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This technical article presents a simple method for using Hioki’s Power Analyzer to identify motor

parameters (Lg, L,
magnet synchronous motors.

1. Introduction

Permanent magnet synchronous motors
(PMSMs) are widely used in the field of
power electronics due to their high efficiency,
high power density, and low weight.
Depending on the location of the permanent
magnet on the rotor, PMSMs can be classified
as either interior permanent magnet
synchronous motors (IPMSMs) or surface
permanent magnet synchronous motors
(SPMSMs) [1]. Due to their ability to use not
only the magnetic torque of the permanent
magnet, but also inductance torque [2], the
range of applications of IPMSMs, which
embed the permanent magnet inside the
rotor, has grown to include EVs, aircraft, and
inverter-powered household appliances [3]

[4].

Typically, an equivalent circuit model [5] for
the motor expressed in terms of the
permanent magnet’s N polar axis (d-axis) and
the torque axis that is perpendicular to it (¢-
axis) is wused when analyzing the
characteristics of a PMSM and considering
which control algorithm to use.

Eq. (1.1) defines the output torque 7 for this
equivalent circuit model.

T = Pudaiq + Pi(La — Lg)igia (1.1

Here, P» represents the number of poles of
the motor; 1z and 15, the d- and g¢-axis
components of each phase’s armature
current; Fa, the RMS value for the permanent
magnet’s armature interlinkage magnetic
flux; and Lqand Lg, the self-inductance of the
d and gaxes. The first term on the right side
of eq. (1.1) indicates the magnetic torque,
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K,, etc.) that are necessary when implementing vector control of permanent

while the second term on the right side
indicates the reluctance torque. Because
SPMSMs have constant magnetic resistance
regardless of their rotor position, Ls = Lq is
true in eq. (1.1), and the output torque
consists entirely of magnetic torque. By
contrast, there is a difference in the d-axis
and g¢gaxis inductance in IPMSMs for
structural reasons (Ls # Ly, causing the
reluctance torque to play a part in
determining the output torque. Consequently,
in order to maximize the output torque of an
IPMSM, it is extremely important to identify
the motor parameters that serve as constants
in the equivalent circuit model (the
inductance values Lqs and L4 in the direction
of the & and g¢-axes) with a high degree of
precision so that the reluctance torque can be
controlled [6].

2. Need for Identifying PMSM Parameters
Using a Power Analyzer

Inductance measurement using an LCR
meter would appear to provide a simple
method for identifying the motor parameters
Laq and L, [7]. However, that method suffers
from the problem that it can only be used to
identify motor parameters while the motor
terminals are open and the motor is in the
stopped state; it does not allow identification
of motor parameters in the operating state.
Le and L, include magnetic saturation
characteristics, and as variables they
incorporate a variety of dependencies that
take into consideration current and other
factors. Consequently, in order to realize
high-precision control of a PMSM, it is
necessary to identify Lgs and Ly in a state of
actual operation.

This article addresses this problem by
introducing a simple yet high-precision
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method for identifying motor parameters in
an operating state using the Power Analyzer.

3. Identification Principles

The output torque expressed in eq. (1.1) is
based on the equation for a PMSM’s voltage
on the d ¢ coordinate axis. If we assume the
following, the equation for a PMSM’s voltage
expressed on the d-q coordinate axis can be
expressed as indicated in (3.1) below [5].

i) The spatial distribution of magnetic
flux in the gap between the stator
and rotor takes the form of a sine
wave running along the gap.

ii) Voltage and current harmonic
components can be ignored.

iii) Iron (core) loss can be ignored.

[zﬂ = [R ZLiLd R+ ;Zq] [iZ] +[w2>a] 3.1

Here, vy and v, represent the o and ¢ -axis
components of each phase’s armature
current; £, each phase’s armature resistance;
p, the differential operator (ddd; ®, the
rotation angle (electric angle) speed; and Fa
(=K.), the RMS value of the permanent
magnet’s armature interlinkage magnetic
flux (induced voltage constant). If we assume
a steady state (by ignoring the time
derivative term) and express eq. (3.1) as a
vector diagram for the & and g¢axes, the
result is Fig. 3.1.

q -axis
(Torque axis)
P — Riy—oLd, | Ri
H A q
H .
: :
H ; K
‘oL ; i 0
10Lgtq iy . | A
H
:

>

d -axis

Fig. 3.1 PMSM vector diagram

Here, v: and 1; represent the fundamental
wave components of the phase voltage and
phase current, respectively, while q» and q:
represent the fundamental wave phase angle
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for the phase voltage and phase current,
respectively. Based on Fig. 3.1, the voltage
equations in the & and g-axis directions are
as follows:

K.w + Riy = vy — wlgiy (3.2
Vg = Rld — O)Lqiq (3.3)

