 탭하여 설 정 창을 연다
- 2 [FTP Client settings]의 각 항목을 설정 한다
- FTP의 설정을 완료한 후, [Text Upload]
   를 탭한다
   참조: "파일 송신 테스트" (p.230)
- **4** [×]를 탭하여 설정 창을 닫는다

FTP	클라이	언트의	설정
-----	-----	-----	----

항목	선택 항목	내용
Automatic file upload	ON 또는 OFF	
FTP server	반각 45문자 이내의 문자열 예1: FTPSERVER 예2: 192.168.1.1	FTP 서버의 호스트명 또는 IP 주소를 설정합니다.
Port	1~65535	FTP 서버의 포트 번호를 설정합니다.
Username	반각 32 문자 이내의 문자열 예: HIOKI	FTP 서버에 로그인하기 위한 사용자명을 설정합니 다.
Password	반각 32 문자 이내의 문자열 예:PW8001	FTP 서버에 로그인하기 위한 비밀번호를 설정합니 다. 비밀번호는 [●●●●●]라고 표시됩니다.
Destination directory	반각 <b>45</b> 문자 이내의 문자열 예 : data	데이터를 저장할 FTP 서버상의 디렉터리를 지정합 니다.
Passive mode	ON 또는 OFF	통신 시에 PASV 모드를 사용할지를 선택합니다.
Delete files after upload	ON 또는 OFF	송신 성공 후에 송신원의 파일을 삭제합니다.
Filename extension Serial number IP address Time and date	ON 또는 OFF	체크한 박스의 식별명이 파일명에 추가됩니다.

#### 파일명의 예

다음의 설정에서 [Serial number], [IP address], [Time and date]의 박스를 [ON]으로 했을 때의 파일명은 [123456789_192-168-1-2_210110-123005_01100000.CSV]가 됩니다.

복수의 전력계를 사용한 경우에 파일을 식별할 수 있습니다.

Serial number 123456789		Time and date	21-01-10 12:30:05	
IP address	192.168.1.2	Auto-save file name	01100000.CSV	

#### 파일 송신 테스트

FTP로 파일을 송신할 수 있는지를 확인합니다.

#### 표시 화면 [SYSTEM] > [COM]





#### [FTP client] 박스의 [Setup]을 탭하여 설 정 창을 연다

[Filename extension]에서 체크 박스를 선택 한 식별명이 테스트 파일명에 추가됩니다.

#### 2 [Text Upload]를 탭한다

테스트용 파일 [FTP_TEST.TXT]를 [Destination directory]로 지정한 폴더로 송 신합니다. [PASS]가 표시되면 송신은 성공입니다. [FAIL]이 표시되면 송신은 실패입니다.

테스트용 파일의 송신이 되지 않는 경우에는 본 기 기의 자동 송신 설정과 PC의 FTP 설정을 확인해 주십시오.

3 송신 테스트의 결과가 [PASS]인 경우에는 측정을 시작한다

본 기기는 측정한 파형 데이터를 FTP 서버로 자동 송신합니다.

#### 자동 송신되는 파일

다음의 파일이 작성 후 자동 송신됩니다.

- 자동 저장 파일
- 설정 파일
- 파형 파일
- 화면 복사 파일

#### 데이터 송신 시간

전송 시간(초) = 파일 크기(KB) / 전송 속도(KB/초) + 전송 준비 시간(초) 파일 크기에 대해서는 "기록 가능 시간과 데이터" (p.166)를 참조해 주십시오. 전송 속도는 4 MB/초, 전송 준비 시간은 3초를 기준으로 해주십시오. 예: 파일 크기가 40 MB인 경우 전송 시간 = 40 MB/4 (MB/초) + 3 (초) = 10 + 3 (초) = 13 (초)

#### FTP 통신 상태의 확인

FTP의 통신 상태를 확인할 수 있습니다. FTP로 송신한 파일 수, 송신에 실패한 수 등이 표시됩니다.

#### 표시 화면 [SYSTEM] > [COM]



 
 1
 [FTP client] 박스의 [Setup]을 탭하여 설 정 창을 연다

- * Eth Automatic file upload × FTP server Serial numbe IP address Username Time and date z .... Password TP cor ns status 2 Destination dir Total files GP-Passive mode Sent 0 RS- Delete files after Failed Unsent Test Upload PASS
- 2 [FTP communications status]에서 파 일 수를 확인한다

다음의 타이밍에서 카운트가 0으로 리셋됩니다.

- [Clear]를 탭했을 때
- 전원을 재투입했을 때

파일 송신에 1회 실패하면 미송신의 카운트가 +1 됩니다. 일정 시간 후에 파일이 재송신되며, 이때 미송신 의 카운트가 -1 됩니다. 이 파일 송신에 성공하면 성공의 카운트가 +1, 실패하면 실패의 카운트가 +1 됩니 다.

[Clear]를 탭하면 모든 카운트가 0으로 리셋되며, 미송신 파일도 재송신되지 않습니다.

## 수동 송신의 순서

본 기기의 미디어에 저장한 파일을 임의의 타이밍에 PC의 FTP 서버로 송신할 수 있습니다. 수동 송신할 수 있는 것은 파일뿐입니다. 폴더는 대상이 아닙니다.

#### 조작 순서

- 본 기기에서 LAN 설정 및 연결을 한다

   참조: "9.1 LAN의 연결과 설정" (p.218)
- 2 수신측 (PC)에서 FTP 서버를 설정한다
- 3 본 기기에서 FTP 클라이언트를 설정한다 참조: "9.4 FTP 클라이언트로 데이터를 송신" (p.228)
- 4 [FILE] 화면에서 FTP 송신을 실행한다 참조: "파일의 수동 전송(FTP 서버에 업로드)" (p.178)

#### 표시 화면 [FILE]





- 1 송신할 파일을 탭한다
- **2** [FTP send]를 탭하여 설정 창을 연다

- **3 FTP 클라이언트를 설정한다** 참조: "자동 송신의 설정" (p.228)
- 4 [Send]를 탭한다

설정된 FTP 서버로 파일이 전송됩니다.

## 9.5 FTP 서버 마운트 기능

PC의 FTP 서버와 통신하여 본 기기에서 작성할 수 있는 일부 파일을 미디어(USB 메모리)를 통하지 않고 직접 FTP 서버 내에 작성할 수 있습니다. 또한, FTP 서버 내의 설정 파일을 본 기기로 불러올 수도 있습니다.

본 기능을 사용하기 전에 FTP 서버에 본 기기의 사용자명과 비밀번호를 등록해 주십시오. FTP 서버는 Windows[®]의 FTP 서버 등을 이용할 수 있습니다.

#### FTP 서버에 파일 저장 시의 설정

본 기기의 미디어를 통하지 않고 직접 FTP 서버 내에 파일을 작성할 수 있습니다. FTP 서버 192.168.1.1로 데이터를 송신할 경우를 예로 들어 설명합니다.



(예: 192.168.1.2)

FTP 서버 PC (예: 192.168.1.1)

FTP 서버에 작성할 수 있는 파일은 설정 파일과 화면 복사 파일로 제한됩니다. 그 이외의 파일은 본 기기의 미디어에 작성됩니다.

#### 조작 순서

- 1
   본 기기에서 LAN 설정 및 연결을 한다

   참조: "9.1 LAN의 연결과 설정" (p.218)
- 2 수신측(PC)에서 FTP 서버를 설정한다
- 3
   본 기기에서 FTP 서버에 파일 저장 시의 설정을 한다

   참조: "FTP 클라이언트의 설정" (p.234)
- 4 본 기기에서 설정 파일 또는 화면 복사 파일을 작성한다

#### 표시 화면 [SYSTEM] > [DATA SAVE]





 1 [Save to FTP server] 박스를 탭하여

 [ON]을 선택한다

2 [Setup]을 탭한다 설정 창이 표시됩니다.

- 3 [FTP client settings]의 각 항목을 설정 한다
- 4
   FTP 클라이언트의 설정을 완료한 후,

   [Test Connect]를 탭한다

   통신이 성공하면 [PASS]가 표시됩니다.
- **5** [×]를 탭하여 설정 창을 닫는다

항목	선택 항목	내용
FTP server	반각 45문자 이내의 문자열 예1: FTPSERVER 예2: 192.168.1.1	FTP 서버의 호스트명 또는 IP 주소를 설정합니다.
Port	1~65535	FTP 서버의 포트 번호를 설정합니다.
Username	반각 32문자 이내의 문자열 예 : HIOKI	FTP 서버에 로그인하기 위한 사용자명을 설정합니 다.
Password	반각 32 문자 이내의 문자열 예:PW8001	FTP 서버에 로그인하기 위한 비밀번호를 설정합니 다. 비밀번호는 [●●●●●]라고 표시됩니다.

FTP 클라이언트로 파일을 자동 송신할 때의 설정과 동일합니다.

#### 작성되는 파일의 저장 폴더

FTP 서버에 작성되는 파일의 저장 폴더는 파일 종류에 따라 다릅니다.

파일 종류	저장 폴더
본 기기 설정 파일(확장자는 SET)	[FILE] 화면에 표시되고 있는 FTP 서버의 폴더 [Save setting]을 탭한 후, 파일명을 입력하여 작성한다
UDF(사용자 정의 연산)설정 파일 (확장자는 JSON) CAN 데이터베이스 설정 파일 (확장자는 DBC)	수동 저장 설정의 저장 위치에서 지정된 폴더
화면 복사 파일	화면 복사 설정의 저장 위치에서 지정된 폴더

#### FTP 서버에서 설정 파일 불러오기

FTP 서버 내의 설정 파일을 불러와서 설정을 복원합니다.

#### 표시 화면 [FILE]

2022-0 UTTUT	8-22 13:38:25 WideBand Solo (Coloritoria) (Coloritoria) Solo (Coloritoria) (Coloritoria)				****	USB
$\langle \langle \rangle$	□ 💮 FTP/HIOKI/PW8001				×	
No	. Name	Туре	Date	FileSize		
1	0817	FOLDER	2022-08-17 17:14		Make folder	***
2	0818	FOLDER	2022-08-18 12:21		Delete	5
3	0822	FOLDER	2022-08-22 13:36			5
4	PW8001 ISON	ISON	2022-08-05 21-52	28.65 kB	Rename	
5	SETTING.SET	SET	2022-08-02 10:35	161.0 kB	Save setting	
	<u></u>				Load setting	
					<u></u>	
						Decr
						m.

- 1
   [Save to FTP server]의 [Setup]을 탭 하여 통신처 FTP 서버를 설정한다 참조: "FTP 클라이언트의 설정" (p.234)
- 2 [FTP] 아이콘을 탭한다
- 3 설정 파일을 탭하여 선택한다
- 4 [Load setting]을 탭한다

확인 다이얼로그가 표시됩니다.

5 [Yes]를 탭한다

설정을 복원하는 경우는 옵션 등의 조합이 동일해 야 합니다. 동일하지 않은 경우는 실행되지 않습니 다.

## 9.6 통신 커맨드에 의한 제어

PC에서 통신 커맨드를 송신하여 본 기기의 제어 및 통신을 할 수 있습니다. 본 기기와 PC는 RS-232C, GP-IB 또는 LAN으로 연결합니다.

통신 커맨드의 상세는 통신 커맨드 사용설명서를 참조해 주십시오.

통신 커맨드에 의한 제어 중에는 HTTP 서버를 통한 원격 조작이나 GENNECT One을 통한 제어는 하 지 않도록 해주십시오. 복수의 제어를 동시에 하는 경우, 통신이 정지하는 등 오작동의 원인이 됩니다.

## 9.7 GP-IB의 연결과 설정

본 기기는 GP-IB 인터페이스를 표준 장착하고 있습니다. 본 기기와 PC를 GP-IB 케이블로 연결하여 사용합니다.

참조: "인터페이스의 기능 일람" (p.217)

## GP-IB 케이블의 연결

본 기기의 GP-IB 커넥터에 GP-IB 케이블을 연결합니다.



#### 중요

GP-IB 사용 시에는 LAN 및 RS-232C를 사용하지 마십시오. 복수의 인터페이스를 동시에 사용하는 경우, 통신이 정지하는 등 오동작의 원인이 됩니다.

#### GP-IB의 연결 방법



9

#### GP-IB에 대해서

- IEEE-488-2 1987 공통 커맨드(필수)를 사용할 수 있습니다.
- 다음 규격에 준거합니다. (준거 규격 IEEE-488.1 1987*¹)
- 다음 규격을 참고로 설계되었습니다. (참고 규격 IEEE-488.2 1987*²) 상세는 통신 커맨드 사용설명서를 참조해 주십시오.
- *1: ANSI/IEEE Standard 488.1-1987, IEEE Standard Digital Interface for Programmable Instrumentation (ANSI/IEEE 규격 488.1-1987. IEEE 규격에 의한 프로그램 가능 계측기 디지털 인터페이 스)
- *2 : ANSI/IEEE Standard 488.2-1987, IEEE Standard Codes, Formats, Protocols, and Common Commands

(ANSI/IEEE 규격 488.2-1987. IEEE 규격에 의한 코드, 포맷, 프로토콜, 공통 커맨드)

### GP-IB 어드레스의 설정

GP-IB 인터페이스를 사용하기 전에 설정해 주십시오.

#### 표시 화면 [SYSTEM] > [COM]



1 [Address] 박스를 탭하여 텐 키로 어드레스 를 설정한다

. . . . . . . . . . . . . . . . .

0~30

### 리모트 컨트롤의 해제

**REMOTE/LOCAL** 키가 점등하고 있는 상태에서 **REMOTE/LOCAL** 키를 누르면 리모트 컨트롤을 해 제할 수 있습니다.

#### 키의 상태

REMOTE / LOCAL (빨간색 점등)	리모트 컨트롤 상태(원격 조작 상태) REMOTE/LOCAL 키 이외의 키 조작은 할 수 없습니다.
REMOTE / LOCAL (소등)	키 조작이 유효합니다.

## 9.8 RS-232C의 연결과 설정

본 기기는 RS-232C 인터페이스를 표준 장착하고 있습니다. 본 기기와 PC를 RS-232C로 연결하여 사용 합니다.

참조: "인터페이스의 기능 일람" (p.217)

## RS-232C 케이블의 연결

본 기기의 RS-232C 커넥터에 RS-232C 케이블을 연결합니다.



#### 중요

RS-232C 사용 시에는 LAN 및 GP-IB를 사용하지 마십시오. 복수의 인터페이스를 동시에 사용하는 경 우, 통신이 정지하는 등 오동작의 원인이 됩니다.

#### RS-232C의 연결 방법



- 1 본 기기의 D-sub 9pin 커넥터에 RS-232C 케이블을 연결한 후 나사로 고정한다
- 2 컨트롤러의 통신 프로토콜을 다음과 같이 설정한다(본 기기와 동일한 설정)

통신 방식	조보동기식		정지 비트	1비트
	9600 bps, 19200 bps, 38400 bps,		데이터 길이	8비트
통신 속도	57600 bps, 115200 bps		패리티 체크	없음
	(본 기기의 설정에 맞춘다)		흐름 제어	없음

#### 중요

- 컨트롤러 (DTE)와 연결할 때는 본 기기 측 커넥터와 컨트롤러 측 커넥터의 사양에 맞는 크로스 케이블 을 준비해 주십시오.
- USB-시리얼 케이블을 사용할 때는 Gender Changer, 스트레이트 크로스 변환기가 필요해질 수 있 습니다. 본 기기의 커넥터와 USB-시리얼 케이블 커넥터의 사양에 맞춰 적절하게 준비해 주십시오.

입출력 커넥터는 터미널(DTE) 사양입니다.

본 기기에서는 핀 번호 2, 3, 5, 7, 8을 사용하고 있습니다. 그 밖의 핀은 사용되지 않습니다.

핀 번호	상호 연결 회로 명칭		CCIT 회로 번호	EIA 약호	JIS 약호	관용 약호
1	데이터 채널 수신 캐리어 검출	Carrier Detect	109	CF	CD	DCD
2	수신 데이터	Receive Data	104	BB	RD	RxD
3	송신 데이터	Send Data	103	BA	SD	TxD
4	데이터 단말 레디	Data Terminal Ready	108/2	CD	ER	DTR
5	신호용 접지	Signal Ground	102	AB	SG	GND
6	데이터 세트 레디	DATA Set Ready	107	CC	DR	DSR
7	송신 요구	Request to Send	105	CA	RS	RTS
8	송신 가능	Clear to Send	106	СВ	CS	CTS
9	피호 표시	Ring Indicator	125	CE	CI	RI

#### 본 기기와 PC 를 연결하는 경우

D-sub 9핀 female- D-sub 9핀 female의 크로스 케이블을 사용합니다. 권장 케이블: 9637 RS-232C 케이블(1.8 m, 9-9 pin, 크로스 케이블)

#### 크로스 결선

D-sub 9 핀 female PW8001 측				D-sub 9 핀 female PC/AT 호환기		
	Pin No.				Pin No.	
DCD	1			- 1	DCD	
RxD	2	$ \rightarrow $	$\square$	2	RxD	
TxD	3	$\vdash$	$\overline{/}$	- 3	TxD	
DTR	4	$ \vdash  $	$\langle -$	- 4	DTR	
GND	5	$\rightarrow$		- 5	GND	
DSR	6	$\vdash$		- 6	DSR	
RTS	7	$\square$		- 7	RTS	
CTS	8	]]		- 8	CTS	
RI	9			9	RI	

## 사양

• • •	••	•	• •	•	• •	٠	• •	•	• •	•	• •	٠	• •	•	• •	•	•	• •	•	•	• •	• •	٠	• •	•	•	• •	• •	٠	• •	• •	٠	• •	•	•	•	٠	• •	•	• •	• •	•	• •	•	•	• •	•	• •	٠	• •	

통신 방식	전이중 조보동기식
통신 속도	9600 bps, 19200 bps, 38400 bps, 57600 bps, 115200 bps
데이터 길이	8비트
패리티	없음
정지 비트	1비트
메시지 종료 프로그램 (구분 문자)	수신 시: CR+LF 송신 시: CR+LF
흐름 제어	없음
전기적 사양 입력 전압 레벨 출력 전압 레벨	5~15 V: ON, -15 ~ -5 V: OFF +5 V 이상: ON, -5 V 이하: OFF
커넥터	인터페이스 커넥터의 핀 배치 (D-sub 9 핀 male 감합 고정대 나사 #4-40) 입출력 커넥터는 터미널 (DTE) 사양 권장 케이블: 9637 RS-232C 케이블 (PC용) USB-시리얼 변환기를 사용해 PC와 연결하는 경우는 Gender Changer (암수 변환기), 스트레이트-크로스 변환기가 필요해질 수 있습니다.

사용 문자 코드: ASCII 코드

9

### 통신 속도의 설정

본 기기의 D-sub 9pin 커넥터는 RS-232C 인터페이스와 외부 제어 인터페이스로 전환하여 사용할 수 있습니다.

#### 표시 화면 [SYSTEM] > [COM]

Ethernet	DHCP	OFF	HTTP/FTP server
	IPv4 address	192.168. 1. 1	Authentication: OFF
	Subnet mask	255. 255. 255. 0	Setup
	Default gateway	0. 0. 0. 0	FTP client
	MAC address	12:34:56:78:9A:BC	Automatic data uploads: OFF Setup
GP-IB	Address	1	
RS-232C	Host	RS-232C	
	Baud rate	115200 bps	
	_		

## 1 [Host] 박스를 탭하여 일람에서 [RS-232C] 를 선택한다

RS-232C	RS232C 인터페이스로서 기능합니 다. 외부 기기와 연결하여 통신 커맨드 를 통해 본 기기를 제어할 수 있습니 다.
EXT Ctrl	외부 제어 인터페이스로서 기능합니 다. 외부 기기와 연결하여 로직 신호 또 는 단락/개방의 접점 신호를 통해 본 기기를 제어할 수 있습니다. 참조: "8.3 외부 신호로 적산을 제 어" (p.204)

2 [Baud rate] 박스를 탭하여 일람에서 통신 속도를 선택한다

9600 bps, 19200 bps, 38400 bps, 57600 bps, 115200 bps

## 9.9 GENNECT One (PC 애플리케이션 소프트)

GENNECT One은 본 기기와 PC를 LAN으로 연결하여 실시간으로 측정치를 관측하거나 측정 파일을 취득하기 위한 애플리케이션 소프트웨어입니다.

GENNECT One에 의한 제어 중에는 HTTP 서버를 통한 원격 조작이나 통신 커맨드를 통한 제어는 하 지 않도록 해주십시오. 복수의 제어를 동시에 하는 경우, 통신이 정지하는 등 오작동의 원인이 됩니다.

#### 주요 기능

로깅	LAN으로 연결한 측정기의 측정치를 지정한 간격으로 로깅하여 실시간으로 그래프 표시 및 리스트 표시할 수 있습니다.
대시보드	임의의 배경 이미지 상에 측정치를 배치하여 측정 상황을 시각적으로 알기 쉽게 모니 터하는 기능입니다. 측정 항목에 역치를 설정한 후, 측정치가 역치 범위를 넘은 경우 에 알람 정보를 PC에 저장할 수 있습니다.
원격 조작	LAN으로 연결한 측정기 본체의 HTTP 서버 기능을 이용하여 측정기를 조작하는 기 능입니다.
파일 취득 자동 파일 전송	측정기의 외부 스토리지나 외부 미디어로부터 파일을 취득할 수 있습니다. 측정기 – PC 간에 FTP 기능을 사용하여 측정기가 작성한 파일을 PC에서 수신할 수 있습니다. 당사의 타 측정기의 측정치 데이터와 함께 사용할 수도 있습니다. GENNECT One 대응 기종은 당사 홈페이지를 확인해 주십시오.

자세한 내용은 GENNECT One 스페셜 사이트를 참조해 주십시오. 최신 버전은 당사 홈페이지에서 다운로드할 수 있습니다.

#### 설치

## 부속 CD의 내용

setup.exe

파일명	파일에 관한 설명
Readme_Jpn.pdf	GENNECT One에 관한 설명(일본어)
Readme Eng.pdf	GENNECT One에 관한 설명(영어)

#### 동작 환경

대응 <b>OS</b>	Windows 8.1 (32비트 / 64비트) Windows 10 (32비트 / 64비트)
	Windows 11
소프트웨어 환경	Microsoft .NET Framework 4.6.2 이후
CPU	동작 클럭 2 GHz 이상
메모리	4 GB 이상
디스플레이	해상도 1366×768 도트 이상
하드 디스크	여유 용량 1 GB 이상
CD-ROM 드라이브	설치 시에 사용

GENNECT One 설치 프로그램

자세한 사용 방법에 대해서는 "GENNECT One User's manual(PDF)"을 참조해 주십시오. GENNECT One의 Information 메뉴에서 Help를 선택하면 표시됩니다.

#### 설치 순서

화면 예: Windows 10

### 

**1** PC를 기동한다

설치하려면 관리자 권한(Administrator)이 필요할 수 있습니다.

- 2 부속 CD를 CD-ROM 드라이브에 넣는다
- 3 시작 메뉴에서 Explorer를 클릭하여 익스플로 러를 기동한다
- 4 [PC]를 클릭한 후 CD-ROM Drive를 더블클 릭한다



🖉   🔁 📕 🗧   CD-ROM Drive (E:) HIG	ОКІ
File Home Share View	
$\leftarrow$ $\rightarrow$ $\checkmark$ $\uparrow$ $\bigcirc$ $\Rightarrow$ This PC $\Rightarrow$ CC	D-ROM Drive (E:) HIOKI >
	Name
🖈 Quick access	Ivame
	GENNECT One
Oneblive	
🥌 This PC	
CD-ROM Drive (E:) HIOKI	5 더블클릭
🖤 Network	



5 [GENNECT One] 폴더를 더블클릭한다

6 [setup.exe] (SET UP 파일)을 더블클릭한다

## 9.10 Modbus/TCP 서버 통신으로 제어와 데이터를 취득

#### Modbus/TCP 통신 기능의 개요

Modbus는 PLC(프로그래머블 로직 컨트롤러) 등의 시퀀서용으로 개발된 통신 규격입니다. 레지스터의 읽기나 쓰기를 통해서 데이터의 취득 및 접속 기기의 제어가 가능합니다. 이더넷으로 TCP/IP 프로토콜을 사용하여 통신하는 것을 Modbus/TCP 통신이라고 부릅니다.

본 기기의 Modbus/TCP 통신 기능은 연결한 외부기기(클라이언트 기능)로부터 송신된 커맨드에 응답하 는 서버 기능을 가집니다. 이 기능을 사용함으로써 본 기기의 제어 및 측정 데이터의 실시간 취득이 가능해 집니다.

## 연결 방법

본 기기의 RJ-45 커넥터(기가비트 이더넷)에 LAN 케이블을 연결하여 Modbus 클라이언트 기기와 연결 합니다.

참조: "9.1 LAN의 연결과 설정" (p.218)

. . . . . . . . . . . . .

### Modbus 사양

기능	Modbus/TCP 서버
IPv4 주소	현재 설정 중인 IPv4 주소 (설정 변경 및 확인은 "9.1 LAN의 연결과 설정" (p.218)을 참조)
포트 번호	502 (고정)
서버 주소	1 (고정)
대응 기능 코드	(0x03) 보유 레지스터 읽어오기 (0x04) 입력 레지스터 읽어오기 (0x06) 보유 레지스터에 쓰기

레지스터의 할당에 대해서는 별책 "Modbus/TCP Communication Instruction Manual"을 참조해 주십시오.

9

# 10 사양

## 10.1 일반 사양

사용 장소	실내, 오염도 2, 고도 2000 m까지
사용 온습도 범위	0°C~40°C, 80% RH 이하(결로 없을 것)
보관 온습도 범위	-10°C~50°C, 80% RH 이하(결로 없을 것)
방진성, 방수성	IP20(EN 60529) 본 기기의 외장에 의한 보호 등급 (EN60529에 따름 )은 *IP20입니다.
적합 규격	안전성 EN 61010 EMC EN 61326 Class A
준거 규격	IEC 측정 모드 시: IEC 61000-4-7:2002 준거 IEC 측정 모드 시: IEC 61000-4-15:2010 준거
전원	상용 전원 정격 전원 전압: AC 100 V~240 V (정격 전원 전압에 대해 ±10%의 전압 변동을 고려하고 있습니다) 정격 전원 주파수: 50 Hz, 60 Hz 예상되는 과도 과전압: 2500 V 최대 정격 전력: 230 VA
백업 전지 수명	리튬 전지 약 10년(23°C 참고치) 시계, 설정 조건
외형 치수	약 430W × 221H × 361D mm (돌기물 비포함)
질량	약 14 kg (PW8001-15에 U7001×4대, U7005×4대를 실장하였을 경우)
제품 보증기간	3년간(실장 입력 유닛도 포함)
정확도 보증 조건	정확도 보증 기간: 12개월 (U7001, U7005의 전압, 전류, 전력과 모터 해석 옵션의 전압 정확도의 정확도 보증 기간은 6개 월, 12개월 정확도는 각 정확도 사양의 판독값 오차를 1.5배로 한다)
	정확도 보증 온습도 범위: 23°C ±3°C, 80% RH 이하 웜업 시간: 30분 이상 기타: 유효 측정 범위 이내, 정현파 입력 또는 DC 입력, 대지간 전압 0 V, 영점 조정 후 및 영점 조정했을 때부터의 주위 온도 변화가 ±1°C 이내
부속품	참조: p.9
옵션	참조: p.10

#### *IP20

외장에 의한 위험한 부분으로의 접근, 외래 고형물의 침입, 물의 침입에 대한 보호 등급을 나타냅니다.

2: 손가락으로 위험한 부분에 접근하는 것에 대해 보호되고 있다. 외장 내의 기구가 12.5 mm 이상 크기의 외래 고형물에 대해 보호되고 있다.

0: 외장 내의 기구가 물에 대해 유해한 영향이 없도록 보호되고 있지 않다.

