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This technical article presents a simple method for using Hioki’s Power Analyzer to identify motor 
parameters (𝐿!，𝐿"，𝐾#, etc.) that are necessary when implementing vector control of permanent 
magnet synchronous motors. 
 

1. Introduction 

Permanent magnet synchronous motors 
(PMSMs) are widely used in the field of 
power electronics due to their high efficiency, 
high power density, and low weight. 
Depending on the location of the permanent 
magnet on the rotor, PMSMs can be classified 
as either interior permanent magnet 
synchronous motors (IPMSMs) or surface 
permanent magnet synchronous motors 
(SPMSMs) [1]. Due to their ability to use not 
only the magnetic torque of the permanent 
magnet, but also inductance torque [2], the 
range of applications of IPMSMs, which 
embed the permanent magnet inside the 
rotor, has grown to include EVs, aircraft, and 
inverter-powered household appliances [3] 
[4]. 
 
Typically, an equivalent circuit model [5] for 
the motor expressed in terms of the 
permanent magnet’s N polar axis (d-axis) and 
the torque axis that is perpendicular to it (q-
axis) is used when analyzing the 
characteristics of a PMSM and considering 
which control algorithm to use. 
 
Eq. (1.1) defines the output torque T for this 
equivalent circuit model.  
 
 		T = 𝑃$𝜙%𝑖" + 𝑃$*𝐿& − 𝐿",𝑖"𝑖& (1.1) 

 
Here, Pn represents the number of poles of 
the motor; id and iq, the d- and q-axis 
components of each phase’s armature 
current; Fa, the RMS value for the permanent 
magnet’s armature interlinkage magnetic 
flux; and Ld and Lq, the self-inductance of the 
d- and q-axes. The first term on the right side 
of eq. (1.1) indicates the magnetic torque, 

while the second term on the right side 
indicates the reluctance torque. Because 
SPMSMs have constant magnetic resistance 
regardless of their rotor position, Ld = Lq is 
true in eq. (1.1), and the output torque 
consists entirely of magnetic torque. By 
contrast, there is a difference in the d-axis 
and q-axis inductance in IPMSMs for 
structural reasons (Ld ≠ Lq), causing the 
reluctance torque to play a part in 
determining the output torque. Consequently, 
in order to maximize the output torque of an 
IPMSM, it is extremely important to identify 
the motor parameters that serve as constants 
in the equivalent circuit model (the 
inductance values Ld and Lq in the direction 
of the d- and q-axes) with a high degree of 
precision so that the reluctance torque can be 
controlled [6].  

2. Need for Identifying PMSM Parameters 
Using a Power Analyzer 

Inductance measurement using an LCR 
meter would appear to provide a simple 
method for identifying the motor parameters 
Ld and Lq [7]. However, that method suffers 
from the problem that it can only be used to 
identify motor parameters while the motor 
terminals are open and the motor is in the 
stopped state; it does not allow identification 
of motor parameters in the operating state. 
Ld and Lq include magnetic saturation 
characteristics, and as variables they 
incorporate a variety of dependencies that 
take into consideration current and other 
factors. Consequently, in order to realize 
high-precision control of a PMSM, it is 
necessary to identify Ld and Lq in a state of 
actual operation.  
 
This article addresses this problem by 
introducing a simple yet high-precision 
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method for identifying motor parameters in 
an operating state using the Power Analyzer. 
 

3. Identification Principles 

The output torque expressed in eq. (1.1) is 
based on the equation for a PMSM’s voltage 
on the d-q coordinate axis. If we assume the 
following, the equation for a PMSM’s voltage 
expressed on the d-q coordinate axis can be 
expressed as indicated in (3.1) below [5]. 
 

i) The spatial distribution of magnetic 
flux in the gap between the stator 
and rotor takes the form of a sine 
wave running along the gap.  

ii) Voltage and current harmonic 
components can be ignored.  

iii) Iron (core) loss can be ignored.   
 

!
𝑣!
𝑣"# = 	 &

𝑅 + 𝑝𝐿! −𝜔𝐿"
𝜔𝐿! 𝑅 + 𝑝𝐿"

- &
𝑖!
𝑖"- + &

0
𝜔𝜙#

- (3.1) 

 
Here, vd and vq represent the d- and q -axis 
components of each phase’s armature 
current; R, each phase’s armature resistance; 
p, the differential operator (d/dt); ω, the 
rotation angle (electric angle) speed; and Fa 
(=Ke), the RMS value of the permanent 
magnet’s armature interlinkage magnetic 
flux (induced voltage constant). If we assume 
a steady state (by ignoring the time 
derivative term) and express eq. (3.1) as a 
vector diagram for the d- and q-axes, the 
result is Fig. 3.1. 
 

