## CT6904A / CT6904A-1

# AC/DC CURRENT SENSOR

Maximum rating 500A, ultra-high-stability, high-accuracy, wideband DC to 4MHz/2MHz, high-CMRR, high-performance fluxgate technology, pass-through type





### Features

- 5 ppm linearity
- 10 ppm offset
- Voltage output
- CT coil structure for broadband and superior frequency characteristics
- Built-in machined solid aluminum shield for excellent noise resistance (high CMRR)
- Aperture  $\varphi32$  mm for cables and bus-bars
- The Power Analyzer PW8001 or the Data Logger LR8101, LR8102 with the Power Measurement Module M7103 automatically recognizes the current sensor's information (phase shift data, sensor model name, rated current, serial number) when connected.

### Applications

- Measurement of loss in high-frequency reactors
- Automotive (e.g. xEV inverter motors)
- Efficiency measurement of high-efficiency energy converters
- · Analysis of industrial inverter motors
- · Calibration of shunt resistors
- Measurement of minute superimposed current in battery systems
- For feedback control in medical devices (MRI,CT, X-ray)

| Specification highlights                     | Symbol | Unit | Min.  | Тур.                           | Max.  |
|----------------------------------------------|--------|------|-------|--------------------------------|-------|
| Nominal primary DC current                   | IPN DC | А    | -500  |                                | 500   |
| Nominal primary AC current                   | IPN AC | Arms |       |                                | 500   |
| Measurement range                            | Ірм    | А    | -550  |                                | 550   |
| Nominal output voltage                       | Vout   | V    | -2    |                                | 2     |
| Primary / secondary ratio                    | Ratio  | V/A  | 0.004 | 0.004                          | 0.004 |
| Linearity error                              | ٤L     | ppm  |       | ±5                             |       |
| Offset error                                 | 60     | ppm  |       | ±10                            |       |
| Bandwidth (±3dB)                             | f      | MHz  |       | CT6904A: 4<br>CT6904A-1: 2     |       |
| Withstand voltage (1mA, 50/60Hz for 1minute) | Ud     | kV   |       |                                | 7.4   |
| Power supply voltages                        | Uc     | V    | ±11.5 |                                | ±12.5 |
| Operating temperature range                  | TA     | °C   | -10   |                                | 50    |
| Output cable length                          | Lcable | m    |       | CT6904A : 3m<br>CT6904A-1: 10m |       |

#### HIOKI E.E. CORPORATION

All information correct as of January 31, 2025.

## AC/DC CURRENT SENSOR

#### Æ Electrical specifications at TA = 23°C ±5°C, supply voltage (by using external PSU) = ±12 V unless otherwise stated