사 양

## 10.2 입력 사양/출력 사양/측정 사양

## 기본 사양

#### (1) 전압, 전류, 전력 측정 공통 사양

입력 유닛 수	최대 8유닛(입력 유닛 혼재 가능)
입력 유닛 종류	U7001 2.5MS/s 입력 유닛 U7005 15MS/s 입력 유닛
입력 유닛 장착 방법	입력 유닛 혼재 시, CH1측에 U7005 15 MS/s 입력 유닛을 모두 장착한다.
측정 라인	단상 2 선 (1P2W), 단상 3 선 (1P3W), 3 상 3 선 (3P3W2M, 3V3A, 3P3W3M), 3 상 4 선 (3P4W)
결선 설정	탑재된 입력 유닛을 임의의 결선 채널로 설정 가능 (단, 동일 결선 내에는 이웃하는 입력 유닛만 가능) 동일 결선 내의 입력 유닛 혼재는 가능 동일 결선 내의 전류 센서 혼재는 불가
측정 방식	전압 전류 동시 디지털 샘플링 제로 크로스 동기 연산 방식
샘플링	U7001: 2.5 MHz, 16비트 U7005: 15 MHz, 18비트
유효 측정 범위	1% of range ~ 110% of range
전도성 무선 주파 전자 계의 영향	10 V에서 전류, 유효전력 6% of full scale 이하 (full scale은 센서 정격, 9272-05 사용 시에만)
방사성 무선 주파 전자 계의 영향	10 V/m에서 전류 , 유효전력 6% of full scale 이하 (full scale은 센서 정격 , 9272-05 사용 시에만 )
표시 범위	참조: "10.4 측정 항목 상세 사양" (p.274)
측정 모드	광대역 측정 모드, IEC 측정 모드
데이터 갱신율	1 ms, 10 ms, 50 ms, 200 ms 고조파의 데이터 갱신율은 별도로 규정한다. 데이터 갱신율을 1 ms로 설정할 경우에는 애버리지와 사용자 정의 연산은 사용 불가. IEC 측정 모드 선택 시에는 데이터 갱신율을 약 200 ms로 고정한다. (50 Hz일 때는 10파, 60 Hz일 때는 12파)
LPF	컷오프 주파수 fc         U7001:         500 Hz, 1 kHz, 5 kHz, 10 kHz, 50 kHz, 100 kHz, 500 kHz, OFF         (500 kHz는 아날로그 회로 LPF)         U7005:         500 Hz, 1 kHz, 5 kHz, 10 kHz, 50 kHz, 100 kHz, 500 kHz, 2 MHz, OFF         (2 MHz는 아날로그 회로 LPF)         아날로그 LPF + 디지털 LPF         OFF 이외일 때는 정확도에 ±0.05% of reading을 가산한다.         설정 컷오프 주파수의 1/10 이하 주파수로 정확도 사양을 규정한다.         피크치는 LPF 통과 후의 값을 사용하고, 피크 오버 판정은 디지털 LPF 통과 전의 값으로 판정한         다.

동기 소스	U1~U8, I1~I8, D	C (DC는 데이터 갱신율로 고정)						
	PW8001-1x 모터 해석 옵션 장착 시							
	Ext1~Ext4:	아래 채널의 입력 설정이 Speed (펄스 입력)이면서 (펄스 수 / (극수/2))의 나머지가 0일 때 Ext1: CH B, Ext2: CH D, Ext3: CH F, Ext4: CH H						
	Zph1:	CH D의 입력 설정이 Origin (펄스 입력)일 때						
	Zph3:	CH H의 입력 설정이 Origin (펄스 입력)일 때						
	CH B, D, F, H:	해당 CH의 동작 모드가 <b>[Individual input]</b> 모드일 때						
	• 결선별로 선택 가· • U 또는 I 선택 시( • IEC 측정 모드 선	능(동일 채널의 U/I는 동일 동기 소스에 의해 측정함) 에는 제로 크로스 필터 통과 후의 파형 제로 크로스 점을 기준으로 한다. I택 시에는 U 또는 I만 선택 가능.						
동기 소스 유효 주파수 범위	DC, 0.1 Hz ~ 2 I	MHz (U7001은 1 MHz까지)						
동기 소스 유효 입력 범위	1% of range ~ 1	10% of range						
제로 크로스 필터	전압 전류 파형의 저 디지털 필터에 의힌 주파수에 의해 자동 HPF는 ON/OFF	네로 크로스 검출용으로 사용되고, 측정 파형에는 영향을 주지 않는다. - LPF와 HPF로 구성되고, 컷오프 주파수는 측정 상하한 주파수 설정과 측정 -으로 결정된다. 선택 가능 (IEC 측정 모드 선택 시에는 OFF를 고정)						
측정 하한 주파수	결선별로 다음 주파 0.1 Hz, 1 Hz, 10 IEC 측정 모드 선택	·수에서 선택한다. Hz, 100 Hz, 1 kHz, 10 kHz, 100 kHz 백 시에는 주파수를 고정한다. (선택 불가)						
측정 상한 주파수	결선별로 다음 주피 100 Hz, 500 Hz, IEC 측정 모드 선택	·수에서 선택한다. (U7001은 1 MHz까지) 1 kHz, 5 kHz, 10 kHz, 50 kHz, 100 kHz, 500 kHz, 1 MHz, 2 MHz 백 시에는 주파수를 고정한다. (선택 불가)						
극성 판별	전압, 전류 제로 크	로스 타이밍 비교 방식						
측정 항목	전압(U), 전류(I), 역률(λ), 위상각(∳) 전압 리플률(Urf), 전압 피크(Upk), 전 참조: "10.4 측정 3	유효전력 (P), 피상전력 (S), 무효전력 (Q), ), 전압 주파수 (fU), 전류 주파수 (fl), 효율 (ŋ), 손실 (Loss), 전류 리플률 (Irf), 전류 적산 (Ih), 전력 적산 (WP), 전류 피크 (Ipk) 항목 상세 사양" (p.274)						

#### (2) 전압 측정 공통 사양

참조: "10.6 U7001 2.5MS/s 입력 유닛" (p.290) "10.7 U7005 15MS/s 입력 유닛" (p.294)

#### (3) 전류 측정 공통 사양

참조: "10.6 U7001 2.5MS/s 입력 유닛" (p.290) "10.7 U7005 15MS/s 입력 유닛" (p.294)

#### (4) 주파수 측정 사양

측정 채널 수	최대 8채널(fU1 ~ fU8, fl1 ~ fl8), 장착 유닛 수에 따름.
측정 방식	레시프로컬 방식 제로 크로스 필터 적용 파형을 측정한다.
측정 범위	0.1 Hz ~ 2 MHz (측정 불능 시에는 0.00000 Hz 또는 – – – – – – Hz) 입력 유닛의 측정 대역과 측정 하한 주파수 설정에 따른 제한 있음.
측정 정확도	±0.005 Hz (전압 주파수 측정 시로, 데이터 갱신율 50 ms 이상, 전압 15 V 레인지 이상, 50% 이상의 정 현파 입력 및 45 Hz ~ 66 Hz 측정 시) 위 조건 이외에는 ±0.05% of reading (측정 소스의 측정 레인지에 대해 30% 이상의 정현파에서)
표시 분해능	0.10000 Hz ~ 9.99999 Hz, 9.9000 Hz ~ 99.9999 Hz, 99.000 Hz ~ 999.999 Hz, 0.99000 kHz ~ 9.99999 kHz, 9.9000 kHz ~ 99.9999 kHz, 99.000 kHz ~ 999.999 kHz, 0.99000 MHz ~ 2.00000 MHz

#### (5) 적산 측정 사양

측정 모드	RMS / DC에서 결선별로 선택한다. (DC는 1P2W의 결선 시에만 선택 가능)
측정 항목	전류 적산(Ih+, Ih-, Ih), 유효전력 적산(WP+, WP-, WP) Ih+와 Ih-는 DC 모드일 때만의 측정으로 하고 RMS 모드일 때는 Ih만 측정한다.
측정 방식	각 전류, 유효전력에서의 디지털 연산(애버리지 시에는 애버리지 이전 값으로 연산) DC 모드 시: 샘플링별 전류값, 순시 전력값을 극성별로 적산 RMS 모드 시: 측정 간격의 전류 실효치, 유효 전력값을 적산 유효전력만 극성별(유효전력은 동기 소스 1주기마다 극성별로 적산)
<u> </u>	
즉성 간격	네이터 갱신슐과 동일
표시 분해능	999999 (6자리+소수점), 각 레인지의 1%를 100% of range로 하는 분해능에서 시작한다.
측정 범위	0 ~ ±99.9999 PAh / PWh
적산 시간	0초~ 9999시간 59분 59초 적산 시간이 범위를 넘은 경우는 적산을 정지한다.
적산 시간 정확도	±0.02% of reading (-10°C ~ 40°C)
적산 정확도	± (전류, 유효전력) ±적산 시간 정확도
백업 기능	없음 적산 동작 중에 정전이 되었을 때는 정전 복귀 후에 적산을 정지하고, 적산 데이터는 리셋한다.

적산 제어	모든 채널 동기 제어: • 수동(키, 통신 커맨드, 외부) 제어: 시작, 정지, 데이터 리셋 • 실시간 제어: 시작, 정지 • 타이머 제어: 설정 시간이 경과하면 정지
	결선별 독립 적산: (데이터 저장은 하지 않는다) (IEC 측정 모드 선택 시, BNC 동기 시, 광링크 시에는 불가) • 수동(키, 통신 커맨드, 외부) 제어: 결선별 시작, 정지, 데이터 리셋 • 실시간 제어: 결선별 시작, 정지 • 타이머 제어: 결선별로 설정 시간이 경과하면 정지
	가산 적산 있음 (적산 정지 후의 재시작 가능, 그동안의 적산값에 추가하여 적산) IEC 측정 모드 선택 시에는 대응하지 않음 (재시작 불가)

#### (6) 고조파 측정 공통 사양

측정 채널 수	최대 8채널, 장착 입력 유닛 수에 따름.
동기 소스	기본 측정 사양과 같음. 결선별로 선택한 전압, 전류, 전력 측정의 동기 소스에 따름. 단, 전압, 전류, 전력 측정의 동기 소스에서 Zph1, Zph3을 선택한 결선은 고조파 측정을 각각 Ext1, Ext3으로 동기할지 또는 Zph1, Zph3으로 동기할지를 설정할 수 있다.
측정 모드	광대역 측정 모드 또는 IEC 측정 모드에서 선택 (모든 채널 공통 설정)
측정 항목	고조파 전압 실효치, 고조파 전압 함유율, 고조파 전압 위상각, 고조파 전류 실효치, 고조파 전류 함유율, 고조파 전류 위상각, 고조파 유효전력, 고조파 전력 함유율, 고조파 전압 전류 위상차, 총 고조파 전압 왜곡률, 총 고조파 전류 왜곡률, 전압 불평형률, 전류 불평형률 (IEC 측정 모드일 때만) 중간 고조파 전압 실효값, 중간 고조파 전류 실효값
FFT 처리 단어 길이	32비트
안티에일리어싱	디지털 필터(동기 주파수에 따라 자동 설정)
윈도우 함수	렉탱귤러
그루핑	OFF / Type1 (고조파 서브 그룹) / Type2 (고조파 그룹) (모든 채널 공통 설정)
THD 연산 방식	THD_F / THD_R 연산 차수 2차 ~ 500차에서 선택(단, 각 모드의 최대 해석 차수까지) (모든 채널 공통 설정)

#### (7) IEC 측정 모드 IEC 규격 고조파 측정 사양

		사
측정 방식	IEC61000-4-7:2002 준거, 갭 오버랩 없음	<u>਼</u>
측정 주파수 설정	50 Hz / 60 Hz	
동기 주파수 범위	50 Hz 설정 시 : 45 Hz ~ 55 Hz 60 Hz 설정 시 : 56 Hz ~ 66 Hz	10
데이터 갱신율	약 200 ms 고정 (50 Hz일 때는 10파, 60 Hz일 때는 12파)	
해석 차수	고조파: 0차 ~ 200차 중간 고조파: 0.5차 ~ 200.5차	
창 진동수	50 Hz 설정 시: 10파, 60 Hz 설정 시: 12파	
FFT 포인트 수	8192포인트	

즉정 정확도	각 주파수 설정의 동기 주파 ±0.04% of range를 가산한더 10 kHz 이상에 대해서는 추가	수 범위에서 각 유닛의 전압, 가. 로 ±0.04% of range를 가산한	전류, 전력, 위상 측정 정확의 한다.			
8) 광대역 측정 모드	E 광대역 고조파 측정 사양					
측정 방식	제로 크로스 동기 연산 방식(동 고정 샘플링 보간 연산 방식	제로 크로스 동기 연산 방식(동기 소스마다 동일 윈도우), 갭 있음 고정 샘플링 보간 연산 방식				
동기 주파수 범위	0.1 Hz ~ 1.5 MHz (U7001	0.1 Hz ~ 1.5 MHz (U7001은 1 MHz까지)				
데이터 갱신율	50 ms 고정 데이터 갱신율을 10 ms 이하로 설정 시에는 고조파만 50 ms에서 동작한다. 데이터 갱신율을 200 ms로 설정 시에는 50 ms 데이터를 4회 평균한 값을 적용한다.					
최대 해석 차수와						
window wave	기본파 주파수	window wave number	최대 해석 차수			
number	$0.1 \text{ Hz} \leq f \leq 2 \text{ kHz}$	1	500차			
	$2 \text{ kHz} < f \leq 5 \text{ kHz}$	1	300차			
	$5 \text{ kHz} < f \leq 10 \text{ kHz}$	2	150차			
	$10 \text{ kHz} < t \leq 20 \text{ kHz}$	4	/5차			
	$20 \text{ kHz} < f \leq 50 \text{ kHz}$	8	<u>30차</u>			
	50 kHz < t ≦ 100 kHz	16				
	$100 \text{ kHz} < f \ge 200 \text{ kHz}$	32	· 사			
	$200 \text{ kHz} < f \ge 300 \text{ kHz}$	64	5사			
	$500 \text{ KHz} < 1 \ge 500 \text{ KHz}$	256	3^r 1+L			
	단, U7001은 1 MHz까지.					
위상 영점 조정 기능	키/통신 커맨드에 의한 위상 영점 조정 (동기 소스가 Ext일 때만) 위상 영점 조정 값의 자동/수동 설정이 가능. 위상 영점 조정 설정 범위는 0.000° ~ ±180.000° (0.001° 스텝)					
FFT 포인트 수	2048, 4096, 8192 포인트에	서 자동 선택.				
측정 정확도	각 입력 유닛의 전압, 전류, 전 단, 기본파 2 kHz 이상은 0.0	력 , 위상 정확도에 다음을 가산 5% of reading을 가산한다 .	한다.			
	주파수	전압, 전류, 전력 ±(% of reading)	위상 ±(°)			
	DC	0.05%	_			
	$0.1 \text{ Hz} \leq f \leq 100 \text{ Hz}$	0.01%	0.1°			
	100 Hz < f $\leq$ 1 kHz	0.03%	0.1°			
	$1 \text{ kHz} < f \leq 10 \text{ kHz}$	0.08%	0.6°			
	10 kHz < f $\leq$ 50 kHz	0.15%	(0.020 × f) ±0.5°			
	50 kHz < f $\leq$ 1 MHz	0.20%	(0.030 × f) ±2.0°			
	$1 \text{ MHz} < f \le 1.5 \text{ MHz}$	0.25%	$(0.040 \times f) \pm 2.5^{\circ}$			

• 기본파가 16 Hz ~ 850 Hz 이외인 경우, 기본파 이외의 전압, 전류, 전력과 위상차는 참고치 로 한다.

• 기본파가 16 Hz ~ 850 Hz인 경우, 6 kHz를 넘는 전압, 전류, 전력과 위상차는 참고치로 한다.

• 위상차는 같은 차수의 전압과 전류가 10% of range 이상인 입력에서 규정한다.
## 정확도 사양

#### 참조: "10.6 U7001 2.5MS/s 입력 유닛" (p.290) "10.7 U7005 15MS/s 입력 유닛" (p.294)

# 파형 기록 사양

측정 채널	전압 전류 파형: 모터 파형:	최대 8채널(장착 입력 유닛 수에 따름. 단, 최대 표시는 16파형까지) 아날로그 DC 최대 4채널 + 펄스 최대 8채널
기록 용량	5 M 워드×[(전압/전류) × 최대 8채널 + 모터 파형] 메모리 분할 기능 없음	
파형 분해능	16비트 (U7005의 전압, 전류 파형은 상위 16비트를 사용)	
샘플링 속도	전압 전류 파형:	상시 15 MS/s (U7001은 2.5 MS/s 샘플링 데이터를 0차 홀드로 보간)
	모터 파형(아날로그 DC	): 상시 1 MS/s (1 MS/s 샘플링 데이터를 0차 홀드로 보간)
	모터 파형(펄스):	상시 15 MS/s
압축비	1/1, 1/2, 1/3, 1/6, 1/1 (15 MS/s, 7.5 MS/s, 5 100 kS/s, 50 kS/s, 25 단, 모터 파형(아날로그	5, 1/30, 1/60, 1/150, 1/300, 1/600, 1/1500 5 MS/s, 2.5 MS/s, 1.0 MS/s, 500 kS/s, 250 kS/s, 5 kS/s, 10 kS/s) DC)은 1 MS/s 이하만.
기록 길이	1 k 워드, 5 k 워드, 10 k 워드, 50 k 워드, 100 k 워드, 500 k 워드, 1 M 워드, 5 M 워드	
스토리지 모드	Peak-Peak 압축	
트리거 모드	SINGLE, NORMAL (자동 트리거 설정 있음)	
프리트리거	기록 길이에 대해 0% ~ 100%에서 10% 스텝	
트리거 검출 방식	• 레벨 트리거(스토리지 파형의 레벨 변동으로 트리거를 검출한다)	
	트리거 소스:	전압 전류 파형, 전압 전류 제로 크로스 필터 후 파형, 수동, 모터 파형, 모터 펄스
	트리거 슬로프:	상승, 하강
	트리거 레벨:	파형에 대해 레인지의 ±300%에서 0.1% 스텝
	• 이벤트 트리거 기본 측정 항목(플리커 측정 항목은 제외) 값의 변동으로 트리거를 검출한다. 다음에 정의하는 4가지 이벤트의 논리합, 논리곱에 따라 트리거 검출 조건을 설정한다. 또한, 논리곱은 논리합에 우선한다.	
	이벤트:	기본 측정 항목 (플리커 측정 항목은 제외), 부등호 (<, >), 수치(0 ~±99999.9T)로 구성된다. Ev n: Item □ X.XXXXX y n: 1부터 4까지 Item: 기본 측정 항목 □: 부등호 X.XXXXX: 6자리의 정수 y: SI접두어

사 양

10

# FFT 해석 사양

측정 채널	전압 전류 파형: 모터 파형:	채널 또는 결선 단위로 선택한다. 최대 3채널. 아날로그 DC
	FFT 화면 표시 시에만 ㅎ	개석을 실행한다.
연산종류	RMS 스펙트럼 (복수 채 파워 스펙트럼 (유효 전략 복수 채널 선택 시에는 기	널 선택 시에는 각 채널의 평균값 ), 녁(P), 단 전압 전류 파형 선택 시에만, † 채널의 가산값 (Psum))
FFT 포인트 수	1000점, 5000점, 10, 100,000점, 500,0007	000점, 50,000점 점, 1,000,000점, 5,000,000점
FFT 처리 단어 길이	32 bit	
해석 위치	파형 기록 데이터 내의 임의 위치	
안티에일리어싱	디지털 필터 자동	
윈도우 함수	렉탱귤러, 해닝, 플랫 톱	
최대 해석 주파수	파형 기록의 압축비에 연	동
전압 전류 파형	6 MHz, 3 MHz, 2 MH 400 kHz, 200 kHz, 10 (U7001 및 U7001을	z, 1 MHz, )0 kHz, 40 kHz, 20 kHz, 10 kHz, 4 kHz 포함한 복수 채널 선택 시에는 1 MHz가 상한)
모터 파형 입력	400 kHz, 200 kHz, 10 (위 주파수-주파수 분하	00 kHz, 40 kHz, 20 kHz, 10 kHz, 4 kHz  능 )이 최대 해석 주파수가 된다
FFT 피크 값 표시	전압, 전류 및 전력 각각 산출. FFT 연산 결과에서 양쪽 인식.	의 피크 값(극대치)의 레벨과 주파수를 레벨 순으로 위에서부터 10개 에 이웃하는 데이터가 자신의 데이터보다 레벨이 낮을 때를 피크 값으로

# 플리커 측정 사양

측정 채널	최대 8채널
측정 방식	IEC 61000-4-15 Ed2.0:2010 플리커 측정기 클래스 F1에 준거
측정 항목	단기간 플리커 값 (Pst) 단기간 플리커 최대값 (PstMax) 장기간 플리커 값 (Plt) 순시 플리커 최대값 (PinstMax) 순시 플리커 최소값 (PinstMin) 상대 정상 전압 변화 (dc) 최대 상대 전압 변화 (dmax) 상대 전압 변화가 역치를 초과하는 시간 (Tmax)
측정 주파수	50 Hz / 60 Hz (IEC 측정 모드일 때만 측정)
측정 레인지	Pst, Plt: 0.0001 P.U. ~ 6400 P.U. (로그로 1400분할)
플리커 필터	230 V lamp, 120 V lamp
측정 정확도	dc, dmax: ±4% (dmax = 4% 에서) Pst: ±5% (Pst= 0.2 ~ 5)

# 모터 해석 사양(옵션)

#### (1) 아날로그 DC, 주파수, 펄스 입력 공통

입력 채널 수	8채널		
	СН	입력 항목	
	CHA, CHC, CHE, CHG	아날로그 DC, 주파수, 펄스	
	CH B, CH D, CH F, CH H	주파수,펄스	
동작 모드	• 모터 해석 모드		
	측정 또는 검출 항	목(입력 형식)	최대 해석 수
	패턴 1 Torque (Analog,	/Freq), Speed (Pulse)	4개 모터
	패턴 2 Torque (Analog, Origin (Pulse)	/Freq), Speed (Pulse), Direction,	2개 모터
	패턴 3 Torque (Analog,	/Freq), Speed (Pulse), Direction	2개 모터
	패턴 4 Torque (Analog	/Freq), Speed (Pulse), Origin (Pulse)	2개 모터
	패턴 5 Torque (Analog,	/Freq), Speed (Analog)	2개 모터
	• Individual input 모드 CH A, CH C, CH E, CH G: [ CH B, CH D, CH F, CH H: 주	OC 전압 측정, 주파수 측정 파수 측정	
입력 단자 형상	절연 타입 BNC 커넥터		
입력 방식	기능 절연 입력 및 싱글엔드 입력 채널 간 기능 절연		
입력 저항( <b>DC)</b>	1 MΩ ±50 kΩ		
최대 입력 전압	20 V		
대지간 최대 정격 전압	50 V (50 Hz / 60 Hz)		
측정 항목	전압, 토크, 회전수, 주파수, 미끄	럼, 모터 파워	
동기 소스	기본 측정 사양과 같음 (유효 주파속 • 모터 해석 모드 시 패턴 1: [A-D]에서 ( [E-H]에서 ( 패턴 2~5: [A-D], [E-F • Individual input 모드 시 [A-D]에서 CH A / CH B용과 ( [E-H]에서 CH E / CH F용과 (	수 범위, 유효 입력 범위도 동일) CH A / CH B 용과 CH C / CH D 용의 2 종류 CH E / CH F 용과 CH G / CH H 용의 2 종류 I]에서 각각 1 종류를 설정 CH C / CH D 용의 2 종류를 설정 CH G / CH H 용의 2 종류를 설정	루를 설정 류를 설정
측정 하한 주파수	모터 동기 소스별로 다음 주파수에 0.1 Hz, 1 Hz, 10 Hz, 100 H	서 선택 Z	
측정 상한 주파수	모터 동기 소스별로 다음 주파수에 100 Hz, 500 Hz, 1 kHz, 5 k 1 MHz, 2 MHz	서 선택 Hz, 10 kHz, 50 kHz, 100 kHz, 500 kHz	,
입력 주파수 소스	fU1~fU8, fl1~fl8에서 선택한다. 미끄럼 연산용의 주파수를 설정한[	н.	
모터 극수	2 ~ 254		
Z상 펄스 검출 기준	동작 모드 2/4일 때 동기 소스의 Z 상승/하강	'ph.를 검출하는 기준을 설정한다․	

^사양 10

#### (2) 아날로그 DC 입력 사양(CH A, CH C, CH E, CH G)

측정 레인지	1 V, 5 V, 10 V		
파고율	1.5		
유효입력 범위	1% ~ 110% of range		
샘플링	1 MHz, 16비트		
LPF	1 kHz, OFF (20 kHz)		
응답 속도	0.2 ms (LPF가 OFF일 때)		
측정 방식	동기 디지털 샘플링, 제로 크로스 동기 연산 방식 (제로 크로스 간 가산 평균)		
측정 정확도	±0.03% of reading ±0.03% of range		
온도의 영향	0°C ~ 20°C 또는 26°C ~ 40°C의 범위에서 다음을 가산 ±0.01% of reading/°C ±0.01% of range/°C		
동상 전압의 영향	±0.01% of range 이하 입력 단자-본체 케이스 간에 50 V (DC / 50 Hz / 60 Hz) 인가 시		
외부 자계의 영향	±0.1% of range 이하 (400 A/m, DC 및 50 Hz / 60 Hz의 자계 안에서)		
표시 범위	참조: "10.4 측정 항목 상세 사양"의 "(4) 모터 해석 측정 항목(모터 해석 옵션 탑재 시에만)" (p.277)		
스케일링	토크일 때: ±0.01 ~ 9999.99 회전수일 때: ±0.00001 ~ 99999.9		
영점 조정	스케일링된 ±10% of range 이하의 입력 오프셋을 제로 보정한다. 토크 미터 보정이 ON일 때에는 보정치를 가산하여 제로 보정한다.		
토크 미터 보정	OFF/ON (모터별로 설정 가능) • 비직선성 보정 토크 교정 포인트(N•m) -토크 교정치(N•m)의 최대 11포인트 보정 테이블을 이용하여 토크 값을 보정한다. • 마찰 보정 방향을 포함하는 회전수(r/min) -토크 보정치(N•m)의 최대 11포인트 보정 테이블을 이용하 여 토크 값을 보정한다.		
	각 토크 교정치 간은 선형 보간한다. 보정 테이블의 단위는 설정에 따른다. 보정치는 6자리를 입력한다. 정회전 "+", 역회전 "-" (회전 방향)의 검출은 토크 연산의 부호를 사용한다.		
토크 연산과 보정	OFF 시:       토크 값 = S × (X-제로 보정치)         ON 시:       토크 값 = S × (X-제로 보정치)-At-Bt         S:       스케일링         X:       입력 신호-토크 환산치         At:       비직선성 보정치         Bt:       마찰 보정치		

#### (3) 주파수 입력 사양(CH A, CH B, CH C, CH D, CH E, CH F, CH G, CH H)

검출 레벨	Low: 약 0.8 V 이하, High: 약 2.0 V 이상	
측정 주파수 대역	0.1 Hz ~ 2 MHz (Duty 비 50%일 때)	
최소 검출폭	0.25 µs 이상	
측정 레인지	fc ±fd (Hz)의 영점 주파수 fc와 정격 토크 시 주파수 fd를 설정한다. fc, fd 모두 1 kHz ~ 500 kHz의 범위에서 유효 숫자 7자리로 설정한다. 단, fc+fd ≦ 500 kHz이면서 fc-fd ≧ 1 kHz일 것	
측정 정확도	±0.01% of reading 데이터 갱신율을 1 ms로 설정할 때에는 측정 정확도에 ±0.01% of reading을 가산한다.	
표시 범위	1.000 kHz ~ 500.000 kHz	
스케일링	±0.01 ~ 9999.99	
영점 조정	fc ±1 kHz의 범위에서 입력 오프셋을 제로 보정한다. 토크 미터 보정이 ON일 때에는 보정치를 가산하여 제로 보정한다.	
단위	mN•m, N•m, kN•m	
토크 미터 보정	MN•m, N•m, KN•m         OFF/ON         • 비직선성 보정         토크 교정 포인트 (N•m) – 토크 교정치 (N•m)의 최대 11 포인트 보정 테이블을 이용하여 토크 값을 보정한다.         • 마찰 보정         회전수(방향 포함) (r/min) – 토크 보정치 (N•m)의 최대 11 포인트 보정 테이블을 이용하여 토 크 값을 보정한다.         각 토크 교정치 간은 선형 보간한다.         보정 테이블의 단위는 설정에 따른다.         보정치는 6자리를 입력한다.         저희저 "+" 여희저 ""(히저 바향)의 거축은 토크 여사의 보호를 내용한다.	
토크 연산과 보정	OFF 시: 토크 값 = S × (X - 제로 보정치)         ON 시: 토크 값 = S × (X - 제로 보정치)-At-Bt         S:       스케일링         X:       입력 신호-토크 환산치         At:       비직선성 보정치         Bt:       마찰 보정치	

## (4) 펄스 입력 사양(CH A, CH B, CH C, CH D, CH E, CH F, CH G, CH H)

검출 레벨	Low: 약 0.8 V 이하, High: 약 2.0 V 이상
측정 주파수 대역	0.1 Hz ~ 2 MHz (Duty 비 50%일 때)
최소 검출폭	0.25 μs 이상
펄스 노이즈 필터 (PNF)	OFF, 약, 강(약은 0.25 μs 미만, 강은 5 μs 미만의 +/- 방향 펄스를 무시)
측정 레인지	2 MHz
측정 정확도	±0.01% of reading 데이터 갱신율을 1 ms로 설정할 때에는 측정 정확도에 ±0.01% of reading을 가산한다.
표시 범위	0.1 Hz ~ 2.00000 MHz
단위	Hz, r/min
분주 설정 범위	±1 ~ 60000
회전 방향 검출	[A-D], [E-H]에서 각각 개별 설정 모터 해석 모드의 패턴 2 ~ 5 [A-D]는 CH B와 CH C의 진행/지연으로 검출 [E-H]는 CH F와 CH G의 진행/지연으로 검출
기계각 원점 검출	[A-D], [E-H]에서 각각 개별 설정 모터 해석 모드의 패턴 2 ~ 5 [A-D]는 CH D의 상승 에지 또는 하강 에지로 CH B의 분주 클리어 [E-H]는 CH H의 상승 에지 또는 하강 에지로 CH F의 분주 클리어

. . . . . . . . . . . .