 
Fig. 3.1 PMSM vector diagram 

 
Here, v1 and i1 represent the fundamental 
wave components of the phase voltage and 
phase current, respectively, while qv and qi 
represent the fundamental wave phase angle 

for the phase voltage and phase current, 
respectively. Based on Fig. 3.1, the voltage 
equations in the d- and q-axis directions are 
as follows: 
 

 𝐾#𝜔 + 𝑅𝑖" = 𝑣" −𝜔𝐿&𝑖& (3.2) 

 𝑣& = 𝑅𝑖& −𝜔𝐿"𝑖" (3.3) 

 
Solving for Ld and Lq yields: 
 

 		𝐿& =
𝑣" − 𝐾#𝜔 − 𝑅𝑖"

𝜔𝑖&
 (3.4) 

 		𝐿" =
𝑅𝑖& − 𝑣&
𝜔𝑖"

 (3.5) 

4. Conversion from Symmetric Three-
Phase AC to the 𝒅𝒒 Coordinate System 

This	section	describes	the	derivation	process	for	
converting	symmetric	three-phase	AC	to	the	 𝛼𝛽	
coordinate	system.	Note	that	this	assumes	the	
conditions	i),	ii),	and	iii)	in	Chapter	3	are	satisfied.	
First,	consider	the	conversion	from	symmetric	
three-phase	AC	to	the	α-β	coordinate	system	
(Clarke	transformation)	(Fig.	4.1).	When	
expressing	the	three-phase	currents	 𝑖!,	 𝑖",	and	 𝑖#	
in	α-β	coordinates	where	the	U-phase	current	
aligns	with	the	α-axis,	the	currents	 𝑖$	 and	 𝑖%	 are	
given	by	the	following	matrix	equation.  
 
 

P
𝑖$
𝑖%Q =

√2
3 	

⎣
⎢
⎢
⎡1 −

1
2 −

1
2

0
√3
2 −

√3
2 ⎦
⎥
⎥
⎤
]
𝑖!
𝑖"
𝑖#
^	 (4.1) 

 
In this article, the coefficient for the 
conversion from symmetric three-phase AC 
to the α𝛽 coordinate system is set to (√2)/3. 
This coefficient ensures that the RMS value 
of the three-phase vector before the Clarke 
transformation becomes the peak value after 
the α𝛽 coordinate transformation 
(hereinafter referred to as RMS 
transformation). 
For absolute transformation, where 
instantaneous power remains invariant 
before and after conversion, the coefficient is 
`(2/3). Additionally, for relative 
transformation, where the current 
amplitude remains invariant before and 
after conversion, the coefficient is 2/3. 
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Fig.	4.1	Image	of	Clarke	transformation	

 
Next, the matrix equation for the Park 
transformation, where the coordinate 
advanced by 𝜃[rad] from the 𝛼𝛽 coordinate 
is the 𝑑-𝑞 axis, is given by the following 
(Fig. 4.2). 
	

 P
𝑖&
𝑖'Q = 	 g

cos 𝜃 sin 𝜃
−sin 𝜃 cos 𝜃h P

𝑖$
𝑖%Q	 (4.2) 

	

	 	
Fig.	4.2	Image	of	Park	transformation	

	
From	eq.	(4.1)	and	(4.2),	the	transformation	
equation	from	three-phase	vector	to	 𝑖&	 and	 𝑖'	 on	
the	 𝑑-𝑞	 axis	is	as	follows.	
	

 
$
𝑖!
𝑖"& =

√2
3 	
,
cos 𝜃 cos 1𝜃 −

2
3𝜋

4 cos 1𝜃 +
2
3𝜋

4

−sin 𝜃 − sin 1𝜃 −
2
3𝜋4 − sin 1𝜃 +

2
3𝜋4

8 9
𝑖#
𝑖$
𝑖%
:	 (4.3) 

	
Here,	the	three-phase	AC	current	is	expressed	by	
the	following	equation.	At	this	time,	 𝐼	 is	the	RMS	
value	of	the	phase	current,	and	 𝛾	 indicates	that	
the	U-phase	current	 𝑖!	is	advanced	by	 γ[rad]	from	
the	 𝑑-axis.	
	

