MR8847A

MR8847-51 MR8847-52 MR8847-53

Measurement Guide

MEMORY HICORDER

Read first.

Offers an introduction to the Memory HiCorder's basic measuring method for first time users.

Apr. 2021 Revised edition 3 MR8847G963-03 21-04H

Introduction

Thank you for purchasing the Hioki MR8847A Memory HiCorder (MR8847-51, MR8847-52, MR8847-53).

This Measurement Guide consists of several basic application examples. Before using the instrument, be sure to read the Instruction Manual carefully.

The following documents are provided with this instrument. Refer to them as appropriate for your application.

Instruc	tion manuals	Description
1	Measurement Guide (This document)	Read first. Offers an introduction to the instrument's basic measuring method for first time users.
2	Instruction Manual (book)	Contains explanations and instructions regarding the instrument's operating methods and functions.
3	Communication Command Instruction Manual (PDF file)	Contains lists of the communication commands to control the instrument with a computer and explanations regarding the commands.
4	U8793, MR8790, MR8791 Instruction Manual (PDF file)	Contains explanations and instructions regarding the operating method as well as functions of the following models: U8793 Arbitrary Waveform Generator Unit, MR8790 Waveform Generator Unit, MR8791 Pulse Generator Unit, and SF8000 Waveform Maker

Contents

Screen structure and operation overview	The screen structure and overview of the operation keys of the instrument	(p.2)
Preparations for Measurement	The things to be done before carrying out measurement	(p.5)
Measurement Procedure	The procedure from pre-measurement check to analysis, saving, and printing.	(p.7)
Measure the commercial power supply	How to record waveforms of a 200-V commercial power supply How to save the data.	(p.9)
Monitor abnormal occurrences	How to record a voltage drop including power failure as an example of special occurrences How to record only abnormal occurrences, constantly monitoring waveforms using the trigger function How to save the data automatically	(p.12)
Analyze the data	How to observe waveform measured values and calculate them using the A and B cursors How to prevent the measured waveforms displayed on the screen from being overlapped	(p.14)
Print the data	The printing method.	(p.21)
Convenient functions	The auto-range function, pre-trigger, probe compensation	(p.24)
Others	The screen, time axis and sampling, record length setting, voltage axis and resolution, file transfer speed	(p.27)

Screen structure and operation overview

Screen structure

For screens with sheet tabs displayed, the sheets can be switched every time a key is pressed.

Operating Keys

1	DISP key Displays the waveform screen.	8	STATUS key Displays the status screen.
2	CH.SET key Displays the channel settings window in the waveform screen.	9	CHAN key Displays the channel screen.
3	TRIG.SET key Displays the trigger settings window in the waveform screen.	10	FILE key Displays the file screen.
4	F key Select items to be set.	11	AB CSR key (Lit in red while selected) Displays the A/B cursor settings window.
5	ESC key Cancels the running operation. Closes the displayed dialog and the window.	12	WAVE key (Lit in red while selected) Assigns the waveform scrolling to the jog and shuttle knobs.
	KEY LOCK: Press and hold ESC key for 3 s to disable key operations. Press and hold it for 3 s enable key operations.		Inner: Jog Outer: Shuttle Scrolls through waveforms.
6	 STOP key Stops the running measurement. 1 press: Measurement stops after the set recording length. 2 presses: It stops immediately. 		CURSOR keys Moves the cursor displayed on the screen.
			Manual trigger key Issues a manual trigger event.
7	SYSTEM key Displays the system screen.	16	START key Starts a measurement. (Lit in green during measurement operations)

Preparations for Measurement

Before using the instrument, refer to "Operating Precautions" in the Instruction Manual.

Install the instrument

To prevent overheating, be sure to leave the specified clearances around the instrument.

SYSTEM [Clock] 2021 / 04 / 20 09 : 00 : 00	Init SYSTEM (Pub) 20-Ap 9:00:10 eck] ROM/RAM Check
Set the clock on the [Init] sheet.	The date and time indication is shown at the upper right of the screen.

Measurement Procedure

Before perform measurement, please read "Operating Precautions" in the Instruction Manual.

Inspect the instrument before measurement

Please read "Pre-Measurement Inspection" in the Instruction Manual.

Print the recorded waveforms.

Measure the commercial power supply

The following explains the method of recording a voltage waveform for the commercial power supply of 200 V AC (50 Hz /60 Hz), including the method of saving the data after measurement. For one instance, the level trigger is used to measure waveforms.

To measure repetitive waveforms such as the commercial power supply, setting the standard level trigger level as the measurement start point will make it easier to observe the waveforms.

1 Prepare for measurement

2 Set the measurement conditions and trigger conditions

Configure the settings on the waveform screen described as follows.