# 파형 & D/A 출력 사양(옵션)

출력 채널 수	20채널		
출력 단자 형상	D-sub25pin 커넥터×1		
출력 내용	파형 출력, 아날로그	파형 출력, 아날로그 출력(플리커 측정 항목을 제외한 기본 측정 항목에서 선택) 전환	
D/A 변환 분해능	16비트(극성 + 15비트)		
출력 갱신율	파형 출력 시: 아날로그 출력 시:	1 MHz 1 ms, 10 ms, 50 ms, 200 ms (선택 항목의 데이터 갱신율에 따름․ 출력 갱신율에 대해 ±1 ms)	
출력전압	파형 출력 시: 아날로그 출력 시:	±2 V f.s. / ±1 V f.s. 전환 파고율 2.5 이상 모든 채널 공통 설정 DC ±5 V f.s. (최대 약 DC ±12 V)	
출력 저항	100 Ω ±5 Ω		
출력 정확도	파형 출력 시: ±2 V f.s.일 때 - 측정 정확도 ±0.5% f.s. ±1 V f.s.일 때 - 측정 정확도 ±1.0% f.s. DC ~ 50 kHz에서 규정 아날로그 출력 시: 출력 측정 항목 측정 정확도 ±0.2% f.s. (DC 레벨)		
온도 계수	±0.05% f.s. / °C		

#### 핀 배치

핀 번호	출력	핀 번호	출력
1	GND	14	GND
2	D/A1	15	D/A13
3	D/A2	16	D/A14
4	D/A3	17	D/A15
5	D/A4	18	D/A16
6	D/A5	19	D/A17
7	D/A6	20	D/A18
8	D/A7	21	D/A19
9	D/A8	22	D/A20
10	D/A9	23	GND
11	D/A10	24	GND
12	D/A11	25	GND
13	D/A12		



# 표시부 사양

표나 다카	
표시 군사	일본어, 영어, 중국어(간세사)
표시체	10.1인치 WXGA-TFT 컬러 액정 디스플레이(1280 × 800도트)
도트 피치	0.1695 (V) mm × 0.1695 (H) mm
표시 수치 분해능	999999 카운트(적산값도 포함)
표시 갱신율	측정치: 약 200 ms (내부 데이터 갱신율에서 독립) 파형: 파형 기록 설정에 따름
화면	측정 화면, 입력 설정 화면, 시스템 설정 화면, 파일 조작 화면
경고 표시	입력 채널의 전압, 전류의 피크 오버 검출 시, 동기 소스 미검출 시 화면의 어느 페이지에서도 모든 채널의 경고 마크 표시

## 조작부 사양

조작 디바이스	전원 버튼×1, 고무키×23, 로터리 노브×2, 터치패널
터치패널	투영형 정전 용량 방식
로터리 노브	30점 클릭, 15펄스, 점등 있음
7	기계적 스위치 방식, 점등 있음 ×12, 점등 없음 ×11 • 점등 있음 녹색: MEAS, INPUT, SYSTEM, FILE, AUTO×2, SINGLE 빨간색: HOLD, PEAK HOLD, REMOTE/LOCAL 빨간색/녹색: START/STOP, RUN/STOP • 점등 없음: 페이지(좌우), SAVE, COPY, U-UP, U-DOWN, I-UP, I-DOWN,
	0 ADJ, DATA RESET, MANUAL
키 록	0 ADJ, DATA RESET, MANUAL REMOTE / LOCAL 키를 3초간 계속 눌러서 ON/OFF 키 록 중에는 화면에 키 록 마크를 표시
키 록 시스템 리셋	0 ADJ, DATA RESET, MANUAL         REMOTE / LOCAL 키를 3초간 계속 눌러서 ON/OFF         키 록 중에는 화면에 키 록 마크를 표시         기기의 설정을 초기 상태로 함.         단, 언어와 통신 설정은 변경하지 않음.
키 록 시스템 리셋 부팅키 리셋	0 ADJ, DATA RESET, MANUAL         REMOTE / LOCAL 키를 3초간 계속 눌러서 ON/OFF         키 록 중에는 화면에 키 록 마크를 표시         기기의 설정을 초기 상태로 함.         단, 언어와 통신 설정은 변경하지 않음.         전원 투입 시에 SYSTEM 키가 눌러져 있는 경우, 기기의 설정을 공장 출하 상태로 함.         언어 설정, 통신 설정도 포함해서 모든 기능이 공장 출하 상태로 초기화됨.

# 외부 인터페이스 사양

#### (1) USB 메모리

커넥터	USB 타입 A 리셉터클 커넥터 ×1
규격,방식	USB 3.0 (SuperSpeed)
접속 기기	USB 메모리
<b>USB</b> 메모리 기록 내용	설정 파일의 저장/로드 측정치/자동 기록 데이터의 저장 파형 데이터의 저장, 화면 복사

#### (2) LAN

커넥터	RJ-45 커넥터×1
규격, 방식	IEEE802.3 준거
전송 방식	100BASE-TX/1000BASE-T 자동 인식
프로토콜	TCP/IP (DHCP 기능 있음)
기능	HTTP 서버(리모트 조작) 전용 포트(데이터 전송, 커맨드 제어) FTP 서버(파일 전송) FTP 클라이언트 Modbus/TCP 서버

#### (3) GP-IB

커넥터	Micro-ribbon 24pin 커넥터 ×1
규격, 방식	IEEE-488.1 1987 준거, IEEE-488.2 1987 참고
어드레스	00 ~ 30
리모트 제어	리모트 상태에서 REMOTE/LOCAL 키가 점등, REMOTE/LOCAL 키로 해제

#### (4) RS-232C

커넥터	D-sub 9pin 커넥터 ×1, 9pin, 외부 제어와 공용
규격, 방식	RS-232C, "EIA RS-232D", "CCITT V.24", "JIS X5101" 준거 전이중, 조보동기 방식, 데이터 길이: 8, 패리티: 없음, 정지 비트: 1
흐름 제어	없음
통신 속도	9600 bps, 19200 bps, 38400 bps, 57600 bps, 115200 bps
기능	커맨드 제어, 외부 제어로 전환(동시 사용은 불가)

#### (5) 외부 제어

커넥터	D-sub 9pin 커넥터 ×1, RS-232C 와 공용
핀 배치	1번 pin: 시작/정지 4번 pin: HOLD 5번 pin: GND 6번 pin: 데이터 리셋
전기적 사양	0 / 5 V (2.5 V ~ 5 V)의 로직 신호 또는 단자를 단락 / 개방의 접점 신호
기능	조작부 <b>START/STOP</b> 키, <b>DATA RESET</b> 키 또는 HOLD 키와 같은 동작 RS-232C로 전환(동시 사용은 불가)

#### (6) 광링크 인터페이스 (옵션)

동기 가능 대수	2대 (프라이머리 기기가 1대, 세컨더리 기기가 1대)
광신호	850 nm VCSEL, 1 Gbps
레이저 클래스 분류	클래스 1
적용 파이버	50/125 μm 멀티모드 파이버 상당, 500 m까지
기능	프라이머리 기기 • 수신한 세컨더리 기기의 측정값 표시 (연산 측정 항목 및 플리커 측정 항목을 제외한 기본 측정 항목, 고조파 50차까지) • 세컨더리 기기의 [WIRING], [CHANNEL], [MOTOR] 설정의 표시, 변경 • 세컨더리 기기의 위상 영점 조정 기능 설정 ([VECTOR × 1] 화면) • 세컨더리 기기의 유닛 및 연결된 전류 센서의 구성 표시 ([CONFIG] 화면)
	세컨더리 기기 • 내부 연산, 데이터 갱신의 타이밍을 프라이머리 기기에 동기 • 일부 측정 데이터를 프라이머리 기기로 송신 • 프라이머리 기기의 설정 일부를 반영 • 광링크 중에는 다음의 조작을 할 수 없습니다. 1. 광링크, 통신, 언어 등의 일부 설정을 제외한 설정의 변경 2. 적산의 시작 및 정지, 적산 데이터의 리셋 3. CAN 신호의 출력 4. HOLD, PEAK HOLD, COPY, SAVE 등의 키에 의한 본 기기의 조작
	데이터 갱신율이 10 ms 이하일 때는 동기 불가 프라이머리 기기가 IEC 측정 모드일 때는 동기 불가 광링크와 BNC 동기는 동시 선택 불가

#### (7) BNC 동기

커넥터	BNC
동기 가능 대수	4대 (프라이머리 ×1대, 세컨더리 ×3대)
기능	프라이머리 기기 제어 신호를 세컨더리 기기로 송신
	세컨더리 기기 다음의 기능 및 조작에 대해서 프라이머리 기기와 동기 • 내부 연산과 데이터 갱신의 타이밍 • 적산의 시작 및 정지, 적산 데이터의 리셋 • 표시 홀드 (HOLD 또는 PEAK HOLD 키에 의한), 홀드 중의 데이터 갱신 • 영점 조정 • SAVE 또는 COPY 키에 의한 본 기기의 조작 • 현재 시각 (동기하는 항목에 대해서 동기 중에는 제어, 설정 변경 불가) 프라이머리 기기와 세컨더리 기기의 측정 모드와 데이터 갱신율이 일치하고 있을 때만 동기

# CAN/CAN FD 인터페이스 사양(옵션)

프로토콜	CAN (Classical) CAN FD (ISO 11898-1:2015 준거) CAN FD (ISO 비준거)				
기능	데이터 출력				
CAN 포트	1포트				
장착 유닛 수	1(파형	& D/A 출력 옵	6년과 동시 장착 불가)		
보율	CAN:125 k, 250 k, 500 k, 1 MbpsCAN FD:중재 영역: 500 k, 1 Mbps(ISO 준거/비준거)데이터 영역: 500 k, 1 M, 2 M, 4 Mbps			k, 1 Mbps Mbps 1 M, 2 M, 4 Mbps	
포맷	표준, 획	<b>학장</b>			
설정 모드	OFF,	출력 모드			
데이터 프레임 출력	연속				
연속	출력 인터벌: 1 ms, 10 ms, 50 ms, 100 ms, 200 ms, 500 ms, 1 s, 5 s, 10 s, 15 s, 30 s, 1 min, 5 min, 10 min, 15 min, 30 min, 60 min 각 출력 인터벌 설정에 대해 ±1ms 단, 데이터 갱신율 미만의 설정은 할 수 없다. 데이터 갱신율을 200 ms로 설정할 경우, 500 ms는 선택 불가. IEC 측정 모드일 때, 데이터 갱신율을 200 ms로 설정하면 100 500 ms 이터벅 성적 가는		ns, 100 ms, 200 ms, 500 ms, s, 30 s, hin, 15 min, 30 min, 60 min 네 대해 ±1ms 만의 설정은 할 수 없다. ) ms로 설정할 경우, 500 ms는 선택 불가. , 데이터 갱신율을 200 ms로 설정하면 100 ms 가능		
	반복 출	력 횟수:	0 ~ 10000 (0=무현	한횟수)	
샘플 포인트 설정	0.0% ~	~ 99.9%			
출력 항목	참조: "출력 항목" (p.264)				
CAN 송수신기	MCP2	544 FD			
통신 커넥터	D-sub 9pin 커넥터 (male) 고정 나사 (6각): 인치 나사 #4-40 UNC 핀 배치 () (12345) 6789				
	Pin	Assignment	I/O	기능	
	1	N.C.	_	미사용	
	2	CAN_L	OUT	CAN_Low 통신선	
	3	GND	_	GND	
	4	N.C.	_	미사용	
	5	Shield	_	Shield (내부에서 GND 접속)	
	6	N.C.	_	미사용	
	7	CAN_H	OUT	CAN_High 통신선	
	8	N.C.	_	미사용	
	9	N.C.	_	미사용	
설정 <b>ID</b>	표준 포	맷: 0x000 ~ (	0x7FF		

확장 포맷: 0x0000000 ~ 0x1FFFFFF

종단 저항	ON/OFF 저항치: 120 Ω ±10 Ω	
데이터 변환	측정 데이터 : 출력 횟수, 출력 시각:	부동 소수형(float: 4바이트) 부호 없는 정수형
바이트 오더 (엔디안)	인텔(리틀 엔디안)	

#### 출력 항목

출력 선택 항목	표기	출력 선택 항목	표기
전압 실효치	Urms	무효전력	Q
전압 평균 정류 실효값 환산치	Umn	기본파 무효전력	Qfnd
전압 교류 성분	Uac	역률	λ
전압 단순 평균치	Udc	기본파 역률	λfnd
전압 기본 성분	Ufnd	전압 위상각	θU
전압 파형 피크 +	Upk+	전류 위상각	θΙ
전압 파형 피크 <b>-</b>	Upk-	전력 위상각	Φ
총 고조파 전압 왜곡률	Uthd	전압 주파수	fU
전압 리플률	Urf	전류 주파수	fl
전압 불평형률	Uunb	적산 +방향 전류량	lh+
전류 실효치	Irms	적산 - 방향 전류량	lh-
전류 평균치 정류 실효값 환산치	Imn	적산 +, - 방향 전류량 합	lh
전류 교류 성분	lac	적산 +방향 전력량	WP+
전류 단순 평균치	ldc	적산 - 방향 전력량	WP-
전류 기본 성분	lfnd	적산 +, - 방향 전력량 합	WP
전류 파형 피크 +	lpk+	효율	n
전류 파형 피크 -	lpk-	손실값	Loss
총 고조파 전류 왜곡률	Ithd	토크	Tq
전류 리플률	Irf	회전수	Spd
전류 불평형률	lunb	모터 파워	Pm
유효전력	Р	미끄럼	Slip
기본파 유효전력	Pfnd	출력 횟수	Count
피상전력	S	출력 시각	Time
기본파 피상전력	Sfnd	사용자 정의 연산	UDF

. . . . . . . . . . . . .

# 10.3 기능 사양

## AUTO 레인지

기능	결선별 전압, 전류의 각 레인지를 입력에 따라 자동으로 레인지를 변경한다. (모터 입력 레인지는 제외)
동작 모드	OFF/ON (결선별로 선택 가능)
동작	레인지 변경 동작 시점의 해당 결선 또는 모터 입력 측정치는 무효 데이터가 된다. 단, 다른 결선 데 이터에는 영향을 주지 않는다. 동기 주파수가 낮은 경우 파형의 주기가 무효화 기간보다도 길어지는 경우가 있다. 그 경우 무효 데이 터의 표시 기간보다 측정치의 안정에 걸리는 시간이 길어진다. AUTO 레인지뿐 아니라, 조작에 따른 레인지 변경에서도 마찬가지.
레인지 전환 조건	1레인지 업 결선 내의 어느 1채널이 다음 조건 중 하나라도 충족할 경우 • rms 값 ≧ 110% of range •  피크치  ≧ 300% of range
	<b>1 레인지 다운</b> 결선 내의 모든 채널이 다음 조건을 모두 충족할 경우 • rms 값
	레인지 판정에는 다음의 값을 사용한다. • rms 값: 순시값 (평균화 없음) Δ-Y 변환 ON 시에는 전압 레인지를 1/√3배 한다. • 피크 값: 디지털 LPF 통과 전의 값

## 시간 제어

-----

기능	시간에 따라 다른 기능을 제어한다. 타이머 제어, 실시간 제어		
동작	타이머 제어 : 실시간 제어 :	설정 시간이 경과하면 정지한다. 지정 시각에 시작하고 지정 시각에 정지한다.	
타이머 제어	OFF, 1 s ~ 9999 h 59 m 59 s (1 s 단위)		
실시간 제어	OFF, 시작 시각, 정지 시각(1 s 단위)		

# 홀드 기능

#### (1) 홀드

기능	모든 측정치의 표시 갱신을 정지하고, 현재 표시 중인 상태로 고정한다. 단, 파형, 시계, 피크 오버 표시는 표시 갱신을 계속한다. 적산이나 애버리지 등의 내부 연산은 계속한다. 피크 홀드 기능과의 병용은 불가.
동작 모드	OFF/ON
동작	HOLD 키를 누르면 ON이 되면서 HOLD 키와 화면의 홀드 마크가 점등한다. 다시 한번 HOLD 키를 누르면 OFF 된다. 홀드 ON 중에는 PEAK HOLD 키를 눌렀을 때 데이터를 갱신한다. 내부 데이터 갱신율의 데이터로 갱신된다(표시 갱신율과는 별도).
출력 데이터	아날로그 출력, 저장 데이터도 홀드 중인 데이터를 출력(단, 파형 출력은 계속).
백업	없음(전원 OFF로 기능이 OFF가 됨)
제약	홀드 ON 중에는 측정치에 영향을 주는 설정은 변경 불가.

#### (2) 피크 홀드

기능	모든 측정치를 측정치별 절대치로 비교한 최대치로 표시 갱신. 단, 파형 표시와 적산값은 순시값 표 시 갱신을 계속한다. 애버리지 중에는 애버리지 후의 측정치에 최대치를 적용한다. 홀드 기능과의 병용은 불가.
동작 모드	OFF/ON
동작	<b>PEAK HOLD</b> 키를 누르면 ON이 되면서 <b>PEAK HOLD</b> 키와 화면의 피크 홀드 마크가 점등한다. 다시 한번 <b>PEAK HOLD</b> 키를 누르면 OFF가 된다. 피크 홀드 ON 중에는 <b>HOLD</b> 키를 눌렀을 때 데이터를 갱신한다.
출력 데이터	피크 홀드 중인 아날로그 출력, 저장 데이터는 피크 홀드 중인 데이터를 출력(단, 파형 출력은 계속).
백업	없음(전원 OFF로 기능이 OFF가 됨)
제약	피크 홀드 ON 중에는 측정치에 영향을 주는 설정은 변경 불가.

# 연산 기능

#### (1) 정류 방식

기능	피상 및 무효전력, 역률의 연산에 사용하는 전압 및 전류값을 선택한다.
동작 모드	rms, mean (각 결선의 전압 및 전류별로 선택 가능)

#### (2) 스케일링

기능	VT 비, CT 비를 설정하여 측정치에 반영함
<b>VT(PT)</b> 비	결선별로 설정 0.00001 ~ 9999.99 (VT × CT가 1.0E+06을 넘는 설정은 할 수 없음)
CT 비	CH별로 설정 0.00001 ~ 9999.99 (VT × CT가 1.0E+06을 넘는 설정은 할 수 없음)
표시	스케일링 시에는 화면에 <b>[VT]</b> / <b>[CT]</b> 마크를 표시

#### (3) 애버리지(AVG)

기능	고조파를 포함한 모든 순시 측정치의 평균화를 실행. (피크 값, 적산값, 10 ms 데이터 갱신 시의 고조파 데이터 제외) 전압(U), 전류(I), 전력(P)에 애버리지를 하고 연산값은 그 값에서 연산. 고조파에 대해서는 실효치와 함유율은 순시값을 애버리지, 위상각은 FFT 후의 실부와 허부를 애버 리지한 결과에서 연산. 위상차, 왜곡률, 불평형률은 상기 애버리지 후의 데이터에서 연산. 리플률은 ±피크 값의 차분을 애버리지한 데이터에서 연산. 모터 해석 측정치는 CHA - H 값을 애버리지한 데이터에서 연산. 데이터 갱신율을 1 ms로 설정할 경우에는 모든 평균화를 실시하지 않음(강제로 OFF로 설정). IEC 측정 모드 선택 시에는 이동 평균 선택 불가. 플리커 측정 항목은 모든 평균화를 실시하지 않는다.				
동작 모드	OFF, 지수화 핑	OFF, 지수화 평균, 이동 평균			
동작	지수화 평균 : 이동 평균 :	데이터 갱신율과 한다. 애버리지 동작 중 된다. 데이터 갱신율별 다. 데이터 갱신율	지수화 평균 응답 등에는 아날로그 출 로 이동 평균 횟수 율은 평균 처리가 6	속도에서 규정된 시정수 력, 저장 데이터도 모두 의 데이터 수로 평균하여 없을 때와 동일.	로 데이터를 지수화 평균 애버리지 데이터가 적용 겨 출력 데이터를 갱신한
지수화 평균 으다 소드	평균 횟수	FAST	MID	SLOW	_
<u> </u>	10 ms	0.1 s	0.8 s	5 s	-
	50 ms	0.5 s	4 s	25 s	_
	200 ms	2.0 s	16 s	100 s	_
	입력이 0% of 데이터 갱신율여 파 데이터에 대 IEC 측정 모드	range ~ 90% of 이 10 ms일 때 고 해서는 10 ms마디 선택 시에는 속도를	range 로 변화했을 조파 데이터는 평균   지수화 평균계수 를 고정한다.	을 때, 최종 안정값±1%를 ^국 화되지 않는데, 기본 측 [;] 를 사용해 평균화 된다.	로 안정되는 시간. 정 항목에 포함되는 고조
이동 평균 횟수	8, 16, 32, 64	회			

^샹 10

#### (4) 효율 및 손실 연산

기능	각 채널, 결선의 위	유효전력 간에서 효율η (%) 및 손실 Loss (W)를 연산한다.		
연산 항목	각 채널, 결선의 유효 전력값(P), 기본파 유효전력 (Pfnd), 모터 파워(Pm)			
연산 정밀도	식에 대입한 항목의 측정치에 대해 32비트 부동 소수로 연산한다. 전력 레인지가 다른 결선 간 연산 시에는 동일 연산 내의 최대 레인지를 채택한다.			
연산율	데이터 갱신율로 ( 동기 소스가 다른	데이터 갱신율로 연산 갱신한다. 동기 소스가 다른 결선 간 연산 시에는 연산 시의 최신 데이터를 채택한다.		
연산 가능 수	효율, 손실 각각 <b>4</b>	.식		
모드	Fixed 모드: Auto 모드:	입력측 및 출력측에 설정된 항목은 측정치에 상관없이 연산식의 위치가 고정․ 입력측 및 출력측에 설정된 항목은 측정치의 +, -에 따라 연산식의 위치가 변함․		
연산식	Fixed 모드 : Auto 모드 :	$\begin{array}{l} \mbox{Pin} (n) \end{tildeal} \end{tildeal} Point (n) \end{tildeal} \end{tildeal} \end{tildeal} Point = \end{tildeal} Point + \end{tildeal} tilde$		

#### (5) 사용자 정의 연산(UDF)

기능	설정한 기본 측정 항목(플리커 측정 항목은 제외)의 파라미터를 지정 연산식으로 연산한다. 데이터 갱신율을 1 ms로 설정할 경우에는 연산 불가. ([]가 표시된다)
연산 항목	기본 측정 항목(플리커 측정 항목은 제외)이 최대 6자리인 정수를 16개, 연산자는 사칙연산자 UDFn = ITEM1
	ITEMn의 함수: neg (부호), sin, cos, tan, abs, log10 (상용로그), log, exp, sqrt, asin, acos, atan, sqr UDFn은 n의 순서로 연산하고 자신의 n 이상의 UDFn이 선택된 경우, 전회 연산값을 사용한다.
연산 가능 수	20식(UDF1 ~ UDF20)
최대치 설정	Fixed 또는 Auto를 UDFn별로 설정한다. Fixed: 1.000 n ~ 999.999 T의 범위에서 설정한다. Auto: 상위 6자리를 항상 표시한다. (유효 표시 범위 0 ~ ±999.999 Y) 최대치가 UDFn의 레인지로서 동작한다.
UDF 명	UDFn별로 ASCII로 최대 8자
단위	UDFn별로 ASCII로 최대 8자
적산	OFF/ON UDFn별로 설정 OFF: UDFn의 연산값을 표시한다. ON: UDFn의 연산식의 적산값을 UDFn에 표시한다. (유효 표시 범위 0 ~ ±999.999 Y) 적산값이 유효 표시 범위를 넘은 경우에는 그 이상 가산하지 않는다.