 

!
𝑖!
𝑖"
𝑖#
# = √2	𝐼

⎣
⎢
⎢
⎢
⎡ sin(𝜔𝑡 + 𝛾)

sin 5𝜔𝑡 −
2
3𝜋 + 𝛾

9

sin 5𝜔𝑡 +
2
3𝜋 + 𝛾

9⎦
⎥
⎥
⎥
⎤

	 (4.4) 

	
In	eq.	(4.3)	and	(4.4),	setting	the	advance	rotation	
angle	 𝜃[rad]	from	the	 𝛼𝛽	 coordinate	to	ωt	(𝜃 =
𝜔𝑡)	and	organizing	using	the	product-sum	formula	
for	trigonometric	functions,	 𝑖&	 and	 𝑖'	 are	
obtained	as	follows.	
 P

𝑖&
𝑖'Q = 𝐼	 P sin 𝛾−cos 𝛾Q	 (4.5) 

	
From	eq.	(4.5),	currents	can	be	treated	as	DC	on	
the	 𝑑-𝑞	 axis	(Fig.	4.3).	

	
Fig.	4.3	Three-phase	vector	diagram	(current)	
	

Furthermore,	if	the	advance	rotation	angle	of	the	
armature	current	vector	from	the	 𝑞-axis	is	set	to	
𝛿( 	 [rad],	then	 𝛾 = 𝛿( + 𝜋/2,	and	substituting	this	
into	(4.5)	yields	the	following	equation.	
 P

𝑖&
𝑖'Q = 𝐴 ∙ 𝐼	 P− sin 𝛿(cos 𝛿(

Q	 (4.6) 
	

Here,	 𝐴	 in	the	equation	represents	the	
transformation	coefficient.	For	RMS	
transformation,	the	coefficient	is	1;	for	absolute	
transformation,	it	is	 √3;	and	for	relative	
transformation,	it	is	 √2.	
Similarly,	if	the	advance	phase	of	the	armature	
voltage	vector	from	the	 𝑞-axis	is	set	to	 𝛿"	 [rad],	
the	voltages	 𝑣𝑑	 and	 𝑣'	 on	the	 𝑑-𝑞	 coordinate	
axis	are	expressed	using	the	RMS	value	V	of	the	U-
phase	voltage	by	the	following	equation.	
	

 g
𝑣&
𝑣'h = 𝐴 ∙ 𝑉	 P−sin 𝛿"cos 𝛿"

Q	 (4.7) 
	

Similarly,	for	RMS	transformation,	the	coefficient	is	
1;	for	absolute	transformation,	it	is	 √3;	and	for	
relative	transformation,	it	is	 √2.	
	
Illustrating	the	above	on	the	 𝑑-𝑞	 coordinate	axis	
results	in	Fig.	4.4.	By	setting	the	 𝑞-axis	as	the	
reference,	with	 𝛿( = 𝜃( 	 and	 𝛿" = 𝜃",	it	can	be	
directly	replaced	with	the	vector	diagram	in	Fig.	
3.1.	

	
Fig.	4.4	 𝑑 − 𝑞	𝑎𝑥𝑖𝑠	𝑣𝑒𝑐𝑡𝑜𝑟	𝑑𝑖𝑎𝑔𝑟𝑎𝑚	

	
In	the	case	of	RMS	transformation,	since	the	RMS	
value	of	the	three-phase	vector	becomes	the	peak	
value	after	Clarke	transformation,	the	following	
holds.	
	

	 �𝑖$) + 𝑖%) = �𝑖&) + 𝑖') = 𝐼	 (4.8)	
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	 �𝑣$) + 𝑣%) = �𝑣&) + 𝑣') = 𝑉	 (4.9)	

	
Therefore,	 𝑖& ,	 𝑖' ,	 𝑣& ,	and	 𝑣'	 can	be	directly	
obtained	from	the	phase	current	and	phase	voltage	
RMS	values	measured	by	the	power	analyzer.	Even	
if	instantaneous	noise	is	superimposed	on	the	
waveform,	RMS	values	can	be	obtained	as	
relatively	stable	values.	
For	reference,	Table	1	shows	the	correspondence	
table	of	coefficients	based	on	RMS	transformation.	
When	seeking	values	for	absolute	or	relative	
transformation,	they	can	be	derived	simply	by	
multiplying	the	parameters	calculated	based	on	
RMS	transformation	by	the	coefficient	using	the	
UDF	(User-Defined	Function)	function.	
Note	that	the	self-inductance	values	 𝐿&	 and	 𝐿'	
are	constant	regardless	of	the	coefficient	in	the	
Clarke	transformation.	
	