| Parameter                                                                  | Symbol | Unit                                               | Min.               | Тур.   | Max.            | Comment                                                                                                               |
|----------------------------------------------------------------------------|--------|----------------------------------------------------|--------------------|--------|-----------------|-----------------------------------------------------------------------------------------------------------------------|
| Nominal primary DC current                                                 | IPN DC | А                                                  | -500               |        | 500             | Refer to "Figure 1. Frequency derating"                                                                               |
| Nominal primary AC current                                                 | IPN AC | Arms                                               |                    |        | 500             | Refer to "Figure 1. Frequency derating"                                                                               |
| Measurement range                                                          | Ірм    | А                                                  | -550               |        | 550             | Refer to "Figure 1. Frequency derating"                                                                               |
| Maximum input current                                                      | Імах   | Apeak                                              | -1000              |        | 1000            | Not exceeding derating curve shown in Figure 1<br>However, it is allowable for up to 20 ms at 40°C or less            |
| Nominal output voltage                                                     | Vout   | V                                                  | -2                 |        | 2               |                                                                                                                       |
| Primary/secondary ratio                                                    | Ratio  | V/A                                                | 0.004              | 0.004  | 0.004           |                                                                                                                       |
| Bandwidth (-3dB)<br>CT6904A<br>CT6904A-1                                   | f      | MHz                                                |                    | 4<br>2 |                 | Refer to "Figure 2. Frequency characteristics"                                                                        |
| Output resistance                                                          |        | Ω                                                  | 40                 | 50     | 60              |                                                                                                                       |
| Input impedance                                                            |        | mΩ                                                 |                    | 2.5    |                 | 100 kHz                                                                                                               |
| Linearity error                                                            | £L     | ppm                                                |                    | ±5     |                 | Refer to "Figure 3. Linearity error characteristics"                                                                  |
| Offset error                                                               | 03     | ppm                                                |                    | ±10    |                 |                                                                                                                       |
| Output noise                                                               | noise  | μVrms                                              |                    |        | 300             | Measurement bandwidth: DC to 1MHz                                                                                     |
| Effects of temperature<br>Amplitude sensitivity<br>Offset voltage<br>Phase |        | ppm of reading/°C<br>ppm of full scale/°C<br>±°/°C | -20<br>-1<br>-0.01 |        | 20<br>1<br>0.01 | Within the range of -10°C to 18°C or 28°C to 50°C                                                                     |
| Effects of magnetization                                                   |        | mA                                                 |                    |        | 5               | Input equivalent, after 500A DC is inputted                                                                           |
| Common mode rejection ratio<br>50/60 Hz<br>100 kHz                         | CMRR   | dB                                                 | 140<br>120         |        |                 | (Effect on output voltage/common-mode voltage)<br>Refer to "Figure 4. CMRR characteristics"                           |
| Effects of conductor position<br>50/60 Hz<br>100 kHz                       |        | % of reading                                       | -0.01<br>-0.2      |        | 0.01<br>0.2     | When wire of outer diameter 10 mm is used<br>Refer to Figure 5. Effects of conductor position<br>(typical) at 100 kHz |
| Effects of external magnetic field                                         |        | mA                                                 |                    |        | 50              | Input equivalent, under a magnetic field of 400<br>A/m, DC                                                            |
|                                                                            |        |                                                    |                    |        | 50              | Input equivalent, under a magnetic field of 400<br>A/m, 60 Hz                                                         |
| Effects of radiated radio-frequency electromagnetic field                  |        | % of full scale                                    |                    |        | 0.5             | 10 V/m                                                                                                                |
| Effects of conducted radio-frequency electromagnetic field                 |        | % of full scale                                    |                    |        | 0.2             | 10 V                                                                                                                  |
| Fluxgate excitation frequency                                              | fExc   | kHz                                                |                    | 10.4   |                 |                                                                                                                       |
| Power supply voltages                                                      | Uc     | V                                                  | ±11.5              |        | ±12.5           |                                                                                                                       |
| Positive current consumption                                               | lps    | mA                                                 |                    |        | 400             | DC + 500 A with ±12 V                                                                                                 |
| Negative current consumption                                               | Ins    | mA                                                 |                    |        | -400            | DC – 500 A with ±12 V                                                                                                 |

#### **F** Isolation specifications

| Parameter                                            | Unit | Value | Comment                                                            |  |
|------------------------------------------------------|------|-------|--------------------------------------------------------------------|--|
| Rated insulation RMS voltage, basic insulation       | V    | 1000  | IEC 61010-1 conditions                                             |  |
| Rated insulation RMS voltage, reinforced insulation  | V    | 1000  | • over voltage cat III • pollution degree 2                        |  |
| RMS voltage for AC isolation test, 50/60 Hz, 1minute | kV   | 7.4   | Between primary and secondary (and shield)<br>Sensed current: 1 mA |  |
| Clearance                                            | mm   | 20.7  | Shortest distance through air                                      |  |
| Creepage distance                                    | mm   | 20.7  | Shortest path along device body                                    |  |
| Comparative tracking index (CTI)                     | V    | < 250 | Performance level category (PLC)= 3                                |  |
| Standards                                            |      |       | Safety: EN 61010<br>EMC: EN 61326                                  |  |

HIOKI E.E. CORPORATION

All information correct as of January 31, 2025.

## AC/DC CURRENT SENSOR

#### Environmental and mechanical characteristics

| Parameter                                   | Symbol      | Unit | Min. | Тур.             | Max. | Comment                                                   |
|---------------------------------------------|-------------|------|------|------------------|------|-----------------------------------------------------------|
| Operating environment (altitude)            |             | m    |      |                  | 2000 | Indoor use, pollution degree 2                            |
| Ambient operating temperature range         | Та          | °C   | -10  |                  | 50   |                                                           |
| Ambient storage temperature range           | TAst        | °C   | -20  |                  | 60   |                                                           |
| Relative humidity                           | RH          | %    |      |                  | 80   | Non-condensing                                            |
| Dust resistance and water resistance        |             |      | IP20 |                  |      | EN 60529                                                  |
| Measurable conductor diameter               | Dmeas       | mm   |      |                  | 32   |                                                           |
| Dimensions                                  | W<br>H<br>D | mm   |      | 139<br>120<br>52 |      | Refer to "Figure 6. Dimensions"                           |
| Output cable length<br>CT6904A<br>CT6904A-1 | Lcable      | m    |      | 3<br>10          |      |                                                           |
| Mounting hole diameter                      | Dmout       | mm   |      | Φ5.2             |      | M5 screw, recommended tightening torque: 1.5 Nm to 2.0 Nm |
| Weight<br>CT6904A<br>CT6904A-1              | m           | kg   |      | 1.05<br>1.35     |      |                                                           |