#### (6) 델타 변환

기능	∆-Y:	3P3W3M, 3V3A 결선 시에 가상 중성점을 이용해 선간 전압 파형을 상전압 파형으로 변환한다.
	<b>Υ-</b> Δ:	3P4W 결선 시에 상전압 파형을 선간 전압 파형으로 변환한다. 전압 실효치 등 고조파를 포함한 모든 전압 파라미터가 변환 후의 전압으로 연산된 다.
		단, 피크 오버는 변환 전의 값으로 판정한다.
연산식	∆-Y 3P3W3M:	U(i)s = (u(i)s - u(i+2)s) /3, U(i+1)s = (u(i+1)s - u(i)s) /3, U(i+2)s = (u(i+2)s - u(i+1)s)/3
	∆ <b>-</b> Y 3V3A:	U(i)s = (u(i)s - u(i+2)s)/3, $U(i+1)s = (u(i+2)s+u(i+1)s)/3$ , U(i+2)s = (-u(i+1)s - u(i)s)/3
	<b>Υ-</b> Δ:	u(i)s = U(i)s - U(i+1)s, $u(i+1)s = U(i+1)s - U(i+2)s$ , u(i+2)s = U(i+2)s - U(i)s
	(i): 측정 채널, u(	(x)s: 선간 전압 샘플링 값, U(x)s: 상전압 샘플링 값

#### (7) 전력 연산식 선택

기능	전력의 무효전력, 역률, 전력 위상각의 연산식을 선택한다. 참조: "10.5 연산식 사양" (p.283)	
연산식	TYPE1, TYPE2, TYPE3TYPE1:PW3390, 3193, 3390 각각의 TYPE1과 호환 가능.TYPE2:3192, 3193 각각의 TYPE2와 호환 가능.TYPE3:역률 부호에 유효전력 부호를 사용함.(TYPE1, TYPE2, TYPE3은 PW6001의 각 연산식 TYPE과 호환)	

#### (8) 전류 센서 위상 보정

기능	전류 센서의 고주파 위상 특성을 연산으로 보정한다.
동작 모드	OFF / ON / AUTO (채널별로 설정) AUTO는 자동 인식 기능에 대응하는 전류 센서 접속 시에 선택 가능.
보정치 설정	보정 포인트를 주파수와 위상차로 설정한다. 주파수: 0.1 kHz ~ 5000.0 kHz (0.1 kHz 스텝) 위상차: 0.000° ~ ±180.000° (0.001° 스텝) 동작 모드가 AUTO일 경우에는 전류 센서 접속 시에 자동으로 보정치가 설정된다.
최대 보정 범위	U7005: 약 9.4 μs U7001: 약 15.8 μs

#### (9) 전압 프로브 위상 보정

	;차: 0.000°~±180.000°(0.001°스텝)	110	
<b>보정치 설정</b> 보정 주피 위상	성 포인트를 주파수와 위상차로 설정한다. 남수: 0.1 kHz ~ 5000.0 kHz (0.1 kHz 스텝)	90 90	
동작 모드 OF	OFF / ON (채널별로 설정)		
<b>기능</b> 전입	전압 프로브의 고주파 위상 특성을 연산으로 보정한다.		

0

# 표시 기능

#### (1) 결선 확인 화면

기능	선택된 측정 라인 패턴에서 결선도와 단상 이외를 결선할 때는 전압 전류 벡터를 표시․ 벡터 표시에는 올바른 결선 시의 범위가 표시되고 결선 확인이 가능․
기동 시 모드	기동 시에 반드시 결선 확인 화면으로 하는 선택이 가능(기동 시 화면 설정)
간이 설정	결선별로 측정 대상을 선택하여 적합한 설정으로 전환한다․ [50/60Hz], [DC/WLTP], [PWM], [HIGH FREQ], [GENERAL]

#### (2) 벡터 표시 화면

기능	결선별 벡터 그래프와 그 레벨 수치, 위상각을 수치로 표시한다. 표시 차수와 벡터 배율 선택 가능.	
표시 패턴	1벡터: 2, 4벡터:	최대 8채널의 벡터를 그려낸다. 각각 선택한 결선의 벡터를 그려낸다.

#### (3) 수치 표시 화면

기능	탑재된 최대 8채널의 전력 측정치와 모터 측정치를 표시한다.				
표시 패턴	결선별 기본: 선택 표시:	결선 조합된 측정 라인과 모터의 측정치를 표시한다. 측정 라인은 U/ I/ P / Integ, Motor의 4패턴+1. 채널 표시 LED와 연동한다. 모든 기본 측정 항목에서 임의의 측정 항목을 임의의 위치에 수치로 표시한다. 8, 16, 36, 64의 표시 패턴.			

#### (4) 고조파 표시 화면

기능	고조파 측정치를 화면에 표시한다.				
표시 패턴	막대 그래프 표시: 리스트 표시:	지정 채널의 고조파 측정 항목을 막대 그래프로 표시한다. (최대 500차) 지정 채널의 지정 항목을 수치로 표시한다.			

#### (5) 파형 표시 화면

기능	전압 파형, 전류 파형 및 모터 파형을 표시한다.
표시 패턴	모든 파형 표시 파형 + 수치 표시, 줌 표시, FFT 표시 커서 측정 대응

. . . .

. . . . . . . . . . . . . . . . . . .

# 데이터 자동 저장 기능

기능	인터벌별로 그때의 지정 측정치를 저장한다. 시간 제어 기능으로 제어된다. DATA RESET 키가 눌러질 때까지 동일 파일에 기록한다.			
저장위치	OFF, USB 메모리 저장위치 폴더는 USB 메모리 내에서 지정 가능.			
저장항목	고조파 측정치를 포함한 모든 측정치에서 임의로 선택한다. 인터벌을 1 ms로 설정할 경우에는 고조파 측정치의 자동 저장은 불가.			
최대 저장 항목 수	인터벌 설정에 따라 가변.			
데이터 저장 인터벌	<ul> <li>OFF, 1 ms, 10 ms, 50 ms, 100 ms, 200 ms, 500 ms, 1 s, 5 s, 10 s, 15 s, 30 s, 1 min, 5 min, 10 min, 15 min, 30 min, 60 min 단, 데이터 갱신율 미만의 설정은 할 수 없다.</li> <li>WideBand 광대역 측정 모드일 때, 데이터 갱신율을 200 ms로 설정하면 500 ms는 선택 불가.</li> <li>IFC 측정 모드일 때, 데이터 객실용을 200 ms로 성정하면 100 ms, 500 ms는 선택 가능</li> </ul>			
최대 저장 데이터	1파일당 약 500 MB (자동 분할)×1000파일. 데이터가 가득 찼을 때 자동으로 삭제하는 기능은 없음.			
데이터 형식	구분 문자의 선택에 따른 구분 문자의 전환 기능 있음. CSV: 측정 데이터의 구분은 콤마(,), 소수점은 피리어드(.) SSV: 측정 데이터의 구분은 세미콜론(;), 소수점은 콤마(,) BIN: GENNECT One에서 가져올 수 있는 공통 파일 포맷 형식			
파일명	시작 시의 일시에서 자동 작성한다.			

-----

사량 **10** 

# 데이터 수동 저장 기능

#### (1) 측정 데이터

#### 기능 SAVE 키를 누른 시점의 측정치를 저장한다. 설정이 변경될 때까지 또는 DATA RESET 키가 눌러질 때까지 같은 파일에 데이터를 출력한다. 저장위치 USB 메모리 저장항목 고조파 측정치를 포함한 모든 측정치에서 임의로 선택한다. 최대 저장 데이터 1 파일당 500 MB (자동 분할) 데이터 형식 CSV, SSV 파일명 자동 작성

#### (2) 파형 데이터

(=) -18 -101-1	
기능	파형 화면에서 <b>[SAVE] - [Waveforms]</b> (터치패널)가 눌러진 시점에서 파형을 설정된 형식으로 저 장한다.
저장위치	USB 메모리
저장항목	파형 화면에서 표시하고 있는 파형 데이터
최대 저장 데이터	약 400 MB (바이너리 형식일 때) 약 2 GB (텍스트 형식) 1파일당 500 MB (자동 분할)
데이터 형식	CSV, SSV, BIN, MAT
파일명	자동 작성

#### (3) FFT 데이터

기능	파형+FFT 화면에서 터치패널의 저장 버튼을 누른 타이밍에 FFT 연산 결과의 데이터를 저장
저장위치	USB메모리
저장항목	파형+FFT 화면에서 표시하고 있는 FFT 데이터
최대 저장 항목 수	화면 표시 수와 동일
최대 저장 데이터	112 MB (텍스트 형식 시) 1파일당 1,000,000 데이터 (자동 분할)
데이터 형식	CSV / SSV 형식
파일명	자동 생성

#### (4) 화면 하드카피

기능	COPY 키를 눌렀을 때의 화면을 PNG 형식으로 저장한다. 설정 일람 화면 저장 기능 코멘트 추가 기능 자유 그리기 기능 (코멘트 추가와 자유 묘화는 중복 선택 불가)
저장위치	USB 메모리 또는 FTP 서버
저장항목	화면 데이터
데이터 형식	PNG
파일명	자동 작성

#### (5) 설정 데이터

기능	[FILE] 화면에서 각종 설정 정보를 설정 파일로 저장한다. 또한, [FILE] 화면에서 저장한 설정 파일을 로드하여 설정을 복원할 수 있다. 단, 언어 설정과 통신 설정은 제외. 설정 일람을 표시한 이미지에 설정 데이터를 삽입하고 있어 이미지 뷰어로 열 수 있다.
저장위치	USB 메모리 또는 FTP 서버
저장항목	설정 데이터
데이터 형식	SET
파일명	저장 시에 설정된 파일명(최대 8자)

#### (6) CAN 출력 설정 데이터

기능	[CAN OUTPUT] 화면에서 데이터 출력 설정을 DBC 파일로 저장한다.			
저장위치	USB 메모리 또는 FTP 서버			
저장항목	출력 설정 데이터			
데이터 형식	DBC			
파일명	저장 시에 설정된 파일명(최대 8자)			

#### (7) 사용자 정의 연산(UDF) 설정 데이터

기능	[UDF] 화면에서 사용자 정의 연산식을 JSON 파일로 저장한다. 또한, [UDF] 화면 또는 [FILE] 화면에서 저장한 JSON 파일을 로드하여 연산식을 복원할 수 있다. 로드한 연산식에 무효한 연산 항목(유닛, 옵션 구성, 기타 설정에 의해 선택할 수 없는 항목)이 포함 된 경우에는 연산 불가.([] 표시)
저장위치	USB 메모리 또는 FTP 서버
저장항목	사용자 정의 연산식
데이터 형식	JSON
파일명	저장 시에 설정된 파일명(최대 8자)

# 그 밖의 기능

시계 기능	시계 기능       자동 달력, 윤년 자동 판별, 24 시간계         실시간 정확도       전원 ON일 때: ±100 ppm         전원 OFF일 때: ±3 s/일 이내(25°C)				
실시간 정확도					
센서 식별	입력 유닛에 접속된 전류 센서를 자동으로 식별한다. 센서 레인지, 센서 삽입 및 제거를 검출하여 경고 다이얼로그를 표시한다. 전류 센서에 위상 보정 데이터가 있는 경우에는 보정치를 반영한다.				
제로 서프레스 기능	<ul> <li>OFF / ON (0.5% f.s.)에서 선택한다.</li> <li>ON의 경우, 0.5% of full scale 을 밑도는 측정 항목을 0으로 변경한다.</li> <li>대상의 측정 항목은 "10.4 측정 항목 상세 사양" (p.274)에 기재.</li> </ul>				

# 10.4 측정 항목 상세 사양

# 기본 측정 항목

#### (1) 전력 측정 항목

	측정 항목	표기	1P2W	1P3W/3P3W2M	3P3W3M/3V3A	3P4W
	실효치	Urms	i	i, i+1, (i, i+1)	i, i+1, i+2, (i, i+1, i+2)	i, i+1, i+2, (i, i+1, i+2)
	평균치 정류 실효값 환산치	Umn	i	i, i+1, (i, i+1)	i, i+1, i+2, (i, i+1, i+2)	i, i+1, i+2, (i, i+1, i+2)
	교류 성분	Uac	i	i, i+1	i, i+1, i+2	i, i+1, i+2
	단순 평균치	Udc	i	i, i+1	i, i+1, i+2	i, i+1, i+2
전   아	기본파 성분	Ufnd	i	i, i+1	i, i+1, i+2	i, i+1, i+2
Π Π	파형 피크 +	Upk+	i	i, i+1	i, i+1, i+2	i, i+1, i+2
	파형 피크 -	Upk-	i	i, i+1	i, i+1, i+2	i, i+1, i+2
	총 고조파 왜곡률	Uthd	i	i, i+1	i, i+1, i+2	i, i+1, i+2
	리플률	Urf	i	i, i+1	i, i+1, i+2	i, i+1, i+2
	불평형률	Uunb	_	-	(i, i+1, i+2)	(i, i+1, i+2)
	실효치	Irms	i	i, i+1, (i, i+1)	i, i+1, i+2, (i, i+1, i+2)	i, i+1, i+2, (i, i+1, i+2)
	평균치 정류 실효값 환산치	Imn	i	i, i+1, (i, i+1)	i, i+1, i+2, (i, i+1, i+2)	i, i+1, i+2, (i, i+1, i+2)
	교류 성분	lac	i	i, i+1	i, i+1, i+2	i, i+1, i+2
	단순 평균치	ldc	i	i, i+1	i, i+1, i+2	i, i+1, i+2
전 	기본파 성분	lfnd	i	i, i+1	i, i+1, i+2	i, i+1, i+2
Π	파형 피크 +	lpk+	i	i, i+1	i, i+1, i+2	i, i+1, i+2
	파형 피크 <b>-</b>	lpk-	i	i, i+1	i, i+1, i+2	i, i+1, i+2
	총 고조파 왜곡률	Ithd	i	i, i+1	i, i+1, i+2	i, i+1, i+2
	리플률	Irf	i	i, i+1	i, i+1, i+2	i, i+1, i+2
	불평형률	lunb	_	_	(i, i+1, i+2)	(i, i+1, i+2)
유3	호전력	Р	i	i, i+1, (i, i+1)	i, i+1, i+2, (i, i+1, i+2)	i, i+1, i+2, (i, i+1, i+2)
기분	본파 유효전력	Pfnd	i	i, i+1, (i, i+1)	i, i+1, i+2, (i, i+1, i+2)	i, i+1, i+2, (i, i+1, i+2)
피경	상전력	S	i	i, i+1, (i, i+1)	i, i+1, i+2, (i, i+1, i+2)	i, i+1, i+2, (i, i+1, i+2)
기분	기본파 피상전력		i	i, i+1, (i, i+1)	i, i+1, i+2, (i, i+1, i+2)	i, i+1, i+2, (i, i+1, i+2)
무효전력		Q	i	i, i+1, (i, i+1)	i, i+1, i+2, (i, i+1, i+2)	i, i+1, i+2, (i, i+1, i+2)
기본파 무효전력		Qfnd	i	i, i+1, (i, i+1)	i, i+1, i+2, (i, i+1, i+2)	i, i+1, i+2, (i, i+1, i+2)
역률		λ	i	i, i+1, (i, i+1)	i, i+1, i+2, (i, i+1, i+2)	i, i+1, i+2, (i, i+1, i+2)
기본파 역률		λfnd	i	i, i+1, (i, i+1)	i, i+1, i+2, (i, i+1, i+2)	i, i+1, i+2, (i, i+1, i+2)
위	전압 위상각	θU	i	i, i+1	i, i+1, i+2	i, i+1, i+2
상	전류 위상각	θl	i	i, i+1	i, i+1, i+2	i, i+1, i+2
각	전력 위상각	φ	i	i, i+1, (i, i+1)	i, i+1, i+2, (i, i+1, i+2)	i, i+1, i+2, (i, i+1, i+2)

i: CH1 ~ CH8 중, 실장된 채널 (): SUM 값을 나타냄

	측정 항목	표기	단위	표시 범위	극성 <b>(+/-)</b>
	실효치	Urms	V	U 레인지의 zero ~ 150%* ¹	
	평균치 정류 실효값 환산치	Umn	V	U 레인지의 zero ~ 150%* ¹	
	교류 성분	Uac	V	U 레인지의 zero ~ 150%* ¹	
	단순 평균치	Udc	V	U 레인지의 zero ~ 150%* ²	~
저아	기본파 성분	Ufnd	V	U 레인지의 zero ~ 150%* ¹	
신답	파형 피크 +	Upk+	V	U 레인지의 zero ~ 300%* ²	✓
	파형 피크 <b>-</b>	Upk-	V	U 레인지의 zero ~ 300%* ²	✓
	총 고조파 왜곡률	Uthd	%	0.000 ~ 500.000	
	리플률	Urf	%	0.000 ~ 500.000	
	불평형률	Uunb	%	0.000 ~ 100.000	
	실효치	Irms	А	l 레인지의 zero ~ 150%	
	평균치 정류 실효값 환산치	Imn	А	l 레인지의 zero ~ 150%	
	교류 성분	lac	А	l 레인지의 zero ~ 150%	
	단순 평균치	ldc	A	l 레인지의 zero ~ 150%	✓
저르	기본파 성분	lfnd	A	l 레인지의 zero ~ 150%	
12m	파형 피크 +	lpk+	А	l 레인지의 zero ~ 300%* ³	✓
	파형 피크 -	lpk-	А	l 레인지의 zero ~ 300%* ³	✓
	총 고조파 왜곡률	Ithd	%	0.000 ~ 500.000	
	리플률	Irf	%	0.000 ~ 500.000	
	불평형률	lunb	%	0.000 ~ 100.000	
유효전력	4	Р	W	P 레인지의 zero ~ 150%	$\checkmark$
기본파	유효전력	Pfnd	W	P 레인지의 zero ~ 150%	✓
피상전력	벽	S	VA	P 레인지의 zero ~ 150%	
기본파	피상전력	Sfnd	VA	P 레인지의 zero ~ 150%	
무효전력	벽	Q	Var	P 레인지의 zero ~ 150%	$\checkmark$
기본파	무효전력	Qfnd	Var	P 레인지의 zero ~ 150%	$\checkmark$
역률		λ	-	0.00000 ~ 1.00000	$\checkmark$
기본파 '	역률	λfnd	-	0.00000 ~ 1.00000	$\checkmark$
	전압 위상각	θU	0	0.000 ~ 180.000	✓
위상각	전류 위상각	θI	0	0.000 ~ 180.000	~
	전력 위상각	φ	0	0.000 ~ 180.000	~

*1:1500 V 레인지일 때만 135%

델타 변환 기능 시에도 이 범위는 변경하지 않음

*2: 1500 V 레인지일 때만 135%

*3 : Probe2의 5 V 레인지만 150%

전압 파형 피크 Upk+/ Upk- 중 어느 하나 또는 전류 파형 피크 lpk+/ lpk-중 어느 하나가 표시 범위를 넘은 경우에 피크 오버 검출로 한다.

zero:제로 서프레스 설정값 (OFF: 0%, ON: 0.5%)

10

사 양

#### (2) 적산 측정 항목

	측정 항목	표기	1P2W	1P3W/3P3W2M	3P3W3M/3V3A	3P4W
	+방향 전류량 * ¹	lh+	i	-	-	-
	-방향 전류량* ¹	lh-	i	-	-	-
저사	+/-방향 전류량 합	lh	i	i	i	i
적신	+방향 전력량	WP+	i	(i, i+1)	(i, i+1, i+2)	(i, i+1, i+2)
	-방향 전력량	WP-	i	(i, i+1)	(i, i+1, i+2)	(i, i+1, i+2)
	+/-방향 전력량 합	WP	i	(i, i+1)	(i, i+1, i+2)	(i, i+1, i+2)

i: CH1 ~ CH8 중, 실장된 채널

(): SUM 값을 나타냄

*1: 적산 모드가 DC 모드인 채널만

	측정 항목	표기	단위	표시 범위	극성 <b>(+/-)</b>
	+방향 전류량	lh+	Ah	l 레인지의 zero ~ 1% ~ *²	
	-방향 전류량	lh-	Ah	l 레인지의 zero ~ 1% ~ *²	*3
7411	+/-방향 전류량 합	lh	Ah	l 레인지의 zero ~ 1% ~ *²	$\checkmark$
직신	+방향 전력량	WP+	Wh	P 레인지의 zero ~ 1% ~ *²	
	-방향 전력량	WP-	Wh	P 레인지의 zero ~ 1% ~ *²	*3
	+/-방향 전력량 합	WP	Wh	P 레인지의 zero ~ 1% ~ * ²	$\checkmark$

*2: +, -, +/-는 동일 레인지로 하고, 어느 하나의 최대치를 표시할 수 있는 자릿수로 표시한다

*3: 항상 마이너스 부호

zero: 제로 서프레스 설정값 (OFF: 0%, ON: 0.5%)

#### (3) 주파수, 연산 측정 항목

측정 항목	표기	단위	채널	표시 범위	극성 <b>(+/-)</b>
전압 주파수	fU	Hz	i	0.00000 Hz ~ 2.00000 MHz	
전류 주파수	fl	Hz	i	0.00000 Hz ~ 2.00000 MHz	
효율	η	%	1, 2, 3, 4	0.000 ~ 200.000	
손실	Loss	W	1, 2, 3, 4	P 레인지의 150%	✓
사용자 정의 연산	UDF	Free*	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20	설정치	~

i: CH1 ~ CH8 중 , 실장된 채널

*: 자유롭게 설정 가능

#### (4) 모터 해석 측정 항목 (모터 해석 옵션 탑재 시에만)

	CF	CH A CH B			CH	C	CH D	
결선 패턴	입력 항목	표기	입력 항목	표기	입력 항목	표기	입력 항목	표기
Individual Input	전압 /펄스	CHA	펄스	CH B	전압 /펄스	СН С	펄스	CH D
	Motor 1				Motor 2			
Torque Speed (Pulse)	토크* ¹	Tq1	회전수	Spd1	토크* ¹	Tq2	회전수	Spd2
				Mot	or 1			
Torque Speed Direction Origin	<u>토크</u> * ¹	Tq1	회전수	Spd1	회전 방향	_	Z상	_
Torque Speed Direction	토크* ¹	Tq1	회전수	Spd1	회전 방향	_	OFF	_
Torque Speed Origin	토크* ¹	Tq1	회전수	Spd1	OFF	_	Z상	_
Torque Speed (Analog)	토크* ¹	Tq1	OFF	_	회전수	Spd1	OFF	_

	CF	CH E		CH F		CH G		СН Н	
결선 패턴	입력 항목	표기	입력 항목	표기	입력 항목	표기	입력 항목	표기	
Individual Input	전압/ 펄스	CH E	펄스	CH F	전압/ 펄스	CH G	펄스	СН Н	
	Motor 3				Motor 4				
Torque Speed (Pulse)	토크* ¹	Tq3	회전수	Spd3	토크* ¹	Tq4	회전수	Spd4	
				Mot	or 3				
Torque Speed Direction Origin	<u>토크</u> * ¹	Tq3	회전수	Spd3	회전 방향	-	Z상	_	
Torque Speed Direction	토크* ¹	Tq3	회전수	Spd3	회전 방향	—	OFF	—	
Torque Speed Origin	토크* ¹	Tq3	회전수	Spd3	OFF	_	Z상	_	
Torque Speed (Analog)	토크* ¹	Tq3	OFF	_	회전수	Spd3	OFF	_	

*1 : 아날로그 DC 입력과 주파수 입력의 전환

#### 측정 항목의 단위, 표시 범위

	측정 항목	설정	단위	표시 범위 * ²	극성 <b>(+/-)</b>
	E 3	아날로그 DC	Nm	레인지의 zero ~ 150%	✓
CH A,	노그	주파수	INIII	정격 토크 설정치의 0% ~ 150%	✓
CHE	전압	아날로그 DC	V, 임의	레인지의 zero ~ 150%	✓
	펄스 주파수	펄스	Hz		
CH B,	회전수	펄스	r/min		
CH F	펄스 주파수	펄스	Hz		
	FD	아날로그 DC	Nm	레인지의 zero ~ 150%	✓
	노그	주파수	INITI	정격 토크 설정치의 0% ~ 150%	$\checkmark$
	회전수	아날로그 DC	r/min	레인지의 zero ~ 150%	✓
	전압	아날로그 DC	V, 임의	레인지의 zero ~ 150%	✓
	펄스 주파수	펄스	Hz		
CH D,	회전수	펄스	r/min		
СНН	펄스 주파수	펄스	Hz		
Pm	모터 파워		W	Pm 레인지의 zero ~ 150%	$\checkmark$
Slip	미끄럼		%	0.000 ~ 100.000	$\checkmark$

*2: 스케일링이 걸려 있는 경우에는 레인지에 스케일링을 가미한다. zero: 제로 서프레스 설정값 (OFF: 0%, ON: 0.5%) 모터 해석 측정 항목의 측정치는 피크 오버 검출을 하지 않습니다.

#### (5) 플리커 측정 항목 (IEC 측정 모드일 때만)

측정 항목	표기	1P2W	1P3W/3P3W2M	3P3W3M/3V3A	3P4W
단기 플리커 값	Pst	i	i	i	i
단기 플리커 최대값	PstMax	i	i	i	i
장기 플리커 값	Plt	i	i	i	i
순시 플리커 최대값	PinstMax	i	i	i	i
순시 플리커 최소값	PinstMin	i	i	i	i
상대 정상 전압 변화	dc	i	i	i	i
최대 상대 전압 변화	dmax	i	i	i	i
상대 전압 변화가 역치를 초과하는 시 간	Tmax	i	i	i	i

i: CH1 ~ CH8 중, 실장된 채널

측정 항목	표기	단위	표시 범위	극성 <b>(+/-)</b>
단기 플리커 값	Pst	-	0.001 ~	없음
단기 플리커 최대값	PstMax	-	0.001 ~	
장기 플리커 값	Plt	-	0.001 ~	
순시 플리커 최대값	PinstMax	-	0.001 ~	
순시 플리커 최소값	PinstMin	-	0.001 ~	
상대 정상 전압 변화	dc	%	0.001 ~ 999.999	
최대 상대 전압 변화	dmax	%	0.001 ~ 999.999	
상대 전압 변화가 역치를 초과하는 시 간	Tmax	S	0.001 m ~	

## 고조파 측정 항목

측정 항목	표기	1P2W	1P3W/3P3W2M	3P3W3M/3V3A	3P4W
고조파 전압 실효치	Uk	i	i	i	i
고조파 전압 위상각	θUk	i	i	i	i
고조파 전류 실효치	lk	i	i	i	i
고조파 전류 위상각	θlk	i	i	i	i
고조파 유효전력	Pk	i	i, (i, i+1)	i, (i, i+1, i+2)	i, (i, i+1, i+2)
고조파 전압 전류 위상차	θk	i	i, (i, i+1)	i, (i, i+1, i+2)	i, (i, i+1, i+2)
고조파 전압 함유율	HDUk	i	i	i	i
고조파 전류 함유율	HDIk	i	i	i	i
고조파 전력 함유율	HDPk	i	i, (i, i+1)	i, (i, i+1, i+2)	i, (i, i+1, i+2)

i: CH1 ~ CH8 중, 실장된 채널

측정 항목	표기	단위	표시 범위	극성 <b>(+/-)</b>
고조파 전압 실효치	Uk	V	U 레인지의 0% ~ 150%	*
고조파 전압 위상각	θUk	0	0.000 ~ 180.000	$\checkmark$
고조파 전류 실효치	lk	А	l 레인지의 0% ~ 150%	*
고조파 전류 위상각	θlk	0	0.000 ~ 180.000	$\checkmark$
고조파 유효전력	Pk	W	P 레인지의 0% ~ 150%	$\checkmark$
고조파 전압 전류 위상차	θk	0	0.000 ~ 180.000	$\checkmark$
고조파 전압 함유율	HDUk	%	0.000 ~ 100.000	*
고조파 전류 함유율	HDIk	%	0.000 ~ 100.000	*
고조파 전력 함유율	HDPk	%	0.000 ~ 100.000	$\checkmark$

*: 0차 성분에만 +/-의 극성 부호가 붙는 항목

### 중간 고조파 측정 항목 (IEC 측정 모드일 때만)

측정 항목	표기	1P2W	1P3W/3P3W2M	3P3W3M/3V3A	3P4W
중간 고조파 전압 실효값	iUk	i	i	i	i
중간 고조파 전압 함유율	iHDUk	i	i	i	i
중간 고조파 전류 실효값	ilk	i	i	i	i
중간 고조파 전류 함유율	iHDlk	i	i	i	i

i: CH1 ~ CH8 중, 실장된 채널

측정 항목	표기	단위	표시 범위	극성 <b>(+/-)</b>
중간 고조파 전압 실효값	iUk	V	U 레인지의 0% ~ 150%	없음
중간 고조파 전압 함유율	iHDUk	%	0.000 ~ 100.000	
중간 고조파 전류 실효값	ilk	А	I 레인지의 0% ~ 150%	
중간 고조파 전류 함유율	iHDlk	%	0.000 ~ 100.000	