Conversion	type	 RMS	
relative	 Absolute	 Relative	

Clerk	conversion	 	
Coefficient	

√2
3
	 A2

3
	

2
3
	

Voltage/current	
!𝑖!" + 𝑖#" = 𝐼	

!𝑣!" + 𝑣#" = 𝑉	

!𝑖!" + 𝑖#" = √3𝐼	

!𝑣!" + 𝑣#" = √3𝑉	

!𝑖!" + 𝑖#" = √2𝐼	

!𝑣!" + 𝑣#" = √2𝑉	

d-q	
axis	

Voltage	
𝑣!	
𝑣"	

√3𝑣!	
√3𝑣"	

√2𝑣!	
√2𝑣"	

Current	
𝑖!	
𝑖"	

√3𝑖!	
√3𝑖"	

√2𝑖!	
√2𝑖"	

Inductance	
𝐿!	
𝐿"	

𝐿!	
𝐿"	

𝐿!	
𝐿"	

Table.	1	Correspondence	Table	of	Coefficients	in	
Clarke-Park	Transformation	
	
Additionally,	the	induced	voltage	constant	 𝐾*	 in	
RMS	transformation	is	expressed	by	the	following	
equation.	Here,	 ω+	 is	the	mechanical	angular	
velocity	[rad/s],	 𝑝	 is	the	number	of	poles,	and	 𝑁	
is	the	rotation	speed	[rpm].	
	

	 𝐾* =
𝑣'
𝜔 =

𝑣'
𝑝
2 ∙ 𝜔+

=
𝑣'

𝑝
2 ∙ 2𝜋

𝑁
60
	 (4.10)	

	
If	the	induced	voltage	constant	for	absolute	
transformation	is	 𝐾*	-./	 and	for	relative	
transformation	is	 𝐾*	012 ,	then	the	following	holds.	
	

	 𝐾*	-./ = √3 ∙ 𝐾*	 (4.11)	
	 𝐾*	012 = √2 ∙ 𝐾*	 (4.12)	

	
Based	on	the	preceding	derivation	of	the	Clarke	and	
Park	 transformations,	using	 the	output	 torque	eq.	

(1.1)	 in	 the	 equivalent	 model,	 the	 actual	 three-
phase	power	and	torque	in	RMS	transformation	are	
expressed	as	follows. 
	
	

	𝑃EFG = 3𝑃&" = 3*𝑣&𝑖& + 𝑣"𝑖",	 (4.13)	

	𝑇,-. = 3𝑇/0 = 3 ∙
𝑝
2
L𝐾1𝑖0 + L𝐿/ − 𝐿0R𝑖/𝑖0R	 (4.14)	

	
In	the	next	chapter,	we	introduce	the	procedure	for	
identifying	PMSM	parameters	using	actual	
measuring	instruments.	
 
5. Identification procedure 
This section uses Hioki’s Power Analyzer 
PW8001 as an example to describe motor 
parameter identification. Note that the 
calculation formulas are based on RMS 
transformation. 

 
5.1 Measurement of each phase’s armature 
resistance R 
First, use a resistance meter or other suitable 
instrument to measure each phase’s 
armature resistance R. 
For	 star	 connection,	 if	 the	 motor's	 neutral	 point	
cannot	 be	 accessed,	 measure	 the	 resistance	
between	two	phases	and	calculate	it	(Fig.	5.1).	

Fig.	5.1	Measurement	of	armature	resistance	in	
star	connection	

	 𝑅 =
𝑅′
2 	

(5.1)	

Even for delta connection, the resistance value 
per stator phase (phase armature resistance 
after Δ-Y conversion) is half the measured 
resistance value (Fig. 5.2). 

Measurement	of	armature	resistance	in	delta	
connection	



5 
©2025 HIOKI E.E. CORPORATION  A_AT_PW0010E02 

	 𝑅 =
𝑅′
2 	

(5.2)	

 
5.2 Phase zero-adjustment and 

identification of the induced voltage 
constant Ke 

After placing the terminals of the PMSM 
under measurement in the open state (id = iq 
= 0), connect the motor terminals to the CH 
1, 2, and 3 voltage inputs on the PW8001. 
Next, connect the encoder’s A-phase pulse 
output to CH B (or CH F); the B-phase pulse 
output to CH C (or CH G); and the Z-phase 
pulse (origin signal) output to CH D (or CH 
H) (Fig. 5.3).  
 