Deciding on the horizontal axis (time axis) range The horizontal axis (time axis) range is calculated from the frequency and cycle. f [Hz] = 1/t [s] (f: frequency; t: cycle) Example: When the measurement frequency is 50 Hz. 1 cycle is t = 1/50 [s], i.e. 20 ms. When the horizontal axis (time axis) is set to 20 ms/div, exactly 1 cycle will be displayed in 1 division (1 square). Vertical axis (Voltage axis) range

If you change the range during a measurement, the measurement will restart.

3 Set the saving conditions

Configure the settings on the system screen described as follows.

them on a computer, set it to [Text]. Data saved in the text format cannot be observed on the instrument.

4 From Starting Measurement to Stop It

When the trigger conditions are met, the trigger is issued and the waveforms with a length equivalent to the preset record length will be recorded. Measurement data will be recorded until the **STOP** key is pressed.

5 Save the data

Press SAVE key.

Data will be saved under the pre-set saving conditions.

Press **FILE** key to observe the saved data on the file screen. Refer to "Access the storage medium" (p. 19).

Refer to"Analyze data" (p. 14) for the analyzing method.

Monitor abnormal occurrences

The following explains the recording method to record a voltage drop including a voltage interruption.

Keep monitoring and save the measurement data automatically. In this section, a voltage dip trigger is used to measure waveforms. The following explains how to issue the trigger when an input signal from a 50-Hz commercial power falls from approximately 200 V rms (282.8 V peak) to below 180 V rms (254.4 V peak).

1 Prepare for measurement

Required items:

MR8847A Memory HiCorder
 8966 Analog Unit
 L9198 Connection Cord
 CF card

Refer to "Preparations for Measurement" (p. 5)

2 Set the measurement conditions and trigger conditions

Configure the setting on the waveform screen as follows.

Set the trigger conditions.

Trigger type	Analog Trig Logic	Trig 8-Jul 11:48:25
Set to [Drop].	Trigger	Trigger:
Ch Ti s //Dropl 254:4	P⇒rameter Set to [V f= 50Hz RMS: 179.9 V	Repeat]. • Repeat 40% Timepate:
Level Set to [254.4 V	V]. Frequency Set the frequency	Pre-trigger Set the ratio in %.

Pre-trigger							
To record waveforms that exist before any abnormal occurrence, such as an instantaneous power failure, set the pre-trigger, which sets where the trigger (trigger point) is issued on the recording length of the waveform.							
E.g. To record the waveform with a length of 10 divisions that exist before an instantaneous power failure for the recording length setting of 25 divisions, set the pre-trigger to 40%. (Calculation method: 10 [div] / 25 [div] × 100%)	40% 60%						
Refer to "What is a pre-trigger?" (p. 25).	Recording length 25 divisions						

3 Set automatic saving

Configure the setting on the system screen as follows.

Select the items to be set.

4 Start and Stop Measurement

[Trigger waiting] will be displayed until the commercial power voltage satisfies the trigger conditions (in this case, until an instantaneous power failure occurs). When the trigger conditions are met, the trigger is issued and measurement will start.

Measurement data will be recorded until the **STOP** key is pressed.

Data will be saved automatically to the CF card and wait the next instantaneous power failure after the measurement completes.

Refer to "Analyze data" (p. 14) for analysis method.

Analyze data

Observe the measured waveform

Scroll through the waveform

The position of the waveform currently displayed on the display is indicated on the scroll bar.

Read measured value

Display the waveforms eliminating overlap each other

When multi phenomenon are measured, the waveforms may overlap each other and become difficult to observe.

When this happens, change the positions of the waveforms or the magnifications on the vertical axes on the display to recognize the waveforms easily.

Configure the setting on the waveform screen as follows.

If direct current components are superposed on the waveform, the waveform appears to fluctuate when the magnification is changed. This is because magnification applied to the direct current component as well.

-37.5m

-12.5ms

0 s

Je

12.5ms

Calculate the measurement data

Up to 16 items can be calculated at once.

The 24 calculations are provided include average value, effective value, peak value, maximum value, minimum value, cycle, and frequency.

The following describes the calculation method for the measured data.

Configure the settings on the status screen described as follows.

Once measurement is completed, calculation automatically starts. The calculation result will be displayed at the upper right side of the waveform screen.

(In consecutive trigger mode, the next measurement will take place after the calculation has been executed.)

the **ESC** key will display the calculation results.

.

Access the storage medium

Data saved with the instrument can be observed on the file screen

.

Hint

Select a file or folder.