샹 10

#### 전력 레인지 구성

#### (1) 20 A 센서일 때

전	압/결선/전류	400.000 mA	800.000 mA	2.00000 A	4.00000 A	8.00000 A	20.0000 A
>	1P2W	2.40000	4.80000	12.0000	24.0000	48.0000	120.000
00000	1P3W, 3V3A 3P3W (2M, 3M)	4.80000	9.60000	24.0000	48.0000	96.0000	240.000
<u>.</u>	3P4W	7.20000	14.4000	36.0000	72.0000	144.000	360.000
>	1P2W	6.00000	12.0000	30.0000	60.0000	120.000	300.000
5.0000	1P3W, 3V3A 3P3W (2M, 3M)	12.0000	24.0000	60.0000	120.000	240.000	600.000
15	3P4W	18.0000	36.0000	90.0000	180.000	360.000	900.000
>	1P2W	12.0000	24.0000	60.0000	120.000	240.000	600.000
0000.	1P3W, 3V3A 3P3W (2M, 3M)	24.0000	48.0000	120.000	240.000	480.000	1.20000 k
30	3P4W	36.0000	72.0000	180.000	360.000	720.000	1.80000 k
>	1P2W	24.0000	48.0000	120.000	240.000	480.000	1.20000 k
0000.	1P3W, 3V3A 3P3W (2M, 3M)	48.0000	96.0000	240.000	480.000	960.000	2.40000 k
90	3P4W	72.0000	144.000	360.000	720.000	1.44000 k	3.60000 k
>	1P2W	60.0000	120.000	300.000	600.000	1.20000 k	3.00000 k
000.00	1P3W, 3V3A 3P3W (2M, 3M)	120.000	240.000	600.000	1.20000 k	2.40000 k	6.00000 k
15	3P4W	180.000	360.000	900.000	1.80000 k	3.60000 k	9.00000 k
>	1P2W	120.000	240.000	600.000	1.20000 k	2.40000 k	6.00000 k
000.00	1P3W, 3V3A 3P3W (2M, 3M)	240.000	480.000	1.20000 k	2.40000 k	4.80000 k	12.0000 k
30	3P4W	360.000	720.000	1.80000 k	3.60000 k	7.20000 k	18.0000 k
>	1P2W	240.000	480.000	1.20000 k	2.40000 k	4.80000 k	12.0000 k
000.00	1P3W, 3V3A 3P3W (2M, 3M)	480.000	960.000	2.40000 k	4.80000 k	9.60000 k	24.0000 k
90	3P4W	720.000	1.44000 k	3.60000 k	7.20000 k	14.4000 k	36.0000 k
Ş	1P2W	600.000	1.20000 k	3.00000 k	6.00000 k	12.0000 k	30.0000 k
20000	1P3W, 3V3A 3P3W (2M, 3M)	1.20000 k	2.40000 k	6.00000 k	12.0000 k	24.0000 k	60.0000 k
1.5	3P4W	1.80000 k	3.60000 k	9.00000 k	18.0000 k	36.0000 k	90.0000 k

유효전력 (P)일 때의 단위는 "W", 피상전력 (S)일 때의 단위는 "VA", 무효전력 (Q)일 때의 단위는 "var" 2 A 센서일 때는 이 표의 1/10 배, 200 A 센서일 때는 10 배, 2 kA 센서일 때는 100 배의 레인지

#### (2) 50 A 센서일 때

전	압/결선/전류	1.00000 A	2.00000 A	5.00000 A	10.0000 A	20.0000 A	50.0000 A
>	1P2W	6.00000	12.0000	30.0000	60.0000	120.000	300.000
00000	1P3W, 3V3A 3P3W (2M, 3M)	12.0000	24.0000	60.0000	120.000	240.000	600.000
.0	3P4W	18.0000	36.0000	90.0000	180.000	360.000	900.000
>	1P2W	15.0000	30.0000	75.0000	150.000	300.000	750.000
0000	1P3W, 3V3A 3P3W (2M, 3M)	30.0000	60.0000	150.000	300.000	600.000	1.50000 k
47	3P4W	45.0000	90.0000	225.000	450.000	900.000	2.25000 k
>	1P2W	30.0000	60.0000	150.000	300.000	600.000	1.50000 k
0000.	1P3W, 3V3A 3P3W (2M, 3M)	60.0000	120.000	300.000	600.000	1.20000 k	3.00000 k
30	3P4W	90.0000	180.000	450.000	900.000	1.80000 k	4.50000 k
>	1P2W	60.0000	120.000	300.000	600.000	1.20000 k	3.00000 k
0000.	1P3W, 3V3A 3P3W (2M, 3M)	120.000	240.000	600.000	1.20000 k	2.40000 k	6.00000 k
00	3P4W	180.000	360.000	900.000	1.80000 k	3.60000 k	9.00000 k
>	1P2W	150.000	300.000	750.000	1.50000 k	3.00000 k	7.50000 k
20.000	1P3W, 3V3A 3P3W (2M, 3M)	300.000	600.000	1.50000 k	3.00000 k	6.00000 k	15.0000 k
1	3P4W	450.000	900.000	2.25000 k	4.50000 k	9.00000 k	22.5000 k
>	1P2W	300.000	600.000	1.50000 k	3.00000 k	6.00000 k	15.0000 k
000.00	1P3W, 3V3A 3P3W (2M, 3M)	600.000	1.20000 k	3.00000 k	6.00000 k	12.0000 k	30.0000 k
30	3P4W	900.000	1.80000 k	4.50000 k	9.00000 k	18.0000 k	45.0000 k
>	1P2W	600.000	1.20000 k	3.00000 k	6.00000 k	12.0000 k	30.0000 k
000.00	1P3W, 3V3A 3P3W (2M, 3M)	1.20000 k	2.40000 k	6.00000 k	12.0000 k	24.0000 k	60.0000 k
00	3P4W	1.80000 k	3.60000 k	9.00000 k	18.0000 k	36.0000 k	90.0000 k
Ž	1P2W	1.50000 k	3.00000 k	7.50000 k	15.0000 k	30.0000 k	75.0000 k
50000	1P3W, 3V3A 3P3W (2M, 3M)	3.00000 k	6.00000 k	15.0000 k	30.0000 k	60.0000 k	150.000 k
	3P4W	4.50000 k	9.00000 k	22.5000 k	45.0000 k	90.0000 k	225.000 k

유효전력 (P)일 때의 단위는 "W", 피상전력 (S)일 때의 단위는 "VA", 무효전력 (Q)일 때의 단위는 "var" 5 A 센서일 때는 이 표의 1/10 배, 500 A 센서일 때는 10 배, 5 kA 센서일 때는 100 배의 레인지

^상량 10

#### (3) 1 kA 센서일 때

전	압/결선/전류	20.0000 A	40.0000 A	100.000 A	200.000 A	400.000 A	1.00000 kA
>	1P2W	120.000	240.000	600.000	1.20000 k	2.40000 k	6.00000 k
00000	1P3W, 3V3A 3P3W (2M, 3M)	240.000	480.000	1.20000 k	2.40000 k	4.80000 k	12.0000 k
Ö	3P4W 360.000		720.000	1.80000 k	3.60000 k	7.20000 k	18.0000 k
>	1P2W	300.000	600.000	1.50000 k	3.00000 k	6.00000 k	15.0000 k
5.0000	1P3W, 3V3A 3P3W (2M, 3M)	600.000	1.20000 k	3.00000 k	6.00000 k	12.0000 k	30.0000 k
15	3P4W	900.000	1.80000 k	4.50000 k	9.00000 k	18.0000 k	45.0000 k
>	1P2W	600.000	1.20000 k	3.00000 k	6.00000 k	12.0000 k	30.0000 k
0000.(	1P3W, 3V3A 3P3W (2M, 3M)	1.20000 k	2.40000 k	6.00000 k	12.0000 k	24.0000 k	60.0000 k
30	3P4W	1.80000 k	3.60000 k	9.00000 k	18.0000 k	36.0000 k	90.0000 k
>	1P2W	1.20000 k	2.40000 k	6.00000 k	12.0000 k	24.0000 k	60.0000 k
0000	1P3W, 3V3A 3P3W (2M, 3M)	2.40000 k	4.80000 k	12.0000 k	24.0000 k	48.0000 k	120.000 k
00	3P4W	3.60000 k	7.20000 k	18.0000 k	36.0000 k	72.0000 k	180.000 k
>	1P2W	3.00000 k	6.00000 k	15.0000 k	30.0000 k	60.0000 k	150.000 k
000.00	1P3W, 3V3A 3P3W (2M, 3M)	6.00000 k	12.0000 k	30.0000 k	60.0000 k	120.000 k	300.000 k
15	3P4W	9.00000 k	18.0000 k	45.0000 k	90.0000 k	180.000 k	450.000 k
>	1P2W	6.00000 k	12.0000 k	30.0000 k	60.0000 k	120.000 k	300.000 k
000.00	1P3W, 3V3A 3P3W (2M, 3M)	12.0000 k	24.0000 k	60.0000 k	120.000 k	240.000 k	600.000 k
30	3P4W	18.0000 k	36.0000 k	90.0000 k	180.000 k	360.000 k	900.000 k
>	1P2W	12.0000 k	24.0000 k	60.0000 k	120.000 k	240.000 k	600.000 k
000.00	1P3W, 3V3A 3P3W (2M, 3M)	24.0000 k	48.0000 k	120.000 k	240.000 k	480.000 k	1.20000 M
00	3P4W	36.0000 k	72.0000 k	180.000 k	360.000 k	720.000 k	1.80000 M
Ž	1P2W	30.0000 k	60.0000 k	150.000 k	300.000 k	600.000 k	1.50000 M
20000	1P3W, 3V3A 3P3W (2M, 3M)	60.0000 k	120.000 k	300.000 k	600.000 k	1.20000 M	3.00000 M
	3P4W	90.0000 k	180.000 k	450.000 k	900.000 k	1.80000 M	4.50000 M

유효전력 (P)일 때의 단위는 "W", 피상전력 (S)일 때의 단위는 "VA", 무효전력 (Q)일 때의 단위는 "var"

. . . . . . . . . . .

# 10.5 연산식 사양

# 기본 측정 항목의 연산식

결선 설정 항목	1P2W	1P3W	3P3W2M	3V3A	3P3W3M	3P4W			
전압 실효치	$Urms_{(i)} = \sqrt{\frac{1}{M} \sum_{s=0}^{M-1} (U_{(i)s})^2}$	$Urms_{(i)(i+1)} = \frac{1}{2} (Urms_{(i)})$	$_{0}+Urms_{(i+1)})$	$Urms_{(i)(i+1)(i+2)} =$	$\frac{1}{3}(Urms_{(i)}+Urms_{(i)})$	$s_{(i+1)} + Urms_{(i+2)}$ )			
전압 평균치 정류 실효값 환산치	$Umn_{(i)} = \frac{\pi}{2\sqrt{2}} \frac{1}{M} \sum_{s=0}^{M-1}  U_{(i)s} $	$ \int_{0}^{1}  U_{(i)s}  \left  \begin{array}{c} Umn_{(i)(i+1)} \\ = \frac{1}{2} \left( Umn_{(i)} + Umn_{(i+1)} \right) \end{array} \right  \qquad Umn_{(i)(i+1)(i+2)} = \frac{1}{3} \left( Umn_{(i)} + Umn_{(i+1)} + Umn_{(i+2)} \right) $							
전압 교류 성분		$Uac_{(i)} = \sqrt{\left(Urms_{(i)}\right)^2 \cdot \left(Udc_{(i)}\right)^2}$							
전압 단순 평균치		i	$Udc_{(i)} = \frac{1}{M} \sum_{s=0}^{M-1} U_{(i)}$	5					
전압 기본파 성분		-	고조파 연산식의 그	고조파 전압의 $U_{\mathrm{l}(i)}$					
전압 피크		i	$Upk+_{(i)} = U_{(i)s} M7H$ $Upk{(i)} = U_{(i)s} M7H$	중의 최대치 중의 최소치					
전압 종합 고조파 왜곡률			고조파 연산식의 <i>U</i>	$Jthd_{(i)}$					
전압 리플률			$\frac{\left(Upk+_{(i)}-Upk{(i)}\right)}{\left(2\times\left Udc_{(i)}\right \right)}$	×100					
전압 위상각			고조파 연산식의 $ heta$	$U_{1(i)}$					
전압 불평형률				$Uunb_{(i)(i+1)(i+2)} = \sqrt{\beta} = \frac{U}{U}$ 예: CH1~CH3 $\beta = -\frac{U}{U}$ • $U_{12}, U_{23}, U_{31} = -\frac{U}{U}$ 전압 실효치 (선 • 3P4W 일 때는 으로 변환하여 5	$\frac{1-\sqrt{3-6\beta}}{1+\sqrt{3-6\beta}} \times 100$ $\frac{4}{(i)(i+1)} + U^{4}_{(i+1)(i+2)} + U^{2}_{(i+1)(i+2)} + U^{2}_{(i+1)(i+2)} + U^{2}_{(i+1)(i+2)} + U^{4}_{(i+1)(i+2)} +$	( <i>i</i> +2)( <i>i</i> ) ( <i>j</i> ² ( <i>i</i> +2)( <i>i</i> ) ² 결과에서 기본파 한다. 되는데 선간 전압			
(i): 측정 채널, M: 등	동기 타이밍 간 샘	플 수, <i>s</i> : 샘플 포언	빈트 넘버						

사 양

10

결선 설정 항목	1P2W	1P3W	3P3W2M	3V3A	3P3W3M	3P4W
전류 실효치	$Irms_{(i)} = \sqrt{\frac{I}{M} \sum_{s=0}^{M-1} (I_{(i)s})^2}$	$Irms_{(i)(i+1)} = \frac{1}{2} \left( Irms_{(i)} \right)$	$+ Irms_{(i+1)})$	$Irms_{(i)(i+1)(i+2)} =$	$= \frac{1}{3} \left( Irms_{(i)} + Irms_{(i)} \right)$	$_{(i+1)} + Irms_{(i+2)})$
전류 평균치 정류 실효값 환산치	$Imn_{(i)} = \frac{\pi}{2\sqrt{2}} \frac{1}{M} \sum_{s=0}^{M-1}  I_{(i)s} $	$Imn_{(i)} = Imn_{(i)(i+1)} = \frac{1}{2\sqrt{2}} \frac{1}{M} \sum_{s=0}^{M-1}  I_{(i)s}  = \frac{1}{2} (Imn_{(i)} + Imn_{(i+1)}) Imn_{(i+1)} = \frac{1}{3} (Imn_{(i)} + Imn_{(i+1)} + Imn_{(i+1)})$				
전류 교류 성분		1	$ac_{(i)} = \sqrt{\left(Irms_{(i)}\right)^2} -$	$\left(Idc_{(i)}\right)^2$		
전류 단순 평균치		1	$Udc_{(i)} = \frac{1}{M} \sum_{s=0}^{M-1} I_{(i)s}$	5		
전류 기본파 성분		-	고조파 연산식의 그	고조파 전류의 I _{1(i)}		
전류 피크		1	<i>tpk</i> + _(i) = I _{(i)s} M 개 동 <i>tpk</i> - _(i) = I _{(i)s} M 개 중	중의 최대치 등의 최소치		
전류 종합 고조파 왜곡률		-	고조파 연산식의 <i>I</i>	$thd_{(i)}$		
전류 리플률			$\frac{\left(Ipk+_{(i)}-Ipk{(i)}\right)}{\left(2\times\left Idc_{(i)}\right \right)}$	< 100		
전류 위상각	고조파 연산식의	$\theta I_{1(i)}$				
전류 불평형률				$Iunb_{(i)(i+1)(i+2)} = \sqrt{\frac{\beta}{\Gamma_{0}^{2}}}$ $\beta = \frac{I_{0}^{2}}{(I_{0}^{2})^{2}}$ 예: CH1~CH3 $\beta = \frac{I_{0}^{2}}{(I_{0}^{2})^{2}}$ • $I_{12}, I_{23}, I_{31} \vdash 2$ 실효치 (선간 전 • 3P3W3M, 3P 하여 연산한다.	$\frac{\overline{1-\sqrt{3-6\beta}}}{1+\sqrt{3-6\beta}} \times 100$ $\stackrel{4}{}_{(j(i+1)}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^{4}+I_{(i+1)(i+2)}^$	4 ( <i>i</i> +2)( <i>i</i> ) 2 ( <i>i</i> +2)( <i>i</i> )) ² 에서 기본파 전류 선간 전류로 변환
(i): 측정 채널, M: 등	동기 타이밍 간 샘	플 수, s: 샘플 포인	트 넘버			

결선 설정 항목	1P2W	1P3W	3P3W2M	3V3A	3P3W3M	3P4W			
	$ \begin{array}{c} P_{(i)} = \\ \frac{1}{M} \sum_{s=0}^{M-1} \left( U_{(i)s} \times I_{(i)s} \right) \end{array} \qquad \qquad P_{(i)(i+1)} = P_{(i)} + P_{(i+1)} \qquad \qquad P_{(i)(i+1)(i+2)} = \\ P_{(i)} + P_{(i+1)} = P_{(i)} + P_{(i+1)} \end{array} \qquad \qquad P_{(i)(i+1)(i+2)} = \\ P_{(i)} + P_{(i+1)} + P_{(i+2)} = \\ P_{(i)} + P_{(i+2)} + P_{(i+2)} = \\ P_{(i)} + P_{(i+2)} + P_{(i+2)} = \\ P_{(i)} + P_{(i+2)} + P_{(i+2)} + P_{(i+2)} = \\ P_{(i)} + P_{(i+2)} + P_{(i+2)} + P_{(i+2)} = \\ P_{(i)} + P_{(i+2)} + P_{(i+2)} + P_{(i+2)} + P_{(i+2)} = \\ P_{(i)} + P_{(i+2)} + P_{(i+2$								
유효전력	<ul> <li>3P3W3M 및 3F 3P3W3M 결선 4 U_{(1)s} = (u_{(1)s}-u_{(1+2)s}) u_{(1)s}: (i) 채널 선건 U_{(0)s}: (i) 채널 상전 3P4W 결선 시:</li> <li>3V3A 결선이고 4</li> <li>3V3A 결선 시, 7</li> <li>유효전력 P의 극</li> </ul>	24W 결선 시, 전압 시: 샘플링한 전압원 /3、 $U_{(i+1)i} = (u_{(i+1)i})$ - 전압 샘플링 값 산업 연산값 샘플링한 전압은 싱 Δ-Y 변환 ON 시에 전압 $U_{(i)}$ 는 선간 전원 성 부호는 소비 시(	· 파형 $U_{(i)s}$ 는 상전입 을 선간 전압이므로 $u_{(i)s}$ )/3、 $U_{(i+2)s} = (u$ · 전압이므로 그대로 는 3P3W3M, 3P4 압을 사용한다(3P3 +P) 및 회생 시(-P)	남을 사용한다. 상전압으로 변환혀 ((+2)₅-u((+1)₅)/3 사용한다. 4W의 연산식이 된 W2M과 3V3A 눈 )로 전력의 조류 병	나여 사용한다. 한다. = 같은 연산이 된 방향을 나타낸다.	다).			
피상전력	$S_{(i)} = U_{(i)} \times I_{(i)}$	$S_{(i)(i+1)} = S_{(i)} + S_{(i+1)}$	$S_{(i)(i+1)} = \frac{\sqrt{3}}{2} \left( S_{(i)} + S_{(i+1)} \right)$	$S_{(i)(i+1)(i+2)} = \frac{\sqrt{3}}{3} \left( S_{(i)} + S_{(i+1)} + S_{(i+2)} \right)$	$S_{(i)(i+1)(i+2)} = S_{(i)} + S_0$	$_{i+1)} + S_{(i+2)}$			
	• <i>U</i> _(i) 와 <i>I</i> _(i) 는 rms / • 3P3W3M 및 3F • 3V3A 결선 시 , 7	/ mn 에서 선택․ 2 <b>4W</b> 결선 시 , 전압 전압 <i>U</i> @는 선간 전압	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	용한다.					
		Ç	연산식 Type1 및 T	ype3 선택 시					
	$Q_{(i)} = si_{(i)} \sqrt{S_{(i)}^{2} - P_{(i)}^{2}}$	$Q_{(i)(i+1)} = Q_{i}$	$Q_{(i)} + Q_{(i+1)}$	$Q_{(i)(i+1)(i+2)} = Q_{(i)} + Q_{(i+1)}$	$Q_{(i)(i+1)(i+2)} = Q_{(i)} + Q$	$_{(i+1)} + Q_{(i+2)}$			
	연산식 Type2 선택 시								
	$Q_{(i)} = \sqrt{S_{(i)}^{2} - P_{(i)}^{2}}$	$Q_{(i)(i+1)} = \sqrt{S_{(i)(i+1)}}$	$(1)^2 - P_{(i)(i+1)}^2$	$Q_{(i)(i+1)(i+2)} =$	$\sqrt{S_{(i)(i+1)(i+2)}^2} - P_0$	2 i)(i+1)(i+2)			
무효전력	<ul> <li>• 연산식 Type1 및 Type3일 때, 무효전력 Q의 극성 부호 si는 진행/지연의 극성을 나타내며 부호 "없음" 은 지연 (LAG), 부호 "一"는 진행 (LEAD)을 나타낸다.</li> <li>• 극성 부호 si_(i)는 측정 채널 (i) 별로 전압 파형 U_{(i)s}와 전류 파형 I_{(i)s}의 진행/지연에서 취득한다.</li> <li>• 3P3W3M 및 3P4W 결선 시, 전압 파형 U_{(i)s}는 상전압을 사용한다.</li> <li>3P3W3M 결선 시: 샘플링한 전압은 선간 전압이므로 상전압으로 변환하여 사용한다.</li> <li>U_{(i)s} = (u_{(i)s}-u_{(i+2)s})/3, U_{(i+1)s} = (u_{(i+1)s}-u_{(i)s})/3, U_{(i+2)s} = (u_{(i+2)s}-u_{(i+1)s})/3</li> <li>u_{(i)s}: (i) 채널 선간 전압 샘플링 값</li> <li>U_{(i)s}: (i) 채널 상전압 연산값</li> </ul>								
	• 연산식 Type2 선	택 시에는 극성 부	호가 붙지 않는다.						
			연산식 Type1	선택 시					
	$\lambda_{(i)} = si_{(i)} \left  \frac{P_{(i)}}{S_{(i)}} \right $	$\lambda_{(i)(i+1)} = s i_{(i)(i+1)}$	(+1) $\frac{ P_{(i)(i+1)} }{S_{(i)(i+1)} }$	$\lambda_{(i)(i+1)(i+2)}$	$= si_{(i)(i+1)(i+2)} \left  \frac{P_{(i)}}{S_{(i)}} \right $	(i+1)(i+2) (i+1)(i+2)			
			연산식 Type2	2 선택 시					
	$\lambda_{(i)} = \left  \frac{P_{(i)}}{S_{(i)}} \right $	$\lambda_{(i)(i+1)} =$	$\frac{P_{(i)(i+1)}}{S_{(i)(i+1)}}$	$\lambda_{(i)(i)}$	$(+1)(i+2) = \left  \frac{P_{(i)(i+1)(i+1)}}{S_{(i)(i+1)(i+1)}} \right ^{2}$	2)			
역률			연산식 Type3	3 선택 시					
	$\lambda_{(i)} = \frac{P_{(i)}}{S_{(i)}}$	$\lambda_{(i)(i+1)} =$	$\frac{P_{(i)(i+1)}}{S_{(i)(i+1)}}$	$\lambda_{(i)}$	$_{i+1)(i+2)} = P_{(i)(i+1)(i+1)(i+1)(i+1)(i+1)(i+1)(i+1)(i$	<u>-2)</u> -2)			
	• 연산식 Type1일 때, 역률 λ의 극성 부호 si는 진행/지연의 극성을 나타내며 부호 "없음"은 지연 (LAG),         부호 "-"는 진행 (LEAD)을 나타낸다.         • 극성 부호 si _(i) 는 측정 채널(i) 별로 전압 파형 U _{(i)s} 와 전류 파형 I _{(i)s} 의 진행/지연에서 취득한다.         si ₁₂ , si ₃₄ , si ₁₂₃ 는 각각 Q ₁₂ , Q ₃₄ , Q ₁₂₃ 의 부호에서 취득한다.         • 연산식 Type3일 때, 극성 부호는 유효전력 P의 부호를 그대로 사용한다.								

샹 **10** 

결선 설정 항목	1P2W	1P3W	3P3W2M	3V3A	3P3W3M	3P4W			
	연산식 Type1 선택 시								
	$\phi_{(i)} = si_{(i)} \cos^{-1}  \lambda_{(i)} $	$\phi_{(i)(i+1)} = si_{(i)(i+1)}$	$\int \cos^{-1}  \lambda_{(i)(i+1)} $	$\phi_{(i)(i+1)(i+2)} = si_{(i)(i+1)(i+2)} \cos^{-1}  \lambda_{(i)(i+1)(i+2)} $					
			연산식 Type2	선택 시					
	$\phi_{(i)} = \cos^{-1}  \lambda_{(i)} $	$\phi_{(i)(i+1)} = \mathrm{co}$	$s^{-1}  \lambda_{(i)(i+1)} $	$\phi_{(i)(i+1)(i+2)} = \cos^{-1}  \lambda_{(i)(i+1)(i+2)} $					
			연산식 Type3	3 선택 시					
전력 위상각	$\phi_{(i)} = \cos^{-1}\lambda_{(i)}$	$\phi_{(i)(i+1)} = c \alpha$	$\cos^{-1}\lambda_{(i)(i+1)}$	$\phi_{(i)(i+1)(i+2)} = \cos^{-1} \lambda_{(i)(i+1)(i+2)}$					
	<ul> <li>• 연산식 Type1일 때, 극성 부호 si는 진행/지연의 극성을 나타내며 부호 "없음"은 지연 (LAG), 부호 "-" 는 진행 (LEAD)을 나타낸다.</li> <li>• 극성 부호 si_(i)는 측정 채널 (i) 별로 전압 파형 U_{(i)s}와 전류 파형 I_{(i)s}의 진행/지연에서 취득한다. si₁₂, si₃₄, si₁₂₃는 각각 Q₁₂, Q₃₄, Q₁₂₃의 부호에서 취득한다.</li> <li>• 연산식 Type1과 Type2의 연산식 중 cos⁻¹(b)는 P ≥ 0의 때로 P &lt; 0의 때는 대신에</li> </ul>								
	180−cos ^{−1}  λ  ≣	를 사용한다.							
( <i>i</i> ): 측정 채널, <i>M</i> 3V3A와 3P3W	/: 동기 타이밍 간 샘 3M에서 Δ-Υ 변환	플 수, s: 샘플 포인 시에는 <b>3P4W</b> 의 인	l트 넘버 ^년 산식을 사용한다.						
3P4W에서 Y-∆	변환 시에도 그대로	3P4W의 연산식을	을 사용한다.						

결선 설정 항목	1P2W	1P3W	3P3W2M	3V3A	3P3W3M	3P4W		
기본파 유효전력	고조파 유효전력의 P _{1(i)}	고조I	파 유효전력의 F	<b>)</b> 1( <i>i</i> )( <i>i</i> +1)	고조파 유효전	력의 P _{1(i)(i+1)(i+2)}		
기본파 피상전력	$Sfnd_{(i)} = \sqrt{(P_{1(i)})^{2} + (Q_{1(i)})^{2}}$	$Sfnd_{(i)(i+1)} =$	$\sqrt{\left(P_{1(i)(i+1)}\right)^2} + \left(g_{1(i)(i+1)}\right)^2$	$\overline{\mathcal{Q}_{1(i)(i+1)}}\right)^2$	$Sfnd_{(i)(i)}$ $\sqrt{(P_{1(i)(i+1)(i+2)})^2}$	$\frac{1}{r+1)(i+2)} = \frac{1}{r+\left(\mathcal{Q}_{1(i)(i+1)(i+2)}\right)^2}$		
기본파 무효전력	고조파 무효전력의 <i>Q</i> _{1(i)} × (-1)* ¹	고조파 무	효전력의 $Q_{1(i)(i+1)}$	₁₎ × (-1)* ¹	고조파 두 <i>Q</i> _{1(<i>i</i>)(<i>i</i>+1)(<i>i</i>+1)}	-효전력의 ₂₎ × (-1)* ¹		
기본파 역률 * ²	$ \begin{array}{c c} & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $					$  _{(i+2)} \cos\theta_{1(i)(i+1)(i+2)}  $		
극성 부호 <i>si</i> 는 연신 에서 취득한다. 연신 *1: 연산식 Type2	국성 부호 si는 연산식 Type1일 때는 기본파 무효전력의 부호에서 취득하고, 연산식 Type3일 때는 기본파 유효전력의 부호에서 취득하고, 연산식 Type3일 때는 기본파 유효전력의 부호에서 취득하다. 연산식 Type2일 때는 극성 부호가 붙지 않는다.							