#### Measurement accuracy (total accuracy including uncertainty in calibration system etc.)

| Frequency         | Ampl                 | Phase<br>[±°] |          |
|-------------------|----------------------|---------------|----------|
| [Hz]              | [Hz] [±% of reading] |               |          |
| DC                | 0.025                | 0.007         | -        |
| DC < f < 16       | 0.2                  | 0.02          | 0.1      |
| 16 ≤ f < 45       | 0.1                  | 0.02          | 0.1      |
| 45 ≤ f ≤ 65       | 0.02                 | 0.007         | 0.08     |
| $65 < f \le 850$  | 0.05                 | 0.007         | 0.12     |
| 850 < f ≤ 1 k     | 0.1                  | 0.01          | 0.4      |
| 1 k < f ≤ 5 k     | 0.4                  | 0.02          | 0.4      |
| 5 k < f ≤ 10 k    | 0.4                  | 0.02          | 0.08 × f |
| 10 k < f ≤ 50 k   | 1                    | 0.02          | 0.08 × f |
| 50 k < f ≤ 100 k  | 1                    | 0.05          | 0.08 × f |
| 100 k < f ≤ 300 k | 2                    | 0.05          | 0.08 × f |
| 300 k < f ≤ 1 M   | 5                    | 0.05          | 0.08 × f |
| Frequency range   | 4 MHz/2 MHz (CT69    | -             |          |

### Definition of on accuracy

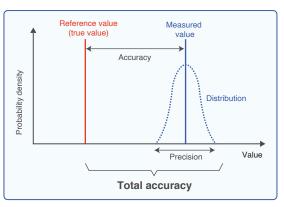
(total accuracy including uncertainty in calibration system etc.)

#### Reading (displayed value) error:

Indicates the value displayed by the instrument. Limit values for reading errors are expressed as a percentage of the reading ("% of reading" or "% rdg").

#### Range error:

Indicates the instrument's range. Limit values for range errors are expressed as a percentage of the range ("% of range").


#### Full scale (rated current) error:

Indicates the rated current. Limit values for full-scale errors are expressed as a percentage of full scale ("% of full scale" or "% f.s."). Calibration:

The accuracy of HIOKI products includes all factors that affect the measurement results, such as calibration system errors, ambient temperature, and secular change, as "uncertainty".

Electrical specifications at  $T_A = 23^{\circ}C \pm 5^{\circ}C$ , supply voltage (by using external PSU) =  $\pm 12$  V unless otherwise stated

- The variable f in accuracy equations is expressed in kHz.
- Accuracy of amplitude and phase is specified with 110% of full scale input or less and not exceeding derating curve in Figure 1. Accuracy in range of DC < f < 10 Hz are design values.
- Add  $\pm 0.01\%$  of reading to amplitude accuracy when input is 100% to 110% of full scale.
- + For the CT6904A-1, add the following values to accuracy in the range of 50 kHz < f  $\leq$  1 MHz.
- Amplitude accuracy: $\pm$ (0.015 × f [kHz])% of reading • Combined accuracy with HIOKI power analyzer PW8001 and PW6001 is specified (DC, 45 Hz ≤ f ≤ 65 Hz). For details of combined accuracy, refer to the instruction manual (https://www.hioki.com/download/38350).



HIOKI is accredited as an official ISO/IEC 17025 calibrator.

#### HIOKI E.E. CORPORATION

All information correct as of January 31, 2025.