нюкі File					,	8-Jul 15:2
CF:\HIOKI8847\					(<u>*</u>
	Name 🛆	Туре	Date	Time	Size	
TEST-SAMPLE		Folder	15-07-08	15:24:51		
R 0001FG-TEST		.REC	00-02-17	02:57:04	33KB	
0001NONAME		.BMP	00-02-17	02:25:38	29KB	
🔊 0002NONAME		. BMP	00-02-17	02:25:50	31KB	
M FG-TEST		. MEM	00-02-17	02:56:36	3.8MB	Change M
R FG-TEST		.REC	00-02-17	02:56:56	33KB	Chanse M
FG-TEST1		.CSV	00-02-17	02:58:54	11KB	
FG-TEST1		.XYC	00-02-17	02:57:48	25KB	To An
NONAME		. BMP	00-02-17	02:25:24	33KB	INTO
NONAME		.CSV	00-02-17	02:55:32	37KB	
NONAME		. MEM	00-02-17	02:55:18	3.8MB	
SINONAME		.SET	00-02-17	02:55:42	47KB	
F WG-TEST		.FFT	00-02-17	02:59:22	36KB	- <u></u>
M WG-TEST		. MEM	00-02-17	02:59:50	3.8MB	Grun
						Jeve
		05.0.1				
edia Into		LF Lard				Onen Fel
Teasl		[Current]				repress i res
Cier	07640	A Cita Caust	10			
2 5 1 2 8	970MD	4.File Court	1.5			New Endd
Liniee	70.5MD	S.Fuiter coun	1 1			~
.use	TOWD	0.COUNT	4900)		
						Delete
First, pr	ress the [Change	Media] key to selec	t the medi	a to opera	te.	1/2
nint						News Dec

The file is saved in the folder "HIOKI8847."

File type	File format	File extension and description					
Setting data* ¹	Binary	SET	S, L* ²	Settings data (Measurement conditions)			
Waveform data	Binary	MEM	S, L	Memory function waveform data			
		REC	S, L	Recorder function waveform data			
		XYC	S, L	X-Y recorder function waveform data*1			
		FFT	S, L	FFT function data			
	Text	CSV	S	Text data			
Waveform management	(Index file)	IDX	S, L	Index data for divided saving			
data (Memory division/Divided saving)		SQR	S, L	Index data for memory division (automatically created during batch saving)			
Displayed image* ¹ , Waveform image* ¹	Bitmap	BMP	S	Image data			
Numerical calculation result	Text	CSV	S	Text data			
Comment for printing	Text	ТХТ	L	Text data			
Waveform evaluation setting data	Binary	ARE	S, L	Waveform evaluation areas settings data			
Waveform evaluation area	Bitmap	BMP	S, L	Image data			

The types of data the instrument can save and load

*1: Cannot be saved automatically (only manually).

*2: S: Savable; L: Loadable

Setting data

Multiple setting data can be saved in the instrument, and loaded selectively. When a setting data is saved with a name of "STARTUP" in the [HIOKI8847] folder in the CF card, it is automatically loaded when the instrument is turned on.

Waveform data

- To load data with the instrument, save them in the binary format.
- To load data with computers, save them in the text format.

Arbitrary waveform generation data

The instrument can load waveform data for Model U8793 Arbitrary Waveform Generator Unit.

Print the data

Print the measurement results.

1. Configure the print setting

Print the measurement results according to the conditions set on the **[Printer]** sheet on the system screen. Use this sheet to set other detailed settings related to the printer, such as the print density. The setting does not have to be configured every time.

Screen shot

Press the **COPY** key to take the screen shot. The display screen will be printed as it is.

Report printing

Function to print the waveform appearing on the screen not as a screen shot, but as the waveform printing together with the setting information.

A4-size printing

The A4-size printing is possible, with the same operation as for the report printing, by changing the waveform display width.

Convenient functions

This section introduces the convenient functions.

Auto-range function

Start the measurement by pressing the **AUTO** key to automatically set the time axis range, voltage axis range, and zero position.

.

What is a pre-trigger?

It is a function that allows recording of waveforms before trigger points.

Merit	Useful to detect signs before abnormal occurrences happen because
	parts before the trigger point are recorded.

If the pre-trigger is not used...

If the pre-trigger is not used, only the parts after the trigger point are recorded. You will be able to observe the abnormal occurrence but will not be able to detect any signs before that.

Waveforms without the pre-trigger function activated

Using the pretrigger allows you to observe the part before the abnormal occurrence. If the pre-trigger is used, waveforms including portions of those existing before the trigger point are recorded, allowing you to detect signs before the abnormal occurrences happen.

Waveforms with 30% of the pre-trigger setting activated

Signs will appear before any abnormal occurrence or distortion happens.

Using the pre-trigger of the Memory HiCorder, you can observe the parts of the waveforms existing before any abnormal occurrences, and find out which type of waveforms caused accidents and production installation faults .

It is recommended using the trigger function to prevent accidents and faults, as well as losses due to such occurrences.