*2: 기본파 역률은 변위역률 (DPF)이라고 불리기도 한다.

...

. . . . . . . . . . . . . . . . . . .

# 모터 해석 옵션의 연산식

측정 항목	설정	연산식			
전압	아날로그 <b>DC</b>	$\frac{1}{M}\sum_{s=0}^{M-1}A_s$			
펄스 주파수	펄스	펄스 주파수			
토크	아날로그 <b>DC</b>	$rac{1}{M}\sum_{s=0}^{M-1}A_s$ ×(스케일링 설정치)			
	주파수	(측정 주파수 - fc 설정치)× 정격 토크 값 fd 설정치			
	아날로그 <b>DC</b>	$rac{1}{M}\sum_{s=0}^{M-1}A_s$ ×(스케일링 설정치)			
회전수	펄스	si <u>- 60 ×(펄스 주파수)</u> 필스 수 설정치			
		극성 부호 si는 싱글 모드에서 회전 방향 검출 유효 시, A상 펄스의 상 승/하강 에지와 B상 펄스 로직 레벨(High/Low)에서 취득한다.			
ㅁ터 피의		(토크)× <u>2×π×(회전수)</u> ×(단위 계수) <u>60</u>			
모터 파워	-	단위 계수는 토크 단위가 N•m인 경우 1, mN•m인 경우 1/1000, kN•m 인 경우 1000			
미끄럼	_	100 × <u>2 × 60 ×(입력 주파수) -  </u> 회전수  × (극수 설정치) 2 × 60 ×(입력 주파수)			
		입력 주파수는 fU1 ~ fU8, fl1 ~ fl8에서 선택.			
<i>M</i> : 동기 타이밍 간 샘플	수, s: 샘플 넘버, A: 아날	로그 파형			

. . . . . . . . .

사량 **10** 

# 고조파 측정 항목의 연산식

결선 설정 항목	1P2W	1P3W	3P3W2M	3V3A	3P3W3M	3P4W						
고조파 전압		$U_{k(i)} = \sqrt{\left(U_{kr(i)}\right)^{2} + \left(U_{ki(i)}\right)^{2}}$										
고조파 전압 위상각		$\theta U_{k(i)} = tan^{-1} \left( \frac{U_{kr(i)}}{-U_{ki(i)}} \right)$										
고조파 전류		$I_{k(i)} = \sqrt{\left(I_{kr(i)}\right)^2 + \left(I_{ki(i)}\right)^2}$										
고조파 전류 위상각		$\theta I_{k(i)} = tan^{-1} \left( \frac{I_{kr(i)}}{-I_{ki(i)}} \right)$										
고조파 유효전력	<i>P</i> _{<i>k</i>(<i>i</i>)} =	$= U_{kr(i)} \times I_{kr(i)}$	$U_{kr(i)} + U_{ki(i)} \times I$	$I_{ki(i)}$	$P_{k(i)} = \frac{1}{3} \left( U_{kr(i)} - U_{kr(i+2)} \right) \times I_{kr(i)} + \frac{1}{3} \left( U_{ki(i)} - U_{ki(i+2)} \right) \times I_{ki(i)}$ $P_{k(i+1)} = \frac{1}{3} \left( U_{kr(i+1)} - U_{kr(i)} \right) \times I_{kr(i+1)} + \frac{1}{3} \left( U_{ki(i+1)} - U_{ki(i)} \right) \times I_{ki(i+1)}$ $P_{k(i+2)} = \frac{1}{3} \left( U_{kr(i+2)} - U_{kr(i+1)} \right) \times I_{kr(i+2)} + \frac{1}{3} \left( U_{ki(i+2)} - U_{ki(i+1)} \right) \times I_{ki(i+2)}$	<b>1P2W</b> 와 같음						
	$- P_{k(i)(i+1)} = P_{k(i)} + P_{k(i+1)} $ $P_{k(i)(i+1)(i+2)} = P_{k(i)} + P_{k(i+1)} + P_{k(i+2)}$											
<b>고조파</b> 무효전력 (내부 연산에서 사용하는 경우 만)	$Q_{k(i)}$ =	$= U_{kr(i)}  imes I$	$T_{ki(i)} - U_{ki(i)}  imes$	$I_{kr(i)}$	$\begin{aligned} \mathcal{Q}_{k(i)} &= \frac{1}{3} \left( U_{kr(i)} - U_{kr(i+2)} \right) \times I_{ki(i)} - \frac{1}{3} \left( U_{ki(i)} - U_{ki(i+2)} \right) \times I_{kr(i)} \\ \mathcal{Q}_{k(i+1)} &= \frac{1}{3} \left( U_{kr(i+1)} - U_{kr(i)} \right) \times I_{ki(i+1)} - \frac{1}{3} \left( U_{ki(i+1)} - U_{ki(i)} \right) \times I_{kr(i+1)} \\ \mathcal{Q}_{k(i+2)} &= \frac{1}{3} \left( U_{kr(i+2)} - U_{kr(i+1)} \right) \times I_{ki(i+2)} - \frac{1}{3} \left( U_{ki(i+2)} - U_{ki(i+1)} \right) \\ \times I_{kr(i+2)} \end{aligned}$	1 <b>P2W</b> 와 같음						
	_	$Q_{k(i)(i)}$	$Q_{k(i)} = Q_{k(i)} + Q$	<b>)</b> k(i+1)	$Q_{k(i)(i+1)(i+2)} = Q_{k(i)} + Q_{k(i+1)} + Q_{k(i+2)}$							
					$     \theta_{k(i)} = \theta I_{k(i)} - \theta U_{k(i)} $							
고소파 선압 전류 위상차	_	$- \theta_{k(i)(i+1)} = tan^{-1} \left( \frac{Q_{k(i)(i+1)}}{P_{k(i)(i+1)}} \right) \qquad \theta_{k(i)(i+1)(i+2)} = tan^{-1} \left( \frac{Q_{k(i)(i+1)(i+2)}}{P_{k(i)(i+1)(i+2)}} \right)$										
<ul> <li>(i): 측정 채널,</li> <li>고조파 전압 위</li> <li>(단, 고조파 동</li> <li>동기 소스가 D</li> <li>동기 소스가 E:</li> <li>고조파 전압 전</li> </ul>	<i>k</i> : 해석 치 상각과 고 기 소스가 C 일 때는 xt, Zph., 류 위상치	사수, r: F 조파 전 Ext일 데이터 B, D, F 에서 3F	FT 후의 실 류 위상각은 때는 제외) 갱신 타이밍 , H일 때는 '3W3M, 3F	수부, <i>i</i> : 위상 기 을 0°로 동기하는 24W일	: FFT 후의 허수부 준이 되는 고조파 동기 소스의 기본파를 0°로 보정한다. 한다. = 펄스의 상승 또는 하강을 0°로 한다. 때의 각 상의 위상차는 델타 변환의 ON/OFF와 상관없이 상	전압을 기						

준으로 연산한다.
^사양 10

결선 설정 항목	1P2W	1P3W	3P3W2M	3V3A	3P3W3M	3P4W
고조파 전압				U	$ud \dots = \frac{U_k}{2} \times 100$	
함유율					$U_1$ $U_1$ $U_1$	
고조파 전류				T	$J_{k} = I_{k} \times 100$	
함유율				1 /	$u_{k(i)} = \frac{1}{I_1} \times 100$	
고조파 전력		$PLJ = \frac{P_{\rm b}}{V} 100$				
함유율		$Pna_{k(i)} = \frac{r_k}{P_1} \times 100$				
총 고조파 전압 왜곡률	$Uthd_{(i)} = \frac{\sqrt{\sum_{k=2}^{K} (U_k)^2}}{U_1} \times 100 \text{ (THD-F 설정 시)} 또는 \frac{\sqrt{\sum_{k=2}^{K} (U_k)^2}}{\sqrt{\sum_{k=1}^{K} (U_k)^2}} \times 100 \text{ (THD-R 설정 시)}$			설정 시)		
총 고조파 전류 왜곡률		$Ithd_{(i)} = \sqrt{\sum_{k=1}^{k}}$	$\frac{\sum_{k=2}^{K} (I_k)^2}{I_1} \times 100$	(THD-F 실	결정 시 ) 또는 $rac{\sqrt{\sum\limits_{k=2}^{K} (I_k)^2}}{\sqrt{\sum\limits_{k=1}^{K} (I_k)^2}}$ × 100 (THD-R 설	정시)
(i): 측정 채널, k: ]	고조파 차수	, <i>K</i> : 최대 ㅎ	배석 차수(동기	주파수에	따라 가변)	



예: 고조파 전압의 경우	
I	$\tan^{-l}\left(\frac{U_{kr(i)}}{-U_{ki(i)}}\right) + 180^{\circ}$
III, IV	$ an^{-l} \left( rac{U_{kr(i)}}{-U_{ki(i)}}  ight)$
II	$\tan^{-I} \left( \frac{U_{kr(i)}}{-U_{ki(i)}} \right) - 180^{\circ}$
$U_{ki(i)} = 0, U_{kr(i)} < 0$	-90°
$U_{ki(i)} = 0, U_{kr(i)} > 0$	+90°
$U_{ki(i)} < 0, U_{kr(i)} = 0$	0°
$U_{ki(i)} = 0, \ U_{kr(i)} = 0$	0°
$U_{ki(i)} > 0, \ U_{kr(i)} = 0$	+180°

### 적산 측정의 연산식

12200	1P3W	3P3W2M	3V3A	3P3W3M	3P4W
$WP_{i}+=k\sum_{1}^{h}(P_{i}(+))$	WP sum -	$k + = k \sum_{1}^{h} (P_{sum})$	(+))		
$WP_i - = k \sum_{1}^{h} (P_i(-))$	WPsum	$-=k\sum_{1}^{h}$ ( <i>Psum</i>	() )		
$WP_i = (WP_i^+) + (WP_i^-)$	WP _{sum}	$= (WP_{sum} +) +$	(WP _{sum} -)		
$Ih_{i} + = k \sum_{1}^{h} (I_{i} (+))$	Ihsum +	$=k\sum_{1}^{h}$ (Isum (+	))		
$Ih_{i} - = k \sum_{1}^{h} (I_{i}(-))$	Ihsum –	$k = k \sum_{1}^{h} (Isum (-$	·))		
$Ih_i = (Ih_i^+) + (Ih_i^-)$	Ih _{sum} =	$(Ih_{sum}+)+(Ih_{sum}+)$	_{sum} —)		
: 1시간으로 환산하는 계수					
버스인 경우의 값(소비분)만 사용	당한다.				
	$WP_{i} + = k \sum_{1}^{h} (P_{i}(+))$ $WP_{i} - = k \sum_{1}^{h} (P_{i}(-))$ $WP_{i} = (WP_{i}^{+}) + (WP_{i}^{-})$ $Ih_{i} + = k \sum_{1}^{h} (I_{i}(+))$ $Ih_{i} - = k \sum_{1}^{h} (I_{i}(-))$ $Ih_{i} = (Ih_{i}^{+}) + (Ih_{i}^{-})$ $1 \text{ Alt으로 환산하는 계수}$ $1 \text{ Alt으로 함산하는 계수}$ $1 \text{ Alt OP I I I (오비분) 만 사용}$ $I  ID I I I I I I I I I I I I I I I I I I$	WP _i + = k $\sum_{1}^{h} (P_i(+))$ WP _{sum} WP _i - = k $\sum_{1}^{h} (P_i(-))$ WP _{sum} WP _i = (WP _i +) + (WP _i -)       WP _{sum} Ih _i + = k $\sum_{1}^{h} (I_i(+))$ Ih _{sum} +         Ih _i - = k $\sum_{1}^{h} (I_i(-))$ Ih _{sum} -         Ih _i = (Ih _i +) + (Ih _i -)       Ih _{sum} =         1 시간으로 환산하는 계수       1         너스인 경우의 값 (소비분)만 사용한다.       너스인 경우의 값 (회생분)만 사용한다.	WP _i + = k $\sum_{1}^{h}$ (P _i (+))       WP _{sum} + = k $\sum_{1}^{h}$ (P _{sum} )         WP _i - = k $\sum_{1}^{h}$ (P _i (-))       WP _{sum} - = k $\sum_{1}^{h}$ (P _{sum} )         WP _i = (WP _i +) + (WP _i -)       WP _{sum} = (WP _{sum} +) + (WP _{sum} )         Ih _i + = k $\sum_{1}^{h}$ (I _i (+))       Ih _{sum} + = k $\sum_{1}^{h}$ (Isum (+         Ih _i - = k $\sum_{1}^{h}$ (I _i (-))       Ih _{sum} - = k $\sum_{1}^{h}$ (Isum (-         Ih _i = (Ih _i +) + (Ih _i -)       Ih _{sum} = (Ih _{sum} +) + (Ih _{sum} )         1 시간으로 환산하는 계수       1         1스인 경우의 값 (소비분)만 사용한다.       너스인 경우의 값 (회생분)만 사용한다.	WP _i + = k $\sum_{1}^{h} (P_i(+))$ WP _{sum} + = k $\sum_{1}^{h} (P_{sum}(+))$ WP _i - = k $\sum_{1}^{h} (P_i(-))$ WP _{sum} - = k $\sum_{1}^{h} (P_{sum}(-))$ WP _i = (WP _i +) + (WP _i -)       WP _{sum} = (WP _{sum} +) + (WP _{sum} -)         Ih _i + = k $\sum_{1}^{h} (I_i(+))$ Ih _{sum} + = k $\sum_{1}^{h} (I_{sum}(+))$ Ih _i - = k $\sum_{1}^{h} (I_i(-))$ Ih _{sum} - = k $\sum_{1}^{h} (I_{sum}(-))$ Ih _i = (Ih _i +) + (Ih _i -)       Ih _{sum} = (Ih _{sum} +) + (Ih _{sum} -)         1 AlZO 로 환산하는 계수       Hebtr.         너스인 경우의 값 (오비분)만 사용한다.       너스인 경우의 값 (회생분)만 사용한다.	$WP_i + = k \sum_{1}^{h} (P_i(+))$ $WP_{sum} + = k \sum_{1}^{h} (P_{sum}(+))$ $WP_i - = k \sum_{1}^{h} (P_i(-))$ $WP_{sum} - = k \sum_{1}^{h} (P_{sum}(-))$ $WP_i = (WP_i^+) + (WP_i^-)$ $WP_{sum} = (WP_{sum}^+) + (WP_{sum}^-)$ $Ih_i + = k \sum_{1}^{h} (I_i(+))$ $Ih_{sum} + = k \sum_{1}^{h} (I_{sum}(+))$ $Ih_i - = k \sum_{1}^{h} (I_i(-))$ $Ih_{sum} - = k \sum_{1}^{h} (I_{sum}(-))$ $Ih_i = (Ih_i^+) + (Ih_i^-)$ $Ih_{sum} = (Ih_{sum}^+) + (Ih_{sum}^-)$ $1 \text{AlZOZ POLICALING POLICALING POLICALING POLICALING       Ih_{sum} = (Ih_{sum}^+) + (Ih_{sum}^-) 1 \text{AlZOZ POLICALING POLICALING POLICALING POLICALING POLICALING POLICALING       Ih_{sum} = (Ih_{sum}^-) $

## 10.6 U7001 2.5MS/s 입력 유닛

### 입력 사양

#### (1) 전압, 전류, 전력 측정 공통 사양

샘플링	2.5 MHz / 16비트
측정 주파수 대역	DC, 0.1 Hz ~ 1 MHz
주파수 평탄성	±0.1% 진폭 대역 : 100 kHz (Typical) ±0.1° 위상 대역 : 300 kHz (Typical)
유효 측정 범위	1% of range ~ 110% of range

#### (2) 전압 측정 공통 사양

입력 단자 형상	플러그인 단자(안전 단자)
입력 방식	절연 입력, 저항 분압 방식
레인지	6 V, 15 V, 30 V, 60 V, 150 V, 300 V, 600 V, 1500 V
파고율	전압 레인지 정격에 대해 3(단, 1500 V 레인지는 1.35)
입력 저항 / 입력 용량	$2 \text{ M}\Omega \pm 20 \text{ k}\Omega / 1 \text{ pF typical}$
최대 입력 전압	AC 1000 V, DC 1500 V 또는 ±2000 V peak
대지간 최대 정격 전압	AC 600 V / DC 1000 V 측정 카테고리 III, 예상되는 과도 과전압 8000 V AC 1000 V / DC 1500 V 측정 카테고리 II, 예상되는 과도 과전압 8000 V

#### (3) 전류 측정 공통 사양

입력 단자 형상	Probe1: 전용 커넥터 (ME15W) Probe2: 금속 BNC 단자 (female) 설정에 따라 Probe1(전류 센서 입력)과 Probe2 (외부 채널은 동일 입력 설정으로 한다.	· 입력) 중 하나를 선택한다. 동일 결선
입력 방식	전류 센서 입력 방식	
레인지	Probe1:	
	40 mA, 80 mA, 200 mA, 400 mA, 800 mA, 2 A	(2 A 센서일 때)
	400 mA, 800 mA, 2 A, 4 A, 8 A, 20 A	(20 A 센서일 때)
	4 A, 8 A, 20 A, 40 A, 80 A, 200 A	(200 A 센서일 때)
	40 A, 80 A, 200 A, 400 A, 800 A, 2 kA	(2000 A 센서일 때 )
	100 mA, 200 mA, 500 mA, 1 A, 2 A, 5 A	(5 A 센서일 때)
	1 A, 2 A, 5 A, 10 A, 20 A, 50 A	(50 A 센서일 때)
	10 A, 20 A, 50 A, 100 A, 200 A, 500 A	(500 A 센서일 때)
	100 A, 200 A, 500 A, 1 kA, 2 kA, 5 kA	(5000 A 센서일 때 )
	20 A, 40 A, 100 A, 200 A, 400 A, 1 kA	(1000 A 센서일 때 )
	결선별로 선택 가능 (단, 동일 결선 채널은 동일 센서 사용 시에 한함)	
	Probe2:	
	1 kA, 2 kA, 5 kA, 10 kA, 20 kA, 50 kA	(0.1 mV/A)
	100 A, 200 A, 500 A, 1 kA, 2 kA, 5 kA	(1 mV/A)
	10 A, 20 A, 50 A, 100 A, 200 A, 500 A	(10 mV/A)
	1 A, 2 A, 5 A, 10 A, 20 A, 50 A	(100 mV/A)
	100 mA, 200 mA, 500 mA, 1 A, 2 A, 5 A (0.1 V, 0.2 V, 0.5 V, 1.0 V, 2.0 V, 5.0 V 레인지)	(1 V/A)
	결선별로 입력률, 레인지를 선택 가능 센서 입력률을 설정	
파고율	전류 레인지 정격에 대해 3(단, Probe2의 5 V 레인지는	1.5)
입력 저항 / 입력 용량	Probe1: 1 MΩ ±50 kΩ Probe2: 1 MΩ ±50 kΩ / 22 pF typical	
최대 입력 전압	Probe1: 8 V , ±12 V peak (10 ms 이하) Probe2: 15 V, ±20 V peak (10 ms 이하)	

상 양 10

### 정확도 사양

피상전력( <b>S</b> ) 측정 정확도	전압 정확도 + 전류 정확도 ±10 digits
무효전력 ( <b>Q</b> ) 측정 정확도	<ul> <li>φ = 0°, ±180° 이외일 때 피상전력 정확도 ± (1-sin(φ+ 전력 위상각 정확도) / sinφ) × 100% of reading ±(√(1.001-λ²)-√(1-λ²)) × 100% of range</li> <li>φ = 0°, ±180°일 때 피상전력 정확도 ± (sin(전력 위상각 정확도)) × 100% of range ±3.16% of range λ는 역률의 표시치</li> </ul>
역률 (λ) 측정 정확도	<ul> <li>φ = ±90° 이외일 때 ±(1-cos(φ+전력 위상각 정확도)/ cos(φ)) × 100% of reading ±50 digits</li> <li>φ = ±90°일 때 ±cos(φ+차이 정확도) ×100% of range ±50 digits</li> <li>φ는 전력 위상각의 표시치</li> <li>양쪽 경우 모두 전압/전류 레인지 정격 입력 시로 규정한다.</li> </ul>
파형 피크 측정 정확도	전압, 전류 각 실효치 정확도 ±1% of range (피크 레인지로서 레인지의 300%를 적용)
온도의 영향	0°C ~ 20°C 또는 26°C ~ 40°C의 범위에서 전압, 전류, 유효전력 정확도에 다음을 가산 Probe1 사용 시 ±0.01% of reading / °C, 직류는 0.01% of range / °C를 추가로 가산 Probe2 사용 시 전압: ±0.01% of reading / °C, 직류는 0.01% of range / °C를 추가로 가산 전류, 유효전력: ±0.03% of reading / °C, 직류는 0.06% of range / °C를 추가로 가산
동상 전압 제거비 (동상 전압의 영향)	50 Hz / 60 Hz일 때: 100 dB 이상 100 kHz일 때: 80 dB typical 모든 측정 레인지에 대해 최대 입력 전압을 전압 입력 단자 - 케이스 간에 인가한 경우의 CMRR로 규정
외부 자계의 영향	±1% of range 이하 (400 A/m, DC 및 50 Hz / 60 Hz의 자계 안에서 )
유효전력에 미치는 역률의 영향	φ = ±90° 이외일 때 ±(1-cos(φ+위상차 정확도)/cos(φ)) × 100% of reading φ = ±90°일 때 ±cos(φ +위상차 정확도) × 100% of VA

#### 유효전압, 전류, 전력, 전력 위상각 측정 정확도

A 001/2001/	±(% of reading + % of range)			
Accuracy	Voltage (U)	Current (I)		
DC	0.02% + 0.05%	0.02% + 0.05%		
0.1 Hz $\leq$ f < 30 Hz	0.1% + 0.1 %	0.1% + 0.1%		
$30 \text{ Hz} \leq \text{f} < 45 \text{Hz}$	0.1% + 0.1%	0.1% + 0.1%		
45 Hz $\leq$ f $\leq$ 440 Hz	0.02% + 0.05%	0.02% + 0.05%		
440 Hz < f $\leq$ 1 kHz	0.03% + 0.05%	0.03% + 0.05%		
1 kHz < f $\leq$ 10 kHz	0.15% + 0.05%	0.15% + 0.05%		
10 kHz < f $\leq$ 50 kHz	0.20% + 0.05%	0.20% + 0.05%		
50 kHz < f $\leq$ 100 kHz	0.01 × f % + 0.1%	0.01 × f % + 0.1%		
100 kHz < f $\leq$ 500 kHz	0.02 × f % + 0.2%	0.02 × f % + 0.2%		
주파수 대역	1 MHz (-3 dB typical)	1 MHz (-3 dB typical)		

	±(% of reading + % of range)	o
Accuracy	Active power (P)	Power phase angle (φ) (Phase difference)
DC	0.02% + 0.05%	-
0.1 Hz $\leq$ f < 30 Hz	0.1% + 0.2%	±0.05°
30 Hz ≦ f < 45Hz	0.1% + 0.1%	±0.05°
45 Hz $\leq$ f $\leq$ 440 Hz	0.02% + 0.05%	±0.05°
440 Hz < f $\leq$ 1 kHz	0.05% + 0.05%	±0.05°
1 kHz < f $\leq$ 10 kHz	0.20% + 0.05%	±0.2°
10 kHz < f $\leq$ 50 kHz	0.40% + 0.1%	±(0.02 × f ) °
50 kHz < f $\leq$ 100 kHz	0.01 × f % + 0.2%	±(0.02 × f ) °
100 kHz < f $\leq$ 500 kHz	0.025 × f % + 0.3%	±(0.02 × f ) °

• 상기 식 안의 "f"의 단위는 kHz로 한다.

- 전압, 전류의 DC 값은 Udc와 Idc로 규정한다.
- DC 이외의 주파수는 U rms와 I rms로 규정한다.
- 동기 소스가 U 또는 I 선택 시에는 소스의 입력이 5% of range 이상에서 규정한다.
- 전력 위상각은 100% 입력 시의 역률 제로로 규정한다.
- 전류, 유효전력, 전력 위상각에 대해서는 상기 정확도에 전류 센서의 정확도를 가산한다.
- 0.1 Hz ≦ f < 10 Hz의 전압, 전류, 유효전력, 전력 위상각은 참고치로 한다.
- 10 Hz ≦ f < 16 Hz에서 220 V를 넘는 전압, 유효전력, 전력 위상각은 참고치로 한다.
- 30 kHz < f ≦ 100 kHz에서 750 V를 넘는 전압, 유효전력, 전력 위상각은 참고치로 한다.
- 100 kHz < f ≤ 1 MHz에서 (22000 / f (kHz))V를 넘는 전압, 유효전력, 전력 위상각은 참고치로 한다.
- 전압의 6 V 레인지는 전압, 유효전력에 ±0.02% of range를 가산한다.
- Probe1 사용 시에는 센서 정격의 1 / 50 레인지는 전류, 유효전력에 ±0.02% of range를 가산한다.
- Probe2 사용 시에는 전류, 유효전력에 ±(0.05% of reading + 0.2% of range)를 가산하고, 10 kHz 이상에서 전력 위상각에 ±0.2°를 가산한다.
- 9272-05의 유효 측정 범위는 0.5 % of full scale ~ 100% of full scale 로 한다.
- 100% of range < 입력 ≦ 110% of range 시에는 레인지 오차×1.1로 한다.
- 영점 조정 후±1°C 이상의 온도 변화에서 전압의 DC 정확도에 ±0.01% of range / °C를 가산한다. Probe1 사용 시에는 전류, 유효전력의 DC 정확도에 ±0.01% of range/°C를 가산한다. Probe2 사용 시에는 전류, 유효전력의 DC 정확도에 ±0.05% of range/°C를 가산한다.
- 600 V를 넘는 전압의 경우, 전력 위상각의 정확도에 다음을 가산한다.

$0.1 \text{ Hz} < f \leq 500 \text{ Hz}$ :	±0.1°
500 Hz < f $\leq$ 5 kHz :	±0.3°
5 kHz < f $\leq$ 20 kHz :	±0.5°
20 kHz < f $\leq$ 200 kHz :	±1°

• 900 V 이상의 측정 시, 전압, 유효전력 정확도에 다음의 자기 가열에 따른 영향을 가산한다.  $\pm 0.02\%$  of reading

자기 가열에 따른 영향은 전압 입력치가 작아져도 입력 저항의 온도가 내려갈 때까지 존재한다.

 1000 V < DC 전압 ≤ 1500 V에서 전압, 유효전력에 0.045% of reading을 가산한다. 측정 정확도는 설계치로 한다. (1000 V < DC 전압 ≤ 1500 V 시의 DC 전압, DC 유효전력 정확도는 특별 주문을 통한 교정을 실시함으로써 정확 도를 보증)

## 10.7 U7005 15MS/s 입력 유닛

. . . . . . . . . . . . . . . . . . . .

