RM3545 RM3545-01 RM3545-02

사용설명서

저항계 RESISTANCE METER

사용설명서(본서)를 보는 방법

0	런	경	우	에	는
---	---	---	---	---	---

여기를 참조해 주십시오.

반드시 읽어 주십시오.

안전에 대해서 (p.4) 사용 시 주의사항 (p.6)

바로 사용하고 싶다

) 개요 (p.19)

각 기능의 상세를 알고 싶다

목차(p.i), 색인(p.색1)에서 해당 기능을 찾으십시오.

제품의 사양을 알고 싶다

사양 (p.251)

생각대로 동작하지 않는다

> 문제 해결 (p.286)

저항 측정에 관해 자세한 내용을 알고 싶다

▶ 부록 (p.부1)

통신 커맨드를 알고 싶다

통신 커맨드 사용설명서 (애플리케이션 디스크)

			-	
			м	
-	-		-1	
	٦,	,	- 1	

머리	말	1		
포장	내용물 확인	2	제4	장 측정조건의 커스터마이즈 63
	에 대해서시 주의사항			
사공	시 구의사양	0	4.1	저전력 저항측정으로 전환하기64
			4.2	축정전류 전환하기 (100 mΩ ~ 100Ω 레인지)66
제1	장 개요	19	4.3	영점 조정하기68
1.1	제품 개요와 특장점	10	4.4	측정치를 안정시키기(에버리지 기능)73
1.2	각부의 명칭과 기능		4.5	온도의 영향을 보정하기
1.3	측정의 순서			(온도 보정 기능(TC))75
1.4	화면구성과 조작 개요		4.6	측정치 보정하기, 저항치 이외의
1.5	측정대상 확인하기			물리량으로 표시하기(스케일링 기능)77
	7010 7 6 7 7 1		4.7	측정치의 지릿수 변경하기81
			4.8	열기전력에 의한 측정치 오프셋을 보정하기
제2	장 측정 전 준비	35		(오프셋 전압 보정 기능: OVC)82
2.1	전원 코드 연결하기		4.9	측정 개시까지의 지연시간 설정하기
2.1	천원 코드 현실하기 측정 리드 연결하기		4.40	(딜레이 기능)84 접촉불량이나 접촉상태를 확인하기
2.2	국경 디프 한글아기 Z2001 온도센서나 아날로그 출력	36	4.10	접속물용이나 접속성대를 복인하기 (콘택트 체크 기능)88
2.3	타재 온도계를 연결하기		4 11	프로브의 접촉상태를 개선하기
	(TC, ΔT를 사용하는 경우)	37	****	(접촉개선기능)90
	Z2001 온도센서 연결하기		4.12	측정 정밀도를 유지하기
	아날로그 출력 탑재 온도계 연결하기			(셀프 캘리브레이션 기능)92
2.4	멀티플렉서 유닛 장착하기		4.13	100 M Ω 레인지의 정밀도를 올리기
2.5	전원 켜기, 끄기			(100 MΩ 레인지 고정밀도 모드)96
	주 전원 스위치로 전원 켜기 주 전원 스위치로 전원 끄기			
	스탠바이 상태를 해제하기			
	스탠바이 상태로 하기		제5	장 판정·통계·환산기능 97
2.6	측정 전 점검	45	5.1	측정치를 판정하기(콤퍼레이터 기능)98
				콤퍼레이터 기능을 ON / OFF 하기 100
Tilo	자 기비추저	47		상하한치로 판정하기(ABS모드) 101
শাত	장 기본 측정			기준치와 허용범위로 판정하기(REF% 모드) 103 판정을 소리로 확인하기(판정음 설정 기능) 105
3.1	측정대상 확인하기			판정을 전면에서 확인하기
3.2	측정 레인지 설정하기			(L2105 전면 콤퍼레이터 램프: 옵션) 107
3.3	측정 속도 설정하기		5.2	축정 결과를 분류하기(BIN 측정기능)108
3.4	측정대상에 측정 리드 연결하기		5.3	
3.5	측정치 확인하기			통계 연산 기능을 사용하기112 통계 연산 결과를 확인하기•인쇄하기•삭제하기114
	표시를 전환하기		5.4	
	측정이상을 확인하기 추정치 호드하기			(온도 환산 기능(ΔT))116