Probe compensation

Probe compensation can be carried out by using Model 9665 10:1 Probe or Model 9666 100:1 Probe.

Others

Screen

The instrument LCD provides SVGA resolution (800 \times 600). The waveform display area consists of 625 horizontal dots and 500 vertical dots.

The waveform display area has 25 divisions horizontally and 20 divisions vertically, with each division composed of 25 dots horizontally and vertically.

Each data frame (one division) represents 100 samples horizontally and 100 to 50000 least significant bits (LSBs) vertically (depending on the input module).

Each displayed data frame (one division) changes in accordance with expansion and compression of the time and voltage axes.

Timebase and Sampling

For the memory function (Sampling point recording)

The sampling period is 1/100 of the timebase. When the timebase is set to 100 ms/div, the sampling period is 1 ms. Changing the timebase setting also changes the sampling period accordingly.

For the recorder function (Envelope recording)

In every one data point, which is 1/100 of the timebase, two values are recorded: the maximum and minimum values obtained during the specified sampling period.

With 10 ms/div of the timebase setting, one data point is 100 μ s. When the sampling period is set to 1 ms, one data point consists of 100 samples. The two values, the maximum and minimum values obtained during 100 samples are recorded each data point, .

Recording Length Setting

Set the time length (the number of divisions) during which data are recorded for one data recording event.

Each division of the recording length consists of 100 data points. The number of data during the whole recording length is calculated from the following formula:

The specified recording length (number of divisions) × 100 + 1

Example: The number of data for the specified recording length of 50 divisions

50 divisions × 100 + 1 = 5001

Voltage axis and resolution

The resolution differs depending on input modules.

The following table shows the full scale resolution for all the modules.

The minimum resolution can be calculated from the screen full scale value and the full scale resolution shown in the table below.

Sampling period

Example: Measurement with Model 8966 Analog Unit

If the power voltage is measured with 20 V/div of the vertical axis range and ×1 of the vertical axis magnification settings, the minimum resolution is calculated as follows:

Screen full scale: 20 V/div × 20 div = **400 V** Full scale resolution at ×1 of the vertical axis magnification: **2000**

Minimum resolution: 400 V / 2000 = 0.2 V

Full-scale resolution for input modules at each vertical axis magnification (LSB)

Innut modulo	Magnification									
input module	×1/10	×1/5	×1/2	×1	×2	×5	×10	×20	×50	×100
8966 (Analog) 8971 (Current) 8972 (DC/RMS)	20000 (4000)	10000 (4000)	4000	2000	1000	400	200	100	40	20
8967 (Temperature)*	200000	100000	40000	20000	10000	4000	2000	1000	400	200
8968 (High resolution) U8974 (High voltage) U8975 (4ch analog) U8978 (4CH analog) U8977 (3CH current)	320000 (64000)	160000 (64000)	64000	32000	16000	6400	3200	1600	640	320
8969, U8969 (Strain) U8979 (Charge)	250000 (64000)	125000 (64000)	50000	25000	12500	5000	2500	1250	500	250
8970 (Power frequency)	20000	10000	4000	2000	1000	400	200	100	40	20
8970 (Integration)	400000	200000	80000	40000	20000	8000	4000	2000	800	400
8970 (Excluding power frequency and integration)	100000	50000	20000	10000	5000	2000	1000	500	200	100
MR8990 (DVM)	1200000	1200000	1200000	1000000	500000	200000	100000	50000	20000	10000

The figures enclosed in parentheses indicate valid data range.

*: For Model 8967 Temp Unit, the valid ranges differ depending on types of thermocouple. For information on the minimum resolution, see the specifications of Model 8967 Temp Unit in the instruction manual.

Data Saving Speed

The table lists the speeds of saving binary data (values used as a reference) using different media and interfaces. Note that the data saving speed varies depending on the saving conditions, device manufacturer, device capacity, communication conditions, and others.

Storage media	Saving speed (As a reference)
CF card	800 kB/s
Built-in drive (SSD)	800 kB/s
USB flash drive	800 kB/s
Computer via LAN	1 MB/s

http://www.hioki.com

HEADQUARTERS

81 Koizumi Ueda, Nagano 386-1192 Japan

All regional contact information

1906 EN

Printed in Japan

HIOKI EUROPE GmbH

Rudolf-Diesel-Strasse 5 65760 Eschborn, Germany hioki@hioki.eu

Edited and published by HIOKI E.E. CORPORATION

•CE declarations of conformity can be downloaded from our website.

•Contents subject to change without notice.

This document contains copyrighted content.
It is prohibited to copy, reproduce, or modify the content of this document without permission.
Company names, product names, etc. mentioned in this document are trademarks or registered trademarks of their respective companies.