### 입력 사양

#### (1) 전압, 전류, 전력 측정 공통 사양

샘플링	15 MHz / 18비트
측정 주파수 대역	DC, 0.1 Hz ~ 5 MHz
주파수 평탄성	±0.1% 진폭 대역 : 300 kHz (Typical) ±0.1° 위상 대역 : 500 kHz (Typical)
유효 측정 범위	1% of range ~ 110% of range

#### (2) 전압 측정 공통 사양

입력 단자 형상	플러그인 단자(안전 단자)
입력 방식	절연 입력, 저항 분압 방식
레인지	6 V, 15 V, 30 V, 60 V, 150 V, 300 V, 600 V, 1500 V
파고율	전압 레인지 정격에 대해 3(단, 1500 V 레인지는 1.35)
입력 저항 / 입력 용량	4 MΩ ±20 kΩ / 6 pF typical
최대 입력 전압	1000 V, ±2000 V peak 입력 전압의 주파수가 400 kHz < f ≦ 1000 kHz는 (1300-f) V 입력 전압의 주파수가 1000 kHz < f ≦ 5000 kHz는 200 V 상기 식 안의 "f"의 단위는 kHz로 한다.
대지간 최대 정격 전압	600 V       측정 카테고리 III       예상되는 과도 과전압       6000 V         1000 V       측정 카테고리 II       예상되는 과도 과전압       6000 V

#### (3) 전류 측정 공통 사양

입력 단자 형상	Probe1: 전용 커넥터(ME15W)	
입력 방식	전류 센서 입력 방식	
레인지	Probe1: 40 mA, 80 mA, 200 mA, 400 mA, 800 mA, 2 A 400 mA, 800 mA, 2 A, 4 A, 8 A, 20 A 4 A, 8 A, 20 A, 40 A, 80 A, 200 A 40 A, 80 A, 200 A, 400 A, 800 A, 2 kA 100 mA, 200 mA, 500 mA, 1 A, 2 A, 5 A 1 A, 2 A, 5 A, 10 A, 20 A, 50 A 10 A, 20 A, 50 A, 100 A, 200 A, 500 A 100 A, 200 A, 500 A, 1 kA, 2 kA, 5 kA 20 A, 40 A, 100 A, 200 A, 400 A, 1 kA 결선별로 선택 가능 (단, 동일 결선 채널은 동일 센서 사용 시에 한함)	(2 A 센서일 때)         (20 A 센서일 때)         (200 A 센서일 때)         (2000 A 센서일 때)         (5 A 센서일 때)         (50 A 센서일 때)         (500 A 센서일 때)         (500 A 센서일 때)         (1000 A 센서일 때)
파고율	전류 레인지 정격에 대해 3	
입력 저항	1 MΩ ±50 kΩ	
최대 입력 전압	8 V, ±12 V peak (10 ms 이하)	

. . . . .

. .

. . . . . . . . . . . .

### 정확도 사양

피상전력 <b>(S)</b> 측정 정확도	전압 정확도+전류 정확도±10 digits
무효전력 (Q) 측정 정확도	<ul> <li>φ = 0°, ±180° 이외일 때 피상전력 정확도±(1-sin(φ+전력 위상각 정확도)/ sinφ) × 100% of reading ±(√(1.001-λ²)-√(1-λ²)) × 100% of range φ = 0°, ±180°일 때 피상전력 정확도±(sin(전력 위상각 정확도)) × 100% of range ± 3.16% of range λ는 역률의 표시치</li> </ul>
역률 (λ) 측정 정확도	<ul> <li>φ = ±90° 이외일 때</li> <li>±(1-cos(φ+전력 위상각 정확도 )/cos(φ))×100% of reading ±50 digits</li> <li>φ = ±90°일 때</li> <li>±cos(φ+ 전력 위상각 정확도 )×100% of range ±50 digits</li> <li>φ는 전력 위상각의 표시치</li> <li>양쪽 경우 모두 전압/전류 레인지 정격 입력 시로 규정한다.</li> </ul>
파형 피크 측정 정확도	전압, 전류 각 실효치 정확도±1% of range(피크 레인지로서 레인지의 300%를 적용)
온도의 영향	0°C ~ 20°C 또는 26°C ~ 40°C의 범위에서 전압, 전류, 유효전력 정확도에 다음을 가산 ±0.01% of reading / °C, 직류는 0.01% of range / °C를 추가로 가산
동상 전압 제거비 (동상 전압의 영향)	50 Hz / 60 Hz일 때: 120 dB 이상 100 kHz일 때: 110 dB 이상 모든 측정 레인지에 대해 최대 입력 전압을 전압 입력 단자 - 케이스 간에 인가한 경우의 CMRR로 규정한다.
외부 자계의 영향	±1% of range 이하 (400 A/m, DC 및 50 Hz / 60 Hz의 자계 안에서)
유효전력에 미치는 역률의 영향	φ = ±90° 이외일 때 ±(1-cos(φ+위상차 정확도)/cos(φ)) × 100% of reading φ = ±90°일 때 ±cos(φ + 위상차 정확도) × 100% of VA

상 10

### 전류 측정 옵션과의 특별 조합 정확도

다음의 전류 측정 옵션은 U7005와의 특별 조합 정확도를 규정하고 있습니다. 상세는 각 전류 측정 옵션의 사양을 참조해 주십시오.

#### 특별 조합 정확도의 개략

리딩 정확도	U7005의 리딩 정확도와 전류 측정 옵션의 리딩 정확도의 단순 가산
레인지 정확도	U7005의 레인지 정확도와 전류 측정 옵션의 풀 스케일 정확도의 단순 가산 (U7005의 전류 레인지와는 상관없음)

단, 위의 조합 정확도를 규정하는 주파수는 DC, 45 Hz~66 Hz (일부 전류 측정 옵션은 45 Hz ~ 65 Hz) 로 한정함.

#### 전류 센서

PW9100A-3	AC/DC 커런트 박스
PW9100A-4	AC/DC 커런트 박스
CT6872	AC/DC 커런트 센서
CT6872-01	AC/DC 커런트 센서
CT6873	AC/DC 커런트 센서
CT6873-01	AC/DC 커런트 센서
CT6904A	AC/DC 커런트 센서
CT6904A-1	AC/DC 커런트 센서
CT6904A-2	AC/DC 커런트 센서
CT6904A-3	AC/DC 커런트 센서
CT6875A	AC/DC 커런트 센서
CT6875A-1	AC/DC 커런트 센서
CT6876A	AC/DC 커런트 센서
CT6876A-1	AC/DC 커런트 센서
CT6877A	AC/DC 커런트 센서
CT6877A-1	AC/DC 커런트 센서

#### 유효전압, 전류, 전력, 전력 위상각 측정 정확도

A 001/2001/	±(% of reading +%of range)		
Accuracy	Voltage (U)	Current (I)	
DC	0.02% + 0.03%	0.02% + 0.03%	
0.1 Hz $\leq$ f < 30 Hz	0.1% + 0.1% 0.1% + 0.1%		
$30 \text{ Hz} \leq \text{f} < 45 \text{ Hz}$	0.1% + 0.1%	0.1% + 0.1%	
45 Hz $\leq$ f $\leq$ 440 Hz	0.01% + 0.02%	0.01% + 0.02%	
440 Hz < f $\leq$ 1 kHz	0.02% + 0.04%	0.02% + 0.04%	
1 kHz < f $\leq$ 10 kHz	0.05% + 0.05%	0.05% + 0.05%	
10 kHz < f $\leq$ 50 kHz	0.1% + 0.05%	0.1% + 0.05%	
50 kHz < f $\leq$ 100 kHz	0.01 × f % + 0.1%	0.01 × f % + 0.1%	
100 kHz < f $\leq$ 500 kHz	0.01 × f % + 0.2%	0.01 × f % + 0.2%	
500 kHz < f $\leq$ 1 MHz	0.01 × f % + 0.3%	0.01 × f % + 0.3%	
주파수 대역	5 MHz (-3 dB typical)	5 MHz (-3 dB typical)	

	±(% of reading +%of range)	0
Accuracy	Active power (P)	Power phase angle (∳) (Phase difference)
DC	0.02% + 0.03%	-
0.1 Hz $\leq$ f < 30 Hz	0.1% + 0.2%	±0.05°
30 Hz $\leq$ f < 45 Hz	0.1% + 0.1%	±0.05°
45 Hz $\leq$ f $\leq$ 440 Hz	0.01% + 0.02%	±0.05°
440 Hz < f $\leq$ 1 kHz	0.02% + 0.04%	±0.05°
1 kHz < f $\leq$ 10 kHz	0.05% + 0.05%	±0.12°
10 kHz < f $\leq$ 50 kHz	0.15% + 0.05%	±0.2°
50 kHz < f $\leq$ 100 kHz	0.01 × f % + 0.2%	±0.4°
100 kHz < f $\leq$ 500 kHz	0.01 × f % + 0.3%	±(0.01 × f )°
500 kHz < f $\leq$ 1 MHz	0.01 × f % + 0.5%	±(0.01 × f )°

• 상기 식 안의 "f"의 단위는 kHz로 한다.

• 전압, 전류의 DC 값은 Udc와 Idc로 규정한다.

DC 이외의 주파수는 U rms와 I rms로 규정한다.

- 동기 소스가 U 또는 I 선택 시에는 소스의 입력이 5% of range 이상에서 규정한다.
- 위상차는 100% 입력 시의 역률 제로로 규정한다.
- 전류, 유효전력, 전력 위상각에 대해서는 상기 정확도에 전류 센서의 정확도를 가산한다.
- 0.1 Hz  $\leq$  f < 10 Hz 의 전압, 전류, 유효전력, 전력 위상각은 참고치로 한다.

• 10 Hz ≦ f < 16 Hz에서 220 V를 넘는 전압, 유효전력, 전력 위상각은 참고치로 한다.

- 30 kHz < f ≦ 100 kHz에서 750 V를 넘는 전압, 유효전력, 전력 위상각은 참고치로 한다.
- 100 kHz < f ≤ 1 MHz에서 (22000 / f (kHz))V를 넘는 전압, 유효전력, 전력 위상각은 참고치로 한다.
- 전압의 6 V 레인지는 전압, 유효전력에 ±0.02% of range를 가산한다.
- 전류 센서 정격 1/10, 1/25, 1/50 레인지는 전류, 유효전력에 ±0.02% of range 를 가산한다.
- 9272-05의 유효 측정 범위는 0.5 % of full scale~100% of full scale 로 한다.
- 100% of range < 입력 ≦ 110% of range 시에는 레인지 오차×1.1로 한다.
- 영점 조정 후±1°C 이상의 온도 변화에서 전압, 전류, 유효전력 정확도의 DC 정확도에 ±0.01% of range / °C를 가 산한다.
- 600 V를 넘는 전압의 경우, 전력 위상각의 정확도에 다음을 가산한다.

 $\begin{array}{ll} 0.1 \mbox{ Hz } < f \leqq 500 \mbox{ Hz } : & \pm 0.1^{\circ} \\ 500 \mbox{ Hz } < f \leqq 5 \mbox{ kHz } : & \pm 0.3^{\circ} \\ 5 \mbox{ kHz } < f \leqq 20 \mbox{ kHz } : & \pm 0.5^{\circ} \end{array}$ 

 $20 \text{ kHz} < f \leq 200 \text{ kHz}$  :  $\pm 1^{\circ}$ 

• 800 V 이상의 측정 시, 전압, 유효전력 정확도에 다음의 자기 가열에 따른 영향을 가산한다. ±0.01% of reading

자기 가열에 따른 영향은 전압 입력치가 작아져도 입력 저항의 온도가 내려갈 때까지 존재한다.

U7005 15MS/s 입력 유닛

# 11 유지보수 및 서비스

### 11.1 수리, 점검, 클리닝

### ▲경고



■ 본 기기 및 측정 유닛을 개조, 분해 또는 수리하지 않는다

본 기기 및 측정 유닛의 내부에는 고전압이 발생하는 부분이 있습니다. 작업자가 감전되거 나 화재가 발생할 우려가 있습니다.

### ▲주 의



■ 본 기기의 보호 기능이 파손된 경우에는 바로 수리를 의뢰하거나 폐기한다

■ 어쩔 수 없이 보관하는 경우는 파손되었다는 것을 알 수 있도록 표시해 둔다

인신사고를 일으킬 우려가 있습니다.

#### 중요

다음과 같은 상태일 때는 사용을 중지해 주십시오.

- 파손임을 분명하게 확인할 수 있는 경우
- 측정이 불가능한 경우
- 고온다습 등 바람직하지 못한 상태에서 장기간 보관한 경우
- 수송 중에 과도한 충격이 가해진 경우
- 물에 젖거나 기름, 먼지로 심하게 오염된 경우(물에 젖거나 기름, 먼지가 내부에 들어가면 절연이 열 화되어 감전사고나 화재로 이어질 위험성이 커집니다)
- 측정 조건을 저장할 수 없게 된 경우

#### 교정에 대해서

교정 주기는 사용자의 사용 상황이나 환경 등에 따라 다릅니다. 사용자의 사용 상황이나 환경에 맞게 교정 주기를 정해주시고 당사에 정기적으로 교정을 의뢰해 주십시오.

#### 데이터 백업에 관한 부탁의 말씀

수리 또는 교정 시 본 기기를 초기화(공장 출하 시의 상태)하는 경우가 있습니다. 의뢰하기 전에 설정 조 건, 측정 데이터 등의 백업본(저장, 기록)을 저장할 것을 권장합니다.

### 교체부품과 수명

제품에 사용된 부품에는 오랜 사용으로 인해 특성이 열화되는 것이 있습니다. 본 기기를 오래도록 사용하시기 위해 정기적인 교체를 권장합니다.

교체할 때는 당사 또는 대리점으로 연락 주십시오.

사용 환경이나 사용 빈도에 따라 부품 수명은 달라집니다. 이 부품들이 권장 교체 주기의 기간 동안 동작하 는 것을 보증하는 것은 아닙니다.

부품	수명	비고, 조건	
전해 콘덴서	약 10년	해당 부품이 탑재된 기판을 교체해야 합니다.	
액정 백라이트(휘도 반감기)	약 8년	24시간/1일 사용한 경우	
팬모터	약 10년	24시간/1일 사용한 경우	
백업용 전지	약 10년	전원을 켰을 때 날짜, 시간이 크게 어긋나 있으면 교체 시 기입니다.	
광절연소자	약 10년	24시간/1일 사용한 경우	
광접속 케이블 커넥터	약 10년	24시간/1일 사용한 경우	

#### 퓨즈 교체

퓨즈는 본 기기 전원에 내장되어 있습니다. 본 기기의 전원이 켜지지 않을 경우는 퓨즈가 단선되었을 수 있 습니다. 고객이 직접 교체하거나 수리할 수 없습니다. 당사 또는 대리점으로 연락 주십시오.

#### 클리닝

#### PW8001 본체



#### L6000 광접속 케이블

L6000을 본 기기에 연결할 때마다 시판의 광커넥터 클리너로 커넥터부를 클리닝해 주십시오.



### 11.2 문제가 발생했을 경우

고장이라 생각되는 경우는 "수리를 의뢰하기 전에" (p.301), "11.3 다이얼로그 표시" (p.303)를 확인 해 주십시오. 그래도 문제가 해결되지 않는 경우는 당사 또는 대리점으로 연락 주십시오.

#### 수리를 의뢰하기 전에

다음 항목을 확인해 주십시오.

증상	원인	대처방법, 참조처	
전원을 켰을 때 날짜와 시간 이 크게 어긋나 있다.	백업 전지의 교체 시기이다. 본 기기는 백업용으로 리튬 전지를 내장하고 있습니다. 수명은 약 10년 입니다.	전지 교체 시기인 경우, 고객이 직접 전지를 교 체할 수 없습니다. 당사 또는 대리점으로 연락 주십시오.	
전원 스위치를 켜도 화면이 표시되지 않는다.	전원 코드가 빠져 있다. 전원 코드의 연결이 적절하지 않다.	전원 코드가 바르게 연결되어 있는지 확인해 주십시오. 참조: "2.4 전원의 공급" (p.47)	
키가 안 듣는다.	본 기기가 키 록 상태로 되어 있다.	REMOTE/LOCAL 키를 3초 이상 눌러 키 록 상태를 해제해 주십시오.	
터치패널을 조작해도 화면이 바뀌지 않는다.	본 기기가 키 록 상태로 되어 있다. 터치패널의 표면에 먼지나 이물질이 있다.	<ul> <li>REMOTE/LOCAL 키를 3초 이상 눌러 키 록 상태를 해제해 주십시오.</li> <li>먼지나 이물질을 제거해 주십시오. 참조: "교체부품과 수명" (p.300)</li> </ul>	
설정을 변경할 수 없다.	본 기기가 적산 동작 중이거나 적산 정지 중이다.	적산값 리셋(DATA RESET)을 해주십시오. 참조: "3.3 적산 측정" (p.75)	
전압, 전류 측정치가 표시되 지 않는다.	전압 코드, 전류 센서의 연결이 적절 하지 않다.	연결과 결선을 확인해 주십시오. 참조: "2 측정 전 준비" (p.39)	
	입력 채널과 표시 채널이 적합하지 않다. (예: 입력 채널이 CH1인데 표시된 페이지가 CH1이 아니다)	채널 선택의 <b>◀ CH ▶</b> 키로 입력 채널 페이지로 변경해 주십시오. 참조: "3.2 전력 측정" (p.63)	
유효전력이 표시되지 않는 다.	전압 레인지와 전류 레인지의 설정이 적절하지 않다.	전압, 전류 레인지를 적절하게 설정해 주십시 오. 참조: "전압 레인지, 전류 레인지" (p.64)	
주파수를 측정할 수 없다. 측정치가 안정되지 않는다.	입력 주파수가 0.1 Hz ~ 2 MHz의 범위를 벗어났다.	입력 파형을 보고 주파수를 확인해 주십시오. 참조: "4 파형의 표시 방법" (p.115)	
	입력 주파수가 설정 주파수보다 낮 다.	측정 하한 주파수 설정을 설정해 주십시오. 참조: "측정 상한 주파수와 하한 주파수(주파 수 측정 범위의 설정)" (p.72)	
	동기 소스의 입력이 적절하지 않다. 동기 소스 입력의 레인지가 크다.	동기 소스의 설정을 확인해 주십시오. 참조 : "동기 소스" (p.69), "전압 레인지, 전류 레인지" (p.64)	
	PWM 파형 등 크게 왜곡된 파형을 측정하고 있다.	제로 크로스 필터를 ON으로 설정해 주십시 오. 참조: "ZCF(제로 크로스 필터)" (p.121)	
3상 전압이 낮게 측정된다.	Δ-Y 변환 기능으로 상전압을 측정하 고 있다.	Δ-Y 변환 기능을 OFF로 해주십시오. 참조: "Δ-Y 변환" (p.145)	

증상	원인	대처방법, 참조처
전력 측정치가 이상하다.	결선이 잘못되어 있다.	결선이 올바른지 확인해 주십시오. 참조: "2.10 결선의 확인" (p.60)
	정류 방식이나 LPF의 설정이 적절 하지 않다.	정류 방법을 올바르게 설정해 주십시오. LPF가 설정되어 있을 때는 OFF로 해보십시 오. 참조: "정류 방식" (p.73), "저역 통과 필터 (LPF)" (p.71)
무입력에서 전류가 제로로 되지 않는다.	유니버셜 클램프 온 CT에서 낮은 전 류 레인지를 사용하고 있다. 전류 센서가 지닌 고주파 노이즈의 영향으로 생각된다.	LPF 설정을 100 kHz로 설정한 후 영점 조정 을 실행해 주십시오. 참조: "저역 통과 필터 (LPF)" (p.71), "2.9 측정 라인에 결선하기" (p.58)
인버터 2차측의 피상 및 무 효 전력이나 역률이 다른 측	정류 방식이 다른 측정기와 일치하지 않는다.	정류 방식을 다른 측정기에 맞춰 주십시오. 참조: "정류 방식" (p.73)
정기와 다르다. 전압값이 높게 표시된다.	연산식이 다르다.	연산식을 다른 측정기에 맞춰 주십시오. 참조: "5.6 전력 연산식" (p.147)
모터의 회전수를 측정할 수 없다.	펄스 출력이 전압 출력 이외로 설정 되어 있다. 오픈 컬렉터 출력의 펄스는 검출할 수 없습니다.	CH B의 펄스 입력 설정에 맞는 전압 출력으 로 해주십시오.
	펄스 출력에 노이즈가 껴 있다.	케이블의 배선을 확인해 주십시오. 펄스 출력하는 인코더를 접지해 주십시오. 펄스 노이즈 필터 (PNF)를 설정해 주십시오. 참조: "펄스 노이즈 필터 (PNF)" (p.101)
저장한 데이터에 표시 범위 를 넘는 큰 수치가 기록되었 다.	오버로드가 발생하고 있다.	적절한 레인지로 설정해 주십시오. 참조: "4.1 파형의 표시 방법" (p.115), "7.9 측정치의 저장 데이터 형식" (p.179)
저장한 데이터에 표시 범위 를 넘는 큰 수치가 기록되었 다. [1.00E+104]나 [7.78E+103] 등의 큰 값이 저장된 데이터에 포함되어 있다.	오버로드 또는 피크 오버가 발생하고 있다, 레인지가 변경되었다. 측정치 가 무효한 상태이다 등에 의해 표시 치가 <b>[]</b> 로 되어 있다.	적절한 레인지로 설정해 주십시오. 참조: "4.1 파형의 표시 방법" (p.115), "7.9 측정치의 저장 데이터 형식" (p.179) 데이터 저장 중에는 레인지를 변경하지 마십시 오. 또는 무효한 데이터로서 취급해 주십시오.
USB 메모리를 인식하지 못 한다.	USB 메모리가 손상되었다.	[FILE] 화면의 리로드 버튼())을 눌러 주십 시오. 본 기기의 전원을 다시 켜 주십시오.

#### 원인을 알 수 없을 때

원인을 알 수 없는 때는 시스템을 리셋해 주십시오. 모든 설정이 공장 출하 시의 초기설정 상태가 됩니다. 참조: "6 시스템 설정" (p.153)

### 11.3 다이얼로그 표시

- 고장이라 생각되는 경우는 "수리를 의뢰하기 전에" (p.301), "11.3 다이얼로그 표시" (p.303)를 확 인한 후 당사 또는 대리점으로 연락 주십시오.
- 표시부에 에러가 표시된 경우는 수리가 필요합니다. 당사 또는 대리점으로 연락 주십시오.
- 본 기기의 전원을 켜기 전에 측정 대상 라인이 활선 상태로 되어 있으면 본 기기가 고장 나거나 전원 투입 시에 에러를 표시할 수 있습니다. 반드시 먼저 본 기기의 전원을 켜고 에러 표시가 되지 않는지를 확인한 후 측정 라인의 전원을 켜 주십시오.

#### 에러 메시지

다이얼로그 표시	대처 방법
The option calibration data is corrupted.	수리가 필요합니다. 당사 또는 대리점으로 연락 주십시오.
The option configuration has changed.	수리가 필요합니다. 당사 또는 대리점으로 연락 주십시오.
The unit calibration data is corrupted.	수리가 필요합니다. 당사 또는 대리점으로 연락 주십시오.
The unit ID setting is incorrect.	수리가 필요합니다. 당사 또는 대리점으로 연락 주십시오.
The instrument's settings have been initialized.	빈번하게 표시되는 경우는 수리가 필요할 수 있습니다. 당사 또는 대리점으로 연락 주십시오.
The fan is broken.	수리가 필요합니다. 당사 또는 대리점으로 연락 주십시오.
Communication part of the Unit is broken.	수리가 필요합니다. 당사 또는 대리점으로 연락 주십시오.
There is a problem with the optical link module. Please reboot PW8001.	전원을 다시 켜 주십시오. 빈번하게 표시되는 경우에는 당사 또는 대리점 으로 연락 주십시오.