Solving for Lz and Lg yields:

Vg — Kew B qu (34)
La= wl
d
_Rig—vy (3.5)
Ly =—7F7
a)lq

4. Conversion from Symmetric Three-
Phase AC to the dg Coordinate System

This section describes the derivation process for
converting symmetric three-phase AC to the aff
coordinate system. Note that this assumes the
conditions i), ii), and iii) in Chapter 3 are satisfied.
First, consider the conversion from symmetric
three-phase AC to the a-f3 coordinate system
(Clarke transformation) (Fig. 4.1). When
expressing the three-phase currents i,, i,,and i,
in o-B coordinates where the U-phase current
aligns with the a-axis, the currents i, and i are

given by the following matrix equation.

1 1
2

2 | [t
V3 ) V3 [ll;l 4.1
2 2

. 1
-5

In this article, the coefficient for the
conversion from symmetric three-phase AC
to the af coordinate system is set to (v/2)/3.
This coefficient ensures that the RMS value
of the three-phase vector before the Clarke
transformation becomes the peak value after
the af coordinate transformation
(hereinafter referred to as RMS
transformation).

For absolute transformation, where
Instantaneous power remains invariant
before and after conversion, the coefficient is
\/m . Additionally, for relative
transformation, where the current
amplitude remains invariant before and
after conversion, the coefficient is 2/3.
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By el
Fig. 4.1 Image of Clarke transformation

Next, the matrix equation for the Park
transformation, where the coordinate
advanced by 6[rad] from the af coordinate
is the d-q axis, is given by the following
(Fig. 4.2).

ia] _ [cos@ sinB][la
[iq] ~ l—sin® cosH] [iﬁ] (42)

g lq

Fig. 4.2 Image of Park transformation

From eq. (4.1) and (4.2), the transformation
equation from three-phase vector to i; and i, on
the d-q axis is as follows.

2 2
[id] _ ﬁ cos 6 cos (9 - 571) cos (9 +§7r)
iql 3 2

[ o

) . 2 )
—sin 6 —sm(B 51‘[) sm(6’+§n)

Here, the three-phase AC current is expressed by
the following equation. At this time, I is the RMS
value of the phase current, and y indicates that
the U-phase current i, is advanced by y[rad] from
the d-axis.

sin(wt + y)

iy . 2
[_iv]=\/§1 sm(wt—§1r+)/) (4.4)
tw sin (wt +§1r + y)

In eq. (4.3) and (4.4), setting the advance rotation
angle O[rad] from the aff coordinate to wt (6 =
wt) and organizing using the product-sum formula
for trigonometric functions, i; and i, are
obtained as follows.

ig _ siny
i) e

From eq. (4.5), currents can be treated as DC on
the d-q axis (Fig. 4.3).
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Fig. 4.3 Three-phase vector diagram (current)

Furthermore, if the advance rotation angle of the

armature current vector from the g-axis is set to

6; [rad], then y = §; + /2, and substituting this
into (4.5) yields the following equation.

) _ , , [~sind;
[iq] —A-1 [COS 5 (4.6)

Here, A in the equation represents the
transformation coefficient. For RMS
transformation, the coefficient is 1; for absolute
transformation, itis /3; and for relative
transformation, it is /2.

Similarly, if the advance phase of the armature
voltage vector from the g-axisissetto §, [rad],
the voltages vd and v, onthe d-q coordinate
axis are expressed using the RMS value V of the U-
phase voltage by the following equation.

Val _ , ., [~siné,
[Uq] =4V [ cos 9, (4.7)

Similarly, for RMS transformation, the coefficient is
1; for absolute transformation, it is v/3; and for
relative transformation, it is /2.

[llustrating the above on the d-q coordinate axis
results in Fig. 4.4. By setting the g-axis as the
reference, with §; = 6; and §, = 6,, it can be
directly replaced with the vector diagram in Fig.
3.1.

d-axis

/‘\y
Vg iq

Fig. 4.4 d — q axis vector diagram

In the case of RMS transformation, since the RMS
value of the three-phase vector becomes the peak
value after Clarke transformation, the following
holds.

Ji§+i§ =\/i§ +i2=1 (4.8)
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\/v§+v§ =\/v§+vq =V (4.9)

Therefore, iy, g Var and v, can be directly
obtained from the phase current and phase voltage
RMS values measured by the power analyzer. Even
if instantaneous noise is superimposed on the
waveform, RMS values can be obtained as
relatively stable values.

For reference, Table 1 shows the correspondence
table of coefficients based on RMS transformation.
When seeking values for absolute or relative
transformation, they can be derived simply by
multiplying the parameters calculated based on
RMS transformation by the coefficient using the
UDF (User-Defined Function) function.