 
Fig. 5.3 Wiring for phase zero-adjustment 
and identification of the induced voltage 

constant 
 
Configure the PW8001 by setting the motor 
analysis operation mode to “Single” and the 
measurement parameter to “Torque Speed 
Direction Origin.” 
Next, set the CH 1, 2, and 3 wiring type to 
3P3W3M ; the synchronization source and 
harmonic synchronization source to “Ext1”; 
and ∆ conversion to “ON.” Setting the 
measurement channel synchronization 
source and harmonic synchronization source 
to “Ext1” allows measurement of the voltage 
and current phase angle using the inputted 
encoder pulse as a reference, while setting ∆ 
conversion to “ON” allows conversion of line 
voltage to phase voltage for measurement. 
 
Drive the motor in this state from the load 
side to generate an induced voltage and 
perform phase zero-adjustment on the 
PW8001.	Note	that	the	rotation	speed	at	this	time	
should	preferably	be	the	same	as	when	measuring	
the	 axis	 parameters	 later	 by	 rotating	 from	 the	
inverter	 side	 with	 load	 applied. Doing so will 
cause qv and qi to become the phase voltage 
(that is, electric angle) based on the induced 
voltage phase occurring in the q-axis 

direction. 
 
At this time, an induced voltage (vq = v1) will 
occur, and eq. (3.4) will become: 
 

 		𝐾# =
𝑣"
𝜔 =

𝑣S
2𝜋𝑓S

 (5.3) 

The equation now allows identification of Ke. 
Here, f1 (= ω / 2π) indicates the frequency of 
the phase voltage’s fundamental wave. 
 
5.3 Identification of the motor parameters 

Ld and Lq using user-defined functions 
Self-inductance (Ld and Lq) in the direction of 
the d- and q-axes can be identified using R as 
measured in Section 5.1 and Ke as identified 
in Section 5.2. Connect the inverter’s drive 
output to the motor terminals which were 
placed in an open state in Section 5.2 and 
operate the motor (Fig. 5.4).  
 

 
Fig. 5.4 Wiring when identifying motor 

parameters 
 

Based on Fig. 3.1, the following will obtain at 
this time: 
 

 𝑣& = −𝑣S sin 𝜃F (5.4) 

 𝑣" = 𝑣S cos 𝜃F (5.5) 

 𝑖& = −𝑖S sin 𝜃T (5.6) 

 𝑖" = 𝑖S cos 𝜃T (5.7) 

If these equations along with eq. (3.4) and 
(3.5) are configured as user-defined functions 
(UDFs), you can easily identify Ld and Lq 
while monitoring id and iq. 
 
Following are some specific example settings.  
Following	are	some	specific	example	settings.	First,	
set	 UDF3	 and	 UDF)	 to	 𝑣4	 and	 𝑣' ,	respectively.	

UDF3 = −U5643 ∙ sin 𝜃73	

UDF) = U5643 ∙ cos 𝜃73	

Here,	 𝑈5643 	 and	 𝜃73 	 	 are	notations	 for	 the	basic	

Pulse
Encoder

Torque
Sensor

PWM
Inverter

CH1 CH2 CH3
A

(orE)
B

(orF)
C

(orG)
D

(or H)

Power Analyzer PW8001

LoadPMSM
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measurement	 items	 of	 CH1	 on	 the	 PW8001,	
representing	 the	 fundamental	 wave	 component	
(the	 primary	AC	 signal)	 of	 the	 voltage	RMS	 value	
and	 the	 voltage	phase	 angle,	 respectively,	 and	 the	
following	calculation	formula	holds.	
	

U5643 = 𝑈3	

𝜃73 = 𝜃"	

Next, set UDF8 and UDF9 to id and iq. 
 