목 차

제6	장 패널 저장·로드 (측정조건의 저장, 로딩) 119	8.6 8.7	멀티플렉서 유닛의 테스트를 실행하고 연결과 설정 예	
6.1 6.2	축정조건 저장하기(패널 저장 기능) 120 축정조건 로딩하기(패널 로드 기능) 121	제9	장 D/A 출력	175
6.3 6.4	영점 조정값을 로딩하지 않기122 패널명 변경하기123 패널 내용 삭제하기124	9.1 9.2	D/A 출력을 연결하기 D/A 출력 사양	
HIZ	장 시스템 설정 125		0장 외부 제어(EXT I/O)	177
7.1 7.2 7.3 7.4 7.5 7.6 7.7	기 조작을 유효, 무효화하기	10.2	외부 입출력단자와 신호에 대해서 전류싱크(NPN) / 전류소스(PNP)를 전환하기 사용 커넥터와 신호 배치 각 신호의 기능 타이밍 차트 측정 시작부터 판정 결과 취득까지 BCD신호의 타이밍 영점 조정의 타이밍 셀프 캘리브레이션의 타이밍	178179181187191192193196197198201
제8	장 멀티플렉서 139		내부 회로 구성 전기적 사양	
-	멀티플렉서에 대해서 140 사용 커넥터와 단자의 배치 143 멀티플렉서의 배선에 대해서 145	10.4	연결 예	207 209
	내부 회로 구성146 전기적 사양147	:	TRIG 신호의 논리 설정하기 TRIG / PRINT 신호의 채터링 제거하기 (필터 기능)	
•	멀티플렉서에 관한 설정	10.5	EOM 신호 설정하기 출력 모드(판정 모드 / BCD 모드) 전환하 외부 제어 확인하기 입출력 테스트하기(EXT I/O 테스트 기능 부속 커넥터 조립 방법	215 トフト .217 218 ま)218
-	멀티플렉서로 측정하기162 수동 조작으로 채널을 전환하여 측정하기 162 스캔 측정하기			
	영점 조정하기 (멀티플렉서 유닛 장착 시)164 영점 조정을 실행하기164 영전 조정을 해제하기 165			

10

제1	1장 통신(USB / RS-232C		제14	장 보수 · 서비스	285
	/ GP-IB 인터페이스)	221	14.1	문제 해결	286
11 1	인터페이스의 개요와 특장점	221		_ 	
	사양			ll러 표시와 대처방법	
	사용 전 준비(연결과 설정)			측정희로 보호용 퓨즈의 교체	
	USB 인터페이스 사용하기			수리·점검	
	RS-232C 인터페이스 사용하기			· ' - 1	
	GP-IB 인터페이스 사용하기(RM3545-0			_ 기기 의 데기 리튬 전지 분리법	
11.3	커맨드로 제어 및 데이터를 취득하	기 232		-10 C-10 C-10	
-	리모트 상태 •로컬 상태	232			
	통신 커맨드를 표시(통신 모니터 기능)	233	не		Н4
-	측정치를 한꺼번에 취득하기	005	부록		부1
44.4	(데이터 메모리 기능) 측정 종료 때마다 측정치를 자동 송		부록1	블록도	부1
11.4	(데이터 출력 기능)		부록2	4 단자법(전압 강하법)	부2
	(네이디 블러 기8)	230	부록3	직류방식과 교류방식에 대해서	부3
			부 록 4	온도 보정 기능(TC)에 대해서	부4
TIL 4.	OT 01411/D0 2020 #3151	=	부록5	온도 환산 기능(ΔT)에 대해서	
세1	2장 인쇄(RS-232C 프린터		부 록 6	영점 조정에 대해서	
	사 용 하기)	239	· 16 부 록 7	측정치가 안정되지 않을 때	
12.1	본 기기와 프린터 연결하기	239	· ¬ · 부 록 8	여러 대의 RM3545를 사용하려	
12.2	인쇄하기	242	+ 부록9	노이즈 대책에 대해	
	'' · · · · 측정치 •판정결과를 인쇄한다			열기전력의 영향에 대해서	-
	측정조건이나 설정 일람을 인쇄한다			프린트 기판 단락 위치의 검출	
-	통계 연산 결과를 인쇄한다	247		접점저항측정에 대해서	
				JEC 2137 유도기에 대응한	721
			十十つ	저항 측정	브20
제1:	3장 사양	251	브로14	작정 리드를 자체제작하기,	+ 20
			T 7 14	국 3 디프를 지세세국이기, 멀티플렉서에 배선하기	부30
	본체 사양		보로15	측정 이상 시의 확인방법	
	측정범위 측정 방식			내압시험기와의 조합	
	측정 사양			측정 리드(옵션)에 대해서	
	정확도에 대해서			극경 디프(급진)에 대해지 랙마운트	
	기능				
	인터페이스	271		외관도	-
	환경 •안전 사양			교정에 대해서	
	부속품			조정에 대해서	
	옵션		부록22	본 기기의 설정상태(MEMO)	부46
	Z3003 멀티플렉서 유닛 사양				
	일반 사양 측정 사양				
	정확도에 대해서		색인		색1
_	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	202	74		