## AC/DC CURRENT SENSOR

#### Specific accuracy calculation example

How to measure the current of DC 300 A of a conductor with a diameter of  $\phi$ 30 mm or less with high accuracy. Guaranteed specifications at T<sub>A</sub> = 23°C ±5°C

| Measuring instrument configuration | CT6904A,CT6904A-1                                                      | CT9555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L9217 + 9704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DM7276  |  |  |
|------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|
| External view                      |                                                                        | HOUSE<br>The same are<br>correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Correct<br>Cor | and the second s |         |  |  |
| Range (connection)                 | 500 A (2 V)                                                            | Front OUTPUT terminal<br>(BNC terminal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10 V    |  |  |
| Output voltage                     | 300                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |  |  |
| Error (reading)                    | 0.025%                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0009% |  |  |
| Error (full scale)                 | 0.007%                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12 µV   |  |  |
| Total error                        | 1.2 V × (0.025 + 0.0009)% + 2 V × 0.007% + (12 × 10-6) V = 0.0004628 V |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |  |  |
| Total error (input equivalent)     | 0.0004628 V / 2 V × 500A = 0.1157 A                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |  |  |
| Error range                        | 300 A ±0.1157 A→299.8843 A to 300.1157 A                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |  |  |

#### **F** Definition of linearity error

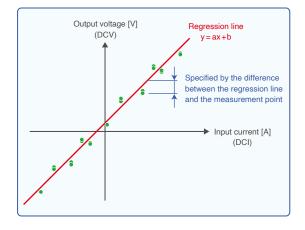
Definition of offset error

Offset error co:

current sensor.

#### Linearity error ɛ∟:

Indicates that the output (current or voltage) changes linearly in response to the input current.


A regression line is attained by measuring the output voltage in the sequence below in 100 A intervals:

+500A→0A→-500A→0A→+500A

It is defined as the difference between the regression line calculated from the above measurements and the measurement points.

Specified by the ratio of the average value ( $\mu$ ) of the measured values of the offset voltage and the rated current (Imax) of each

 $\mathcal{E}_{o} = \mu / Imax [ppm]$ 



#### **F** Definition of amplitude error

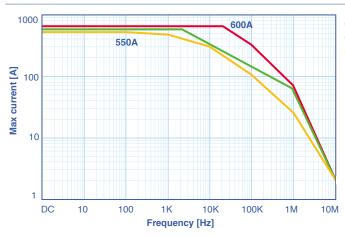
#### Amplitude error ɛg:

An index showing the degree of flatness of the frequency characteristics of gain.

DC error is defined as (linearity error + offset error).

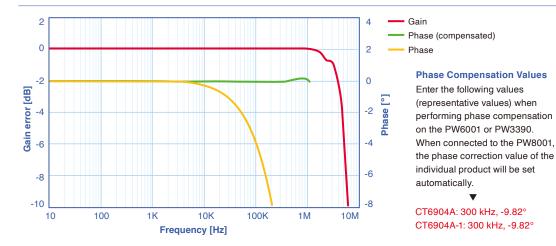
AC error is defined as deviation from the 55 Hz measurement point.

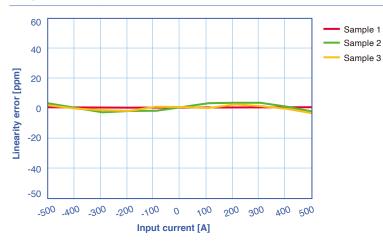
$$\mathcal{E}_{GDC} = \mathcal{E}_L + \mathcal{E}_O \left[ ppm \right]$$


$$\mathcal{E}_{GAC} = \frac{Gain(f) - Gain(55 \text{ Hz})}{Gain(55 \text{ Hz})} \times 100 [\%]$$

HIOKI E.E. CORPORATION

All information correct as of January 31, 2025.


### CT6904A / CT6904A-1 AC/DC CURRENT SENSOR






- 1 min. at an ambient temperature of 50°C
- Continuous input at an ambient temperature of 30°C
- Continuous input at an ambient temperature of 50°C

**Figure 2.** Frequency characteristics





**Figure 3.** Linearity error characteristics

HIOKI E.E. CORPORATION

All information correct as of January 31, 2025.

### CT6904A / CT6904A-1 AC/DC CURRENT SENSOR

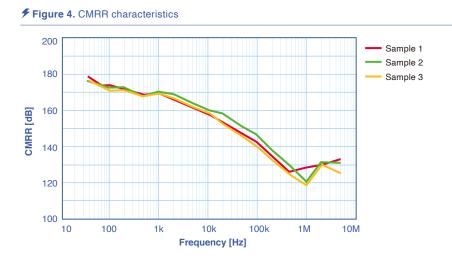
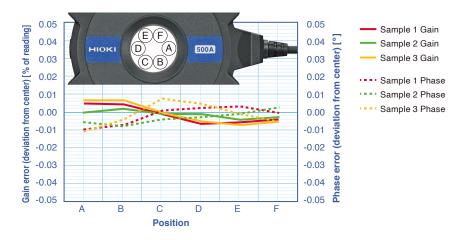




Figure 5. Effects of conductor position (typical) at 100 kHz



HIOKI E.E. CORPORATION

All information correct as of January 31, 2025.