UDFU = −IVW!S ∙ sin 𝜃XS 

UDFY = IVW!S ∙ cos 𝜃XS 

Here Ifnd1 and qI1 represent the basic 
measurement parameters for CH 1 on the 
PW8001, indicating the fundamental wave 
component of the current RMS value and the 
current phase angle, respectively, as follows: 
 

IVW!S = 𝑖S 

𝜃XS = 𝜃T 

 
Next, set Ld. The numerator of eq. (3.4) is as 
follows: 
 

UDFZ = UVW!S ∙ cos 𝜃[S − (2𝜋𝐾#) ∙ 𝑓S	
																		−𝑅 ∙ UDFY 

 
The denominator of eq. (3.4) is as follows: 
 

UDF\ = (2𝜋) ∙ 𝑓S ∙ UDFU 

 
Consequently, Ld can be expressed as follows: 

UDF] = UDFZ/UDF\ 

 
Finally, set Lq. The numerator of eq. (3.5) is 
as follows: 
 

UDF^ = 𝑅 ∙ UDFU − (−𝑣VW!S) ∙ sin 𝜃[S 

 
The denominator of eq. (3.5) is as follows: 
 

UDF_ = (2𝜋) ∙ 𝑓S ∙ UDFY 

 
Consequently, Lq can be expressed as follows: 
 

UDFS` = UDF^/UDF_ 

Fig. 5.5, 5.6 and 5.7 depict the UDF settings 
screen on the Power Analyzer PW8001 when 
UDF1-10 have been configured in this way. In 
Fig. 5.6 and 5.7, R = 1.2 [Ω] and Ke = 20 
[mV×s/rad], and the second and third terms 

on the right side of UDF5 as well as the 
second term on the right side of UDF10 have 
been set accordingly.  

6. Conclusion 

This article introduces a simple yet high-
precision method for identifying motor 
parameters in an operating state using the 
Power Analyzer. Please see other resources 
[8] and [9] that introduce how to use a Hioki 
Power Analyzer PW6001 to identify motor 
parameters along with actual measurement 
results. Note that the method introduced in 
this article yields motor parameters for an 
equivalent circuit model that assumes the 
circuit is in a steady state and that iron (core) 
loss can be ignored.  
 
Since the identification method introduced in 
this article makes it comparatively easy to 
measure the current dependency of the motor 
parameters Ld and Lq, it can be used to create 
tools like Ld and Lq maps and torque maps 
while the motor is in an operating state in 
order to implement optimal control of 
PMSMs. 

References 

[1] Control-use Electromagnetic Actuator 
Drive System Investigation Committee: 
“Control-use Electromagnetic Actuator Drive 
Systems,” Technical Reports of The Institute 
of Electrical Engineers of Japan, No. 719, 
pp.1-8 (1993). 
[2] Y. Takeda, N. Matsumoto, S. Morimoto 
and Y. Honda: Interior Permanent Magnet 
Synchronous Motor Design and Control, 
Ohmsha (2011). 
[3] Y. Hori: “Future Vehicle driven by 
Electricity and Control - Research on 4 Wheel 
Motored ‘UOT March II,’” IEEE Trans. on 
Industry Electronics, Vol. 51, No. 5, 
pp.954.462 (2004). 
[4] P. Alvarez, M. Satrustegui, I. Elosegui 
and M. Martinez-Iturralde: “Review of High 
Power and High Voltage Electric Motors for 
Single-Aisle Regional Aircraft,” IEEE Access, 
Vol. 10, pp.112989-113004 (2022). 
[5] S. Morimoto, Y. Takeda and T. Hirasa: 
“Method for Measuring the Constants of a 
PM Motor dq  Equivalent Circuit,” 
Transactions of The Institute of Electrical 
Engineers of Japan D, Vol. 113-D, No. 11, 



7 
©2025 HIOKI E.E. CORPORATION  A_AT_PW0010E02 

pp.1330-1331 (1993).  
[6] H. Domeki: Capable Field Tools: Electric 
Motor Drive Basics and Applications, Kato 
Bunmeisha (2010). 
[7] M. Shogo, K. Masanobu, T. Yoshiyasu, T. 
Mamoru, S. Toru, O. Motomichi, H. Tsuyoshi 
and A. Takashi: “Development of a Stator-
Magnetless Linear Synchronous Motor for 
Sensorless Control,” IEEE Transactions on 

Industry Applications, Vol. 53, No. 5, 
pp.4559-4568 (2017).  
[8] HIOKI E.E. Corp.: “Identification of 
PMSM Parameters with the Power Analyzer 
PW6001” (White Paper) (2016). 
[9] HIOKI E.E. Corp.: “Identification of 
PMSM Motor Parameters with a Power 
Analyzer” (White Paper) (2016).  
  

Fig. 5.5 Example PW8001 UDF settings (UDF1-4) 
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Fig. 5.6 Example PW8001 UDF settings (UDF5-8) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.7 Example PW8001 UDF settings (UDF9-10) 
 
 
 
 
 
 