Note that the self-inductance values L, and L,
are constant regardless of the coefficient in the
Clarke transformation.

Conversion type re]?;vt[if/e Absolute Relative
Clerk conversion V2 2 2
Coefficient 3 3 3
iG+iz=1 i2+i2 =3I i2+i2 =2l
VOltage/Current vi+vZ=V vi+vg =3V vi+vE =2V
q d q d q
Vg \/gvd \/ivd
Voltage
Vg \/§vq \/qu
dq ig V3iy, V2iy,
K Current . . .
axis lq \/§lq V2 iq
L L L
Inductance Ld Ld Ld
q q q

Table. 1 Correspondence Table of Coefficients in
Clarke-Park Transformation

Additionally, the induced voltage constant K, in
RMS transformation is expressed by the following
equation. Here, w,, isthe mechanical angular
velocity [rad/s], p is the number of poles,and N
is the rotation speed [rpm)].

v,
Ke= =D, "p . N (4.10)
2 7 2m gy

e}

If the induced voltage constant for absolute
transformation is K, ,;,¢ and for relative
transformation is K, ,,;;, then the following holds.

Ke aps = \/§ ‘K, (4'11)
Kerie = V2 K. (4.12)

Based on the preceding derivation of the Clarke and
Park transformations, using the output torque eq.
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(1.1) in the equivalent model, the actual three-
phase power and torque in RMS transformation are
expressed as follows.

Puow = 3Py = 3(vqiq + v4i,) (4.13)

Typw = 3Tag = 3 -g(Keiq + (La = Lg)ialq) (4.14)

In the next chapter, we introduce the procedure for
identifying PMSM parameters using actual
measuring instruments.

5. Identification procedure

This section uses Hioki’s Power Analyzer
PWB8001 as an example to describe motor
parameter identification. Note that the
calculation formulas are based on RMS
transformation.

5.1Measurement of each phase’s armature
resistance R

First, use a resistance meter or other suitable
instrument to measure each phase’s
armature resistance £.

For star connection, if the motor's neutral point
cannot be accessed, measure the resistance

between two phases and calculate it (Fig. 5.1).

o2
o2

Resistance Meter

Fig. 5.1 Measurement of armature resistance in
star connection
RI

R
2

(5.1)

Even for delta connection, the resistance value
per stator phase (phase armature resistance
after A-Y conversion) is half the measured

resistance value (Fig. 5.2).

2
R'=3Rs| Ra R,

Ry

Measurement of armature resistance in delta
connection
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R=— (5.2)

5.2 Phase zero-adjustment and
identification of the induced voltage

constant K.

After placing the terminals of the PMSM
under measurement in the open state (zz= Iy
= 0), connect the motor terminals to the CH
1, 2, and 3 voltage inputs on the PW8001.
Next, connect the encoder’s A-phase pulse
output to CH B (or CH F); the B-phase pulse
output to CH C (or CH G); and the Z-phase
pulse (origin signal) output to CH D (or CH
H) (Fig. 5.3).

Power Analyzer PW8001

A B C D
CH1 CH2 CH3 (orE) (orF) (orG)(or H)

U UL

— O]
o

——
Torque —— Pulse
Sensor — Encoder

Fig. 5.3 Wiring for phase zero-adjustment
and identification of the induced voltage
constant

PWM
Inverter

Tl
¢

Configure the PW8001 by setting the motor
analysis operation mode to “Single” and the
measurement parameter to “Torque Speed
Direction Origin.”

Next, set the CH 1, 2, and 3 wiring type to
3P3W3M; the synchronization source and
harmonic synchronization source to “Ext1”;
and A conversion to “ON.” Setting the
measurement channel  synchronization
source and harmonic synchronization source
to “Ext1” allows measurement of the voltage
and current phase angle using the inputted
encoder pulse as a reference, while setting A
conversion to “ON” allows conversion of line
voltage to phase voltage for measurement.

Drive the motor in this state from the load
side to generate an induced voltage and
perform phase zero-adjustment on the
PWB8001. Note that the rotation speed at this time
should preferably be the same as when measuring
the axis parameters later by rotating from the
inverter side with load applied. Doing so will
cause qr and q; to become the phase voltage
(that is, electric angle) based on the induced
voltage phase occurring in the g¢axis
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direction.

At this time, an induced voltage (v = v2) will
occur, and eq. (3.4) will become:

_Y%_ " (5.3)
Ko = w 21f;

The equation now allows identification of K.
Here, i (= @ / 2n) indicates the frequency of
the phase voltage’s fundamental wave.