## AC/DC CURRENT SENSOR

#### **Figure 6.** Dimensions

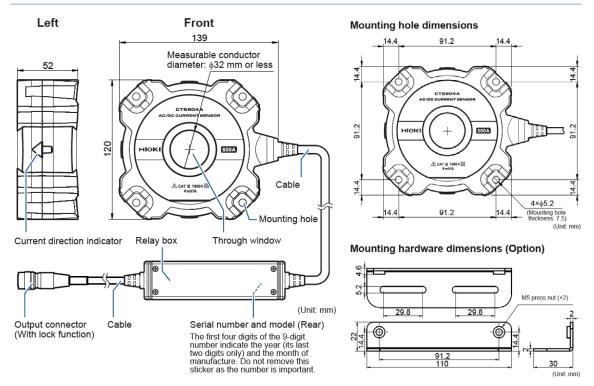
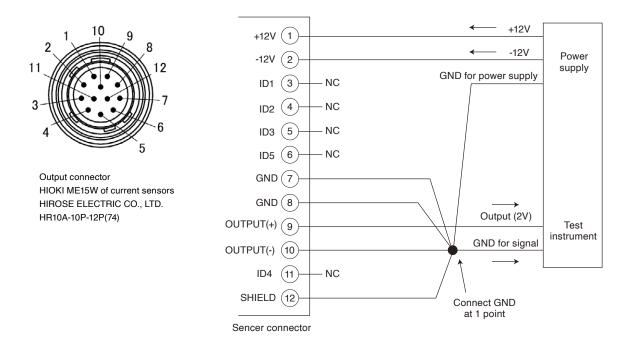
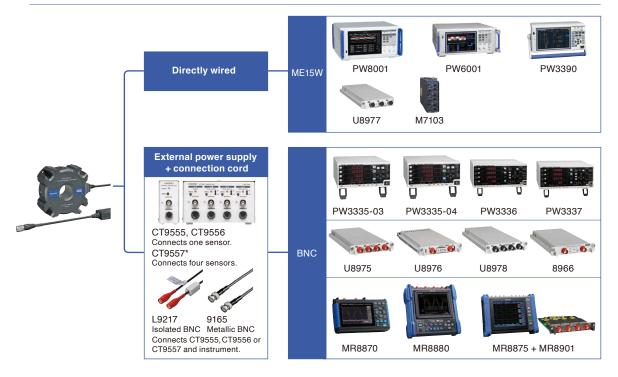
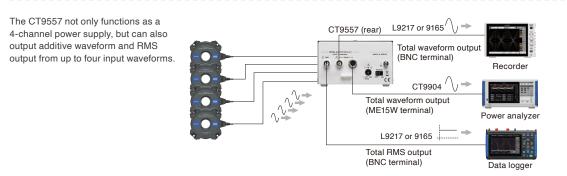




Figure 7. Pin assignment (when not using the sensor units CT9555, CT9556, or CT9557)




HIOKI E.E. CORPORATION


All information correct as of January 31, 2025.

### CT6904A / CT6904A-1

## AC/DC CURRENT SENSOR

#### **Figure 8.** Options and main combination







#### CT9904 CONNECTION CABLE

ME15W (12 pin) terminal - ME15W (12 pin) terminal The CT9904 is the cable for the CT9557 addition output and POWER ANALYZER PW8001/PW6001/ PW3390 connection.

#### CT9902 EXTENSION CABLE



ME15W (12 pin) terminal - ME15W (12 pin) terminal The CT9902 can be used to extend a current sensor's cable by 5m. Up two of these cables can be used for a maximum extension of 10 m. \*When using the CT9902, an additional accuracy needs

to be added. For details, see the sensor's user manual.

#### 🗲 Links

1. Web site https://www.hioki.com/global/products/current-probes/high-precision/id\_471292

2. Accuracy calculation tools

PW8001, PW6001, PW3390, LR8101/LR8102 (M7103): <u>https://hioki-cierto.com/gl/fm50bha8wk/</u> Please download the latest files each time before use.

#### HIOKI E.E. CORPORATION

All information correct as of January 31, 2025.