#### 경고 메시지

다이얼로그 표시	대처 방법	참조 항목
The current sensor has changed.	버튼을 탭하여 메시지를 닫아 주십시오.	_
Holding values	홀드 중에는 측정치에 영향을 주는 설정을 변경 할 수 없습니다. 설정을 변경할 경우는 홀드를 해제해 주십시오.	"5.3 홀드 기능" (p.141)
Holding peak values	피크 홀드 중에는 측정치에 영향을 주는 설정을 변경할 수 없습니다. 설정을 변경할 경우는 피 크 홀드를 해제해 주십시오.	"5.4 피크 홀드 기능" (p.143)
Integration is ongoing, the instrument is standing by for integration, or integration is stopped.	적산 중, 적산 대기 중에 적산을 리셋할 경우는 적산을 정지한 후 <b>DATA RESET</b> 키를 눌러 주십시오. 적산 중에는 레인지 이외의 측정치에 영향을 주 는 설정을 변경할 수 없습니다.	"3.3 적산 측정" (p.75) "시간 제어 기능과 조합한 적산 측정" (p.81)
	적산 정지 중에 적산을 리셋할 경우는 DATA RESET 키를 눌러 주십시오․	
The entered value is out of range. Please check the setting range and enter the value again.	설정 범위를 확인한 후 범위 내의 값을 다시 입 력해 주십시오․	_

유지보수 및 서비

## 11

스

다이얼로그 표시	대처 방법	참조 항목
Unable to switch wiring. The wiring includes one or more different current sensors.	전류 센서의 연결을 확인해 주십시오.	"2.5 결선 모드와 전류 센서 의 설정" (p.50)
The number of parameters that can be saved has been exceeded. Check the setting.	데이터 저장 인터벌 설정을 길게 하거나 저장 항목 수를 줄여 주십시오․	-
Cannot perform zero adjustment.	홀드 중, 피크 홀드 중, 적산 중에는 영점 조정 을 실행할 수 없습니다. 영점 조정을 할 경우는 홀드, 피크 홀드를 해제한 후 적산을 리셋해 주 십시오.	-
Out of the input range.	설정 범위를 확인한 후 다시 입력해 주십시오.	-
The integration start time is in the past.	실시간 제어의 적산 시작 시각을 확인해 주십시 오․	"5.1 시간 제어 기능" (p.137)
Unable to switch I input.The wiring includes one or more different current sensors.	전류 센서의 연결을 확인해 주십시오.	"2.5 결선 모드와 전류 센서 의 설정" (p.50)
Failed to delete.	다시 한번 실행해 주십시오.	-
Failed to load the upgrade file.	버전업 파일이 파손되었을 가능성이 있습니다. 버전업 파일을 다시 복사하여 재차 실행해 주십 시오.	-
There is not enough space on the USB drive.	불필요한 파일을 삭제하거나 새 USB 메모리로 교체해 주십시오.	_
Unable to automatically generate the filename.	다른 저장 폴더를 지정하거나 새로 폴더를 작성 한 후 해당 폴더의 하위에 저장해 주십시오. 또 는 불필요한 파일을 삭제하거나 새 USB 메모 리로 교체해 주십시오.	"7.8 파일 및 폴더의 조작" (p.177)
The name is already being used by a different file or folder.	다른 파일명 또는 폴더명으로 변경해 주십시오.	"파일명 및 폴더명의 변경" (p.177)
Unable to find the USB drive.	USB 메모리가 삽입되어 있는지 확인해 주십시 오.	"7.1 USB 메모리" (p.157)
Unable to switch to the wiring described in the settings file due to differences in the sensor configuration.	옵션 등의 조합이 다른 경우는 "설정 파일 읽어 오기"를 실행할 수 없습니다.	"7.7 설정 데이터의 저장과 로딩" (p.175)
Unable to load the settings data. The option configuration is different.	위와 같음	-
Unable to load the settings data. The unit configuration is different.	위와 같음	_
The instrument' s firmware version differs from the version for which the settings data was created.	위와 같음	-
Unable to load the settings file.	적산 리셋 상태, HOLD 해제 상태, 동기 제어 를 OFF로 해주십시오.	_
Failed to write data.	다시 한번 실행해 주십시오.	-
Failed to load data.	위와 같음	-

다이얼로그 표시	대처 방법	참조 항목
Unable to create file.	위와 같음	-
Unable to create folder.	위와 같음	-
This USB drive is not supported and cannot be used with this instrument.	파일 시스템이 FAT 이외일 때는 FAT32로 다 시 포맷해 주십시오.	"7.1 USB 메모리" (p.157)
Unable to access the USB drive.	USB 메모리가 본 기기에 대응하지 않을 가능 성이 있습니다. 대응하는 USB 메모리인지 확 인해 주십시오. 본 기기에 대응하는 USB 메모리인데도 액세스 할 수 없는 경우는 USB 메모리를 포맷해 주십 시오.	"본 기기에 대응하는 USB 메모리" (p.158) "USB 메모리의 포맷" (p.178)
No files were found for automatic FTP upload.	송신 대상의 파일이 있는지 확인해 주십시오.	-
Failed to copy data.	다시 한번 실행해 주십시오.	-
The file on the device is being accessed.	자동 저장 중이라면 자동 저장을 정지해 주십시 오. FTP 서버 기능을 사용 중이라면 연결을 끊 어 주십시오.	-
Auto-save operation has not completed. Reset the instrument.	자동 저장을 정지해 주십시오.	-
Failed to rename.	같은 이름의 파일명 또는 공란의 파일명으로는 이름을 변경할 수 없습니다. 다른 이름을 입력 해 주십시오.	-
Failed to format.	다시 한번 실행해 주십시오.	-
Cannot execute screenshot while auto saving.	데이터 저장 인터벌 설정을 1초 이상으로 설정 하거나 자동 저장을 정지해 주십시오.	_
Cannot save measured data manually while auto saving.	자동 저장을 정지해 주십시오.	_
Cannot save waveform data while auto saving.	위와 같음	-
Cannot save settings data while auto saving.	위와 같음	_
Cannot execute media operation while auto saving.	위와 같음	_
Cannot make DBC file while auto saving.	위와 같음	-
Failed to send the FTP file. It will be resent after a certain period of time.	FTP 서버가 기동하고 있는지 확인해 주십시 오. 또는 FTP 클라이언트의 설정을 확인해 주 십시오.	"9.4 FTP 클라이언트로 데 이터를 송신" (p.228)
Failed to resend the FTP file.	위와 같음	_
Saved in a file. Please wait.	잠시 기다려 주십시오.	_
Cannot save data while storing waveform.	<b>SINGLE</b> 키로 파형을 기록한 후 파형 저장을 실행해 주십시오.	"4.3 파형의 기록" (p.123)
The waveform and settings are inconsistent. Please update with the SINGLE key and try again.	위와 같음	

11

다이얼로그 표시	대처 방법	참조 항목		
The waveform data, invalid, cannot be saved.	[RUN/STOP] 키를 눌러 파형 스토리지 동작 을 정지하였기 때문에 표시된 파형 데이터와 내 부에서 가지고 있는 파형 데이터가 다릅니다. [SINGLE] 키를 사용하여 파형 데이터를 취득 해 주십시오.	"4.3 파형의 기록" (p.123)		
Operating in the IEC measurement mode.	IEC 측정 모드에서는 할 수 없는 조작입니다. 실행하려면 측정 모드를 WideBand 모드로 해 주십시오.	"2.7 측정 모드" (p.55)		
Operating in or waiting for the BNC synchronization mode.	BNC 동기 동작 중 또는 접속 대기 상태에서는 할 수 없는 조작입니다. 실행하려면 BNC 동기 설정을 OFF로 하거나, 정상적인 BNC 동기 상태로 해주십시오.	"외부 인터페이스 사양"의 "(7) DNO 도기" (* 202)		
Operating in the BNC synchronization mode.	BNC 동기의 세컨더리 동작 중에는 할 수 없 는 조작입니다. 실행하려면 BNC 동기 설정을 OFF로 해주십시오.	- "(7) BNC 동기" (p.262)		
Operating in the optical link mode.	광링크 동작 중에는 할 수 없는 조작입니다. 실 행하려면 광링크 설정을 OFF로 해주십시오.			
Operating in the optical link secondary mode.	광링크의 세컨더리 동작 중에는 할 수 없는 조 작입니다. 프라이머리 기기를 조작해서 실행하 거나, 광링크 설정을 OFF로 하여 실행해 주십 시오.	"광링크 (광링크 인터페이 스)" (p.190)		
Waiting for the optical link mode.	광링크의 접속 대기 상태에서는 할 수 없는 조 작입니다. 실행하려면 광링크 설정을 OFF로 하거나, 정상적인 광링크 동작 상태로 해주십시 오.			

## 11.4 자주하는 질문

0	자동 저장으로 측정하였는데도 측정 데이터가 저장되지 않습니다. 어떻게 하면 좋을까요?
A	자동 저장으로 측정할 때는 RUN/STOP 키가 아닌 START/STOP 키를 눌러 주십시오. 참조: "측정 데이터의 자동 저장" (p.164)
0	자동 저장 시에 "Unable to automatically generate the filename." 라는 메시지가 표시되었습니다. 어떻게 하면 좋 을까요 <b>?</b>
A	추가로 파일을 저장하기 위해 별도의 폴더를 작성합니다. 각 폴더에는 1000개 파일까지 저장할 수 있습니다. 참조: "기록 가능 시간과 데이터" (p.166)
0	LAN 경유로 본 기기와 PC를 연결했는데도 PC가 MAC 주소를 취득할 수 없습니다. 어떻게 하면 좋을까요?
A	IP 주소의 설정을 확인해 주십시오. PC의 IP 주소와 마지막 3자리 이외는 모두 공통의 번호를 설정해야만 통신할 수 있습니다. 참조: "9.1 LAN의 연결과 설정" (p.218)
0	구입 후에 채널을 증설할 수 있나요?
A	고객은 채널을 증설할 수 없습니다. 특별 주문을 통해 개조할 수 있으므로 당사 또는 대리점으로 연락 주십시오.
0	저장한 데이터 안에 " <b>1.00E+104</b> "나 " <b>7.78E+103</b> "이 포함되어 있었습니다. 이들은 무엇을 나타내나요 <b>?</b>
A	"1.00E+104"는 오버로드 또는 피크 오버하고 있는 데이터를 나타냅니다. "7.78E+103"은 레인지 변경이나 연 산이 불가한 수치 등의 이유로 표시치가 []가 되는 데이터를 나타냅니다. 본 기기의 출력 데이터는 각각 "+99999.9E+99", "+77777.7E+99"입니다. 이들 데이터는 표시할 소프트웨어의 데이터 포맷에 맞는 표기(자릿수 등)로 변경되어 표시됩니다. 참조: "7.9 측정치의 저장 데이터 형식" (p.179)
0	비밀번호 기능(보안)이 내장된 USB 메모리를 사용해도 되나요?
A	비밀번호 기능이 내장된 USB 메모리는 사용할 수 없습니다. Mass Storage Class에 대응하는 USB 메모리를 사용해 주십시오. 참조: "7.1 USB 메모리" (p.157)
0	USB 메모리의 검출에 실패했습니다. 어떻게 하면 좋을까요?
A	본 기기의 전원을 다시 켜 주십시오. 본 기기의 전원을 다시 켰는데도 USB 메모리를 인식하지 못하는 경우에는 다 른 USB 메모리를 시험해 보십시오. (모든 USB 메모리에 대응하지는 않습니다) 참조: "7.1 USB 메모리" (p.157)

### 11.5 조합 정확도의 계산

#### PW8001(U7001, U7005)과 센서의 조합 정확도가 규정되어 있지 않은 경우

유효전력이나 전류의 측정 정확도는 본체 정확도와 사용하는 전류 센서 정확도의 가산이 됩니다. 예를 들 어 유효전력의 측정 정확도는 다음과 같이 계산됩니다.

리딩 정확도 = 유효전력 리딩 정확도 + 센서 리딩 정확도

레인지 정확도 = 유효전력 레인지 정확도 + (센서 정격/전류 레인지)×센서 풀 스케일 정확도

센서	CT6862 (50 A 정격), 정확도 ±0.05% of reading ±0.01% of full scale
본체 설정	전력 레인지 : 6.00000 kW, 정확도 ±0.02% of reading ±0.03% of range 결선 : 1P2W 전압 레인지 : 600 V 전류 레인지 : 10 A
측정 대상	400 V, 5 A, 2.00000 kW, 50 Hz

리딩 정확도 = 0.02% of reading +0.05% of reading = ±0.07% of reading 레인지 정확도 = 0.03% of range + (50 A/10 A) × 0.01% of full scale = ±0.08% of range 유효전력 정확도는 ±0.07% of reading ±0.08% of range (전력 레인지 6 kW)입니다.

## 11.6 외관도













(단위:mm)

### 11.7 랙 마운트

본 기기는 랙 마운트 키트를 설치하여 사용할 수 있습니다.

#### 랙 마운트 키트 JIS 규격(우측용)

재질 : A5052 두께 : t3





#### 랙 마운트 키트 JIS 규격(좌측용)

재질 : A5052 두께 : t3



2×C3

#### 랙 마운트 키트 JIS 규격(연결용)

재질: A5052



#### 랙 마운트 키트 EIA 규격

15.6

į.,

2xC2

재질: A5052 두께: t3



. 2×M5용 스페이서(참고: FABACE FK-M5-6)

#### 장착 방법



■ PW8001 본체에 키트를 설치할 경우는 M4×16 mm의 나사를 사용한다 다른 나사로 고정하면 본 기기가 파손되거나 인신사고를 일으킬 우려가 있습니다.

▲경고

#### 중요

- 본 기기는 중량물이므로 랙 안에서는 시판되는 서포트 앵글 등으로 보강하여 사용해 주십시오.
- 본 기기의 온도 상승을 방지하기 위해 바닥면 이외는 주위에서 30 mm 이상 간격을 두고 설치해 주십 시오.

바닥면은 접지면에서 15 mm (지지발의 높이) 이상 간격을 두고 설치해 주십시오.

#### 준비물

랙 마운트 키트(JIS 대응 Z5301, EIA 대응 Z5300), 육각 렌치(대변 2.5 mm), 십자 드라이버(No.2)

#### JIS 규격의 경우



EIA 규격의 경우



1 본 기기의 전원을 끄고 모든 케이블을 분리한다

2 핸들 부분의 M4 캡볼트(좌우 각 2개)를 육각 렌 치로 분리한다

분리한 M4 캡볼트는 따로 보관해 주십시오.

3 랙 마운트 키트를 M4×16 나사(좌우 각 2개)로 본 체에 장착한다

### 11.8 기술 자료에 관하여

파워 아날라이저에 관한 기술 자료의 일례는 다음과 같습니다. PW8001 또는 PW6001의 제품 소개 페이 지에서 다운로드해 주십시오.

#### 일본어 자료

- 고정밀도, 광대역, 높은 안정성의 전류 센싱 기술
- 파워 아날라이저 PW6001을 통한 PMSM의 파라미터 동정 방법
- 파워 일렉트로닉스 분야의 고정밀도 전력 측정을 위한 전류 측정 기술
- SiC 인버터의 고정밀 전력 측정
- 파워 아날라이저를 통한 PMSM의 모터 파라미터 동정(실측)
- 고주파 리액터의 손실 측정
- 고효율 모터 드라이브의 효율 평가 시의 위상 보정의 유용성
- 벤치 시험에서의 온도 측정
- 2코일법으로 철손을 측정할 경우의 2차 권선(검출 권선) 감는 법
- 충방전 테스트 중에 정확한 임피던스 측정이 가능한 Active Line Device Analysis System의 소개
- 고정밀도 광대역 파워 아날라이저와 전류 센서를 통한 저손실 인덕터의 실동작 손실 측정

<u>is</u>tine in the second se

• 도금 장치용 전원의 DC 대전류 측정 및 변환 효율 측정

PW8001의 다운로드 페이지

https://www.hioki.co.jp/jp/products/ detail/?product_key=1907#docs (유사제품) PW6001의 다운로드 페이지

https://www.hioki.co.jp/jp/products/ detail/?product_key=649#docs



#### 영어 자료

- Effectiveness of Current Sensor Phase Shift When Evaluating the Efficiency of Highefficiency Motor Drives
- Measurement of Loss in High-Frequency Reactors
- · High-precision Power Measurement of SiC Inverters
- Current Measurement Methods that Deliver High Precision Power Analysis in the Field of Power Electronics
- · Identification of PMSM Motor Parameters with a Power Analyzer
- · Identification of PMSM Parameters with the Power Analyzer PW6001
- Real Operating Loss Measurement of Low-Loss Inductors Using High-Precision Wideband Power Analyzer and Current Sensor
- High-precision, Wideband, Highly Stable Current Sensing Technology

#### PW8001의 다운로드 페이지

https://www.hioki.com/global/ products/power-meters/poweranalyzer/id_412384#downloads



(유사제품) PW6001의 다운로드 페이지

https://www.hioki.com/global/ products/power-meters/poweranalyzer/id_6029#downloads



유지보수 및 서비

스

### 11.9 블록도

U7005 15MS/s 입력회로



### 11.10 펌웨어의 업데이트

#### 중요

업데이트에 소요되는 시간은 약 5분입니다. 작업이 완료될 때까지 본 기기의 전원을 끄지 마십시오. 도중에 전원을 끄면 본 기기의 고장이 발생합니다. 그 경우는 당사에 수리를 의뢰해 주십시오.
업데이트하기 전에 설정 조건의 백업본을 저장할 것을 권장합니다.





Refla Information Media Information Media Size: 0 8 Used: 0 8 Free: 0 8

- 당사 웹사이트에 접속하여 버전업 파일 (PW8001_Vxxx.VER)을 다운로드한다 xxx 부분이 버전 번호입니다. (예: Ver1.20인 경우, 120)
- 2 USB 메모리의 HIOKI/PW8001/디렉터리 에 버전업 파일을 저장한다
- 3 FILE 키를 눌러 파일 조작 화면으로 이동한 다
- 4 본 기기에 USB 메모리를 삽입한다
- 5 버전업 파일을 탭하여 선택한다
- **[Update] 를 탭한다** 확인 창이 표시됩니다.
- 7 [Yes]를 탭한다

버전업 준비 중이라는 창이 표시됩니다. 창을 닫으면 화면 표시가 사라지면서 펌웨어의 업 데이트가 시작됩니다.



rievenerieve									5678
Language		English		Time/e	date setti	ngs 2	021-12-2	1 15:04:5	2
Time zone	GI	4T +09:00		Time/e	date form	at y	yyy MM d	d	
Text format		CSV		Delimi	ter		•		
Beep tone		OFF			-			_	
Startup screen		WIRING				System	reset		
Model Serial number Version number	PW8001-14		СНЗ	сн 4		сне	сн 7	сна	
Unit	1/2005	107005	U7005	U7005	107005	U2005	U7005	U7005	
Serial number	00000000	000000000	000000000		000000000	000000000	000000000	000000000	
	Probe1	Probe1	Probe1	Probe1	Probe1	Probet	Probe1	Probe1	
Sensor									

[Updating firmware...]라는 표시가 사라진 후 본 기기가 기동합니다.

 8 본 기기가 기동하면 SYSTEM 키를 누른다
 [CONFIG] 화면에서 버전 번호를 확인해 주십시 오.

### 11.11본 기기의 폐기(리튬 전지 분리 방법)

본 기기를 폐기할 때는 리튬 전지를 빼낸 후 지역에서 정한 규칙에 따라 처분해 주십시오. 기타 옵션류도 소정의 방법에 따라 폐기해 주십시오.

	<u> </u>
	■ 전지를 쇼트하지 않는다
	■ 충전하지 않는다
$\bigcirc$	■ 분해하지 않는다
	■ 불 속에 투입하거나 가열하지 않는다
	전지가 파열되어 인신사고를 일으킬 우려가 있습니다.
	리튬 전지를 분리할 때는 본 기기의 전원을 끄고 전원 코드 및 측정 케이블을 측정 대상물에서 분리한다
	■ 꺼낸 전지는 아이의 손이 닿지 않는 곳에 보관한다
CALIFO Perchlor	RNIA, USA ONLY rate Material - special handling may apply.

See www.dtsc.ca.gov/hazardouswaste/perchlorate

#### 준비물

십자 드라이버 (No.2), 육각 렌치 (대변 2.5 mm), 일자 드라이버 (길고 가느다란 것)



### 11.12 오픈 소스 소프트웨어에 관하여

본 제품에는 GNU General Public License, GNU Lesser General Public License 및 기타 라이 선스의 적용을 받는 소프트웨어가 포함되어 있습니다. 고객에게는 이들 라이선스에 의거하여 소프트웨어 의 소스 코드를 입수, 수정 또는 재배포할 권리가 있습니다.

상세는 아래의 사이트를 참조해 주십시오.

https://www.hioki.com/en/support/oss/

아울러 소스 코드의 내용에 관한 문의는 삼가 주십시오.

# 색인

#### <u>기호</u>

Δ-Y	변환	 	 	 145

#### 숫자

1P2W 1P3W 3P3W2M 3P3W3M 3P4W	51 51 51 51 51
3P4W	51
3V3A	51

#### <u>A</u>

Arbitration speed	208
AUTO 레인지	24, 64
Averaging count	139
Averaging mode	139
A상 펄스	109

#### В

BIN 형식	161
BNC 동기	187
B상 펄스	109

#### С

CAN 데이터베이스	
CAN 출력 기능	
Center frq	103
Comment entry	173
CSV	153, 161
CSV 형식	161
СТ	
CURSOR	

#### D

DBC 파일	. 207. 211
DC 모드	
Default gateway	220
DMAG	57

#### E

Event (트리거 검출 방식)	121
EXP	139

#### F

FFT TOP10	131
FFT 해석	127
fnd 값	82

FTP	서버	기능							. 224
-----	----	----	--	--	--	--	--	--	-------

#### G

GP-IB 커넥터	26,	237
	,	

#### H

HTTP 서버22	22
-----------	----

#### 

IEC	55, 82
IEC 전압 변동 / 플리커 측정	111
IEC 측정 모드	55, 82
Individual input	
· IP 주소	220

#### L

LAN 인터페이스			218
Level (트리거 검출 방식)			121
LPF	32,	71,	101

#### Μ

MAC 어드레스	27
MANUAL	
MANUAL 레인지	
MEAN	
Modbus/TCP	
MOV	139

#### Ρ

Peak-Peak 압축	118
PHASE ADJ	108
Phase Shift	52
PNF	101
Probe1 단자	42, 43
Probe2 단자	

#### R

Record length	117
Response speed	139
RS-232C 인터페이스	239

#### S

	447
Sampling	
SINGLE	123
Slip	101
SSV	153, 161

Status 데이터	184
Subnet mask	220

### т_____

Terminal resist	 208

### U

UDF	148
USB 메모리31,	157

### V

### W

WideBand	55,	82
WideBand 광대역 측정 모드		82

### <u>Y</u>_____

$Y-\Delta$	변환	 	 	 	 146

#### Z

ZCF	121
ZC HPF	72
Zoom	125
Z상	107
 Z상 기준	107, 110

#### ٦

간이 설정	
가상 중성점	145
공장 출하 시의 설정	156
고역 통과 필터	72
고조파	33, 82
고조파 그룹	87
고조파 서브 그룹	87
광대역 측정 모드	55
광링크	190
광링크 인터페이스	190
극성별	80
그루핑	88
기계각	104
기본 주파수	
기본파 성분	82

#### 

델타	변환	32,	145

데이터 갱신율	32,	68
동기 소스	32,	69
동기 언록		70

#### 2

랙 마운트	
EIA	
JIS	
로터리 노브	
로터리 인코더	104
리모트 상태	
리스트 표시	

#### 

막대 그래프	33
모터 입력	94
영점 조정	99
모터 파워	98
모터 해석 연결 예	97
미끄럼	98

#### ы

벡터 표시	3, 86
변환 케이블	44
부팅키 리셋	155
비프음	153

#### 스

사용자 정의 연산	148
설정 데이터	175
셀프 테스트	
손실	
소자	
수동 적산	
수동 저장	
수리	
스케일링	
시간축의 설정	
실시간 제어	
실시간 제어 적산	
시스템 리셋	
시스템 설정	
. = = = -	

아날로그 출력	68, 197
애버리지	32, 139
에러 값	213
에일리어싱	118
영점 조정	24, 57
오버 값	213
외관도	309

외부 신호	77, 204
외부 입력	
외부 제어 단자	205
윈도우 함수	134
위상 보정	52
위상 영점 조정	108
위상 특성 대표치	53
유효 측정 범위	62
인렛	48
입력 임피던스	195
입력 채널	

#### ㅈ

자동 저장	164
자동 트리거	121
제로 서프레스의	67
적산	76
적산 모드	80
전기각	107
전력 연산식	147
전류 센서	
위상 특성 대표치	53
자동 인식 기능	51
전류 입력	42
전압 신호 측정	95
전압 입력	41
전압 입력 단자	
전원 인렛	
정류 방식	73
저역 통과 필터	71, 101
제로 억제	67
제로 위치	116
제로 크로스	69
제로 크로스 필터	121
조합 정확도	308
줌 기능	125
중간 고조파	87
주파수 측정	72

#### **大**

채널 상세 표시 영역	80
채널 표시 LED	
출력 레인지	199
출력률	200
출력 임피던스	195
측정 모드	55
측정 상한 주파수	72
측정 하한 주파수	72
치수	309

_____

#### 7

캐리어 주파수	. 54, 127
커서 측정	124
키 록	

키보드 창	 30

#### E

타이머 적산	81
타이머 제어	137
텐 키 창	
통신 커맨드 사용설명서	7
토크	
토크미터 보정 기능	105
특별 조합 정확도	
트리거	120
트리거 레벨	121
트리거 소스	121
트리거 슬로프	121

#### п

파일	159
파형 데이터	
저장	169
파형을 기록	123
파형 표시	115
펄스 노이즈 필터	101
펄스 신호 측정	95
펌웨어	
업데이트	315
업데이트 폐기	315 317
업데이트 폐기 폴더	315 317 160
업데이트 폐기 폴더 표시 가능 범위	315 317 160 62
업데이트 폐기 폴더 표시 가능 범위 표시 아이콘	315 317 160 62 28
업데이트 폐기 폴더 표시 가능 범위 표시 아이콘 플리커	315 317 160 62 28 111
업데이트 폐기 폴더 표시 가능 범위 표시 아이콘 플리커 프리트리거	315 317 160 62 28 111 121
업데이트 폐기 폴더 표시 가능 범위 표시 아이콘 플리커 프리트리거 피크 홀드 기능	315 317 160 62 28 111 121 25

#### <u>خ</u>

홀드 기능	
 확장자	163, 164, 171
화면 복사	157, 173
회전 방향	109
회전수	
효율 및 손실 측정	89
Auto	89, 91
Fixed	89, 90
효율 연산	

		보 증 서		ΗΙΟΚΙ
	모델명	제조번호	보증 기간 구매일 년	월로부터 3년간
고긱	박주소:			
	이름:			
요추 , ,	성 사항 •보증서는 재발급할 수 없으므로 • "모델명, 제조번호, 구매일" 및 ※기입하신 개인정보는 수리 서	주의하여 보관하십시오. "주소, 이름"을 기입하십시오. 비스 제공 및 제품 소개 시에만 사용합니	다.	
본 저 내용	헤품은 당사 규격에 따른 검사에 함 중에 따라 본 제품을 수리 또는 신흥	합격했음을 증명합니다. 본 제품이 고장 닌 품으로 교환해 드립니다. 연락하실 때는 된	난 경우는 구매처에 { 큰 보증서를 제시해 ⁼	연락 주십시오. 아래 보증 주십시오.
보 <i>召</i> 1. 3. 4. 5. 6. 7. 8.	등 내용         보증 기간 중에는 본 제품이 정상         불확실한 경우는 본 제품의 제조적         본 제품에 AC 어댑터가 부속된 경         측정치 등의 정확도 보증 기간은         각각의 보증 기간 내에 본 제품 또         또는 AC 어댑터를 무상으로 수리         이하의 고장, 손상 등은 무상 수리         -1. 소모품, 수명이 있는 부품 등의         -2. 커넥터, 케이블 등의 고장과 류         -3. 구매 후 수송, 낙하, 이전설치         -4. 사용 설명서, 본체 주의 라벨,         -5. 법령, 사용 설명서 등에서 요금         -6. 화재, 풍수해, 지진, 낙뢰, 전원         -7. 외관 손상(외함의 스크래치, 탁         -8. 그 외 당사 책임이라 볼 수 없         이하의 경우는 본 제품 보증 대상         -1. 당사 이외의 기업, 기관 또는 되어둠 보증 대상         -1. 당사 이외의 기업, 기관 또는 되어 않은 경우         제품 사용으로 인해 발생한 손실여         금액만큼을 보상해 드립니다. 단,         -1. 본 제품 사용으로 인해 발생한 손실여         금액만큼을 보상해 드립니다. 단,         -1. 본 제품에 의한 측정 결과에 기         -2. 본 제품에 의한 측정 결과에 기         -3. 본 제품과 연결된(네트워크 경제조 후 일정 기간이 지난 제품 및         교정 등을 거부할 수 있습니다.	으로 동작하는 것을 보증합니다. 보증 기 견월(제조번호의 왼쪽 4자리)로부터 3년 경우 그 AC 어댑터의 보증 기간은 구매일 제품 사양에 별도로 규정되어 있습니다. 는 AC 어댑터가 고장 난 경우 그 고장 책 [또는 신품으로 교환해 드립니다. [또는 신품 교환의 보증 대상이 아닙니다 2 고장과 손상 증에 의한 고장과 손상 각인 등에 기재된 내용에 반하는 부적절 7 된 유지보수 및 점검을 소홀히 해서 발생 2 이상(전압, 주파수 등), 전쟁 및 폭동, 방 변형, 퇴색 등) 는 고장과 손상 에서 제외됩니다. 수리, 교정 등도 거부할 개인이 본 제품을 수리한 경우 또는 개조 원자력용, 의료용, 차량 제어용 등)의 기기 에 대해서는 그 손실의 책임이 당사에 있다 아래와 같은 손실에 대해서는 보상하지 않 수 측정 대상물의 손해에 기인하는 2차적 등 인이하는 손해 3 유 연결을 포함) 본 제품 이외의 기기에 되	안은 구매일로부터 3 안을 보증 기간으로 로부터 1년간입니다 임이 당사에 있다고 한 취급으로 인한 고 3한 고장과 손상 사능 오염, 기타 불기 수 있습니다. 한 경우 이에 본 제품을 조립적 나고 당사가 판단한 정 않습니다. 놀해 발생한 손해	3년간입니다. 구매일이 합니다. 당사가 판단했을 때 본 제품 장과 손상 가항력으로 인한 고장과 손상 하여 사용한 것을 사전에 경우, 본 제품의 구매
	HIOKI E.E. CORPORA	ATION		

http://www.hioki.com

18-08 KO-3





Printed in Japan

#### www.hiokikorea.com/

Headquarters 81 Koizumi Ueda, Nagano 386-1192 Japan

**히오키코리아주식회사** 서울특별시 강남구 테헤란로 322 (역삼동 707-34) 한신인터밸리24빌딩 동관 1705호 TEL 02-2183-8847 FAX 02-2183-3360 info-kr@hioki.co.jp 2103 KO

편집 및 발행 히오키전기주식회사

•CE 적합 선언은 당사 홈페이지에서 다운로드할 수 있습니다.

•본서의 기재 내용은 예고없이 변경될 수 있습니다.

•본서에는 저작권에 의해 보호되는 내용이 포함되어 있습니다.

•본서의 내용을 무단으로 복사•복제•수정함을 금합니다.

•본서에 기재되어 있는 회사명•상품명은 각 사의 상표 또는 등록상표입니다.