5.3 Identification of the motor parameters

Ld¢and Ly using user-defined functions
Self-inductance (Lsand L) in the direction of
the & and g-axes can be identified using R as
measured in Section 5.1 and K. as identified
in Section 5.2. Connect the inverter’s drive
output to the motor terminals which were
placed in an open state in Section 5.2 and
operate the motor (Fig. 5.4).

Power Analyzer PW8001

A B C D
CH1 CH2 CH3 (aB (orF) (orG)(or B

T

Inverter
—
Torque Pulse
Sensor Encoder

Fig. 5.4 Wiring when identifying motor
parameters

PMSM

Based on Fig. 3.1, the following will obtain at
this time:

vy = —v,sin 6, (5.4)
Vg = vy C0s 6, (5.5)
iq = —iy sin6; (5.6)
iq = iy cos B; 5.7

If these equations along with eq. (3.4) and
(3.5) are configured as user-defined functions
(UDFs), you can easily identify Ls and Lg
while monitoring 77 and 1.

Following are some specific example settings.

Following are some specific example settings. First,

set UDF; and UDF, to v4 and v,, respectively.
UDF1 = _Ufndl - sin 9U1

UDF, = Ug,q1 ° €OS Oy

Here, Us,q; and 6y, are notations for the basic
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measurement items of CH1 on the PWS8001,
representing the fundamental wave component
(the primary AC signal) of the voltage RMS value
and the voltage phase angle, respectively, and the
following calculation formula holds.

Utnar = Uy
Oy, =6,
Next, set UDF; and UDF, to 7zand i,.
UDF3 = _Iflldl " Sin 911
UDF4_ = Ifndl * COS 911

Here Ima1 and quz represent the basic
measurement parameters for CH 1 on the
PW8001, indicating the fundamental wave
component of the current RMS value and the
current phase angle, respectively, as follows:

Itha1 = i

011 = 0,

Next, set Ls. The numerator of eq. (3.4) is as
follows:

UDF5 = Ugygq * cosOy; — (2mKe) - f3
—R - UDF,

The denominator of eq. (3.4) is as follows:

Consequently, Lqscan be expressed as follows:
UDF, = UDF;/UDF,

Finally, set L;. The numerator of eq. (3.5) is
as follows:

UDFg =R- UDF3 - (_andl) - sin 9U1

The denominator of eq. (3.5) is as follows:

Consequently, 4 can be expressed as follows:

UDF10 = UDFB/UDFQ

Fig. 5.5, 5.6 and 5.7 depict the UDF settings
screen on the Power Analyzer PW8001 when
UDF1-10 have been configured in this way. In
Fig. 5.6 and 5.7, R = 1.2 [Q] and K. = 20

[mVxs/rad], and the second and third terms
6
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on the right side of UDF5 as well as the
second term on the right side of UDF10 have
been set accordingly.

6. Conclusion

This article introduces a simple yet high-
precision method for identifying motor
parameters in an operating state using the
Power Analyzer. Please see other resources
[8] and [9] that introduce how to use a Hioki
Power Analyzer PW6001 to identify motor
parameters along with actual measurement
results. Note that the method introduced in
this article yields motor parameters for an
equivalent circuit model that assumes the
circuit is in a steady state and that iron (core)
loss can be ignored.

Since the identification method introduced in
this article makes it comparatively easy to
measure the current dependency of the motor
parameters Lqsand Lg, it can be used to create
tools like Lg¢ and Ly, maps and torque maps
while the motor is in an operating state in
order to implement optimal control of
PMSMs.
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Integ OFF -0.00000

Integ OFF 54.334Tm

13-16

Integ OFF —0.00000

17-20

Save file

Integ OFF 0.00000 Load file

Fig. 5.5 Example PW8001 UDF settings (UDF1-4)
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UDF5 = Ufnd1* cos(But) -2.00000 * 3.14159 %

*fu1*20.0000 - 1.20000 * UDF4

Name MAX Auto Integ OFF -16.0298 M

UDFs = 2.00000 *3.14159 * fu1* UDF3

Name MAX Auto Integ OFF -0.00000

UDF7 = UDFs/UDFs

Name Ld MAX Auto Integ OFF

UDFg = 1.20000 * UDF3- (-(Utnd1)) * sin(Bu1)
Save file

Name MAX Auto Integ OFF 0.00000 lerel Fle

SHUTDOWN

Fig. 5.6 Example PW8001 UDF settings (UDF5-s)

UDFg = 2.00000 *3.14159 * fu1 * UDF4

Name MAX Auto Integ OFF 0.00000

UDF10 = UDFs/UDFs

Name Lq MAX Auto Integ OFF

UDF11 = OFF

Name MAX Auto Integ OFF

UDF12 = OFF
Save file

Name MAX Auto Integ OFF Load file

SHUTDOWN

Fig. 5.7 Example PW8001 UDF settings (UDF9-10)
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