■ 환경 •안전 사양283 ■ 부속품283

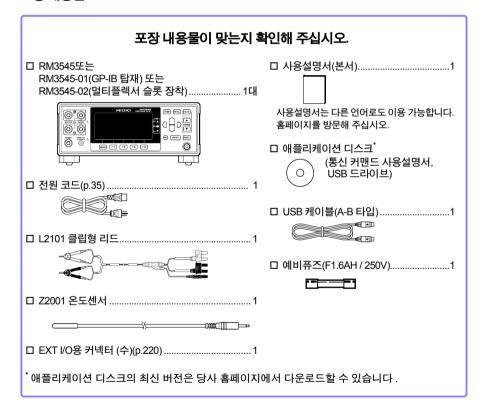
모치

머리말

저희 Hioki RM3545•RM3545-01•RM3545-02 저항계를 구매해 주셔서 대단히 감사합니다. 이 제품을 충분히 활용하고 오랫동안 사용하시기 위해서 사용설명서는 소중하게 보관해 주시고 항상 가까운 곳에 두고 사용해 주십시오.

RM3545-01은 RM3545의 GP-IB인터페이스 탑재 제품입니다. RM3545-02는 RM3545의 멀티플렉서 슬롯 장착 제품입니다.

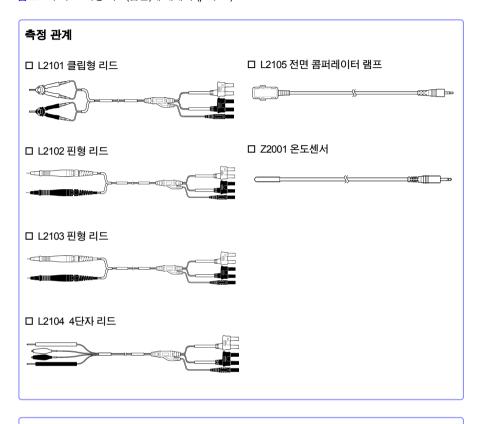
상표에 대해서


- Windows는 미국 Microsoft Corporation의 미국, 일본 및 기타 국가에 있어서의 등록상표 또는 상표입니다.
- TEFLON은 더 케무어스 컴퍼니 에프씨, 엘엘씨의 등록상표 또는 상표입니다.

포장 내용물 확인

점검

본 기기를 수령하시면 수송 중 이상 또는 파손이 없는지 점검하신 후 사용해 주십시오. 특히 부속품 및 패널면의 스위치, 단자류를 주의깊게 살펴봐 주십시오. 만일 파손된 곳이 있거나 사양대로 동작하지 않을 경우는 당사 또는 대리점으로 연락 주십시오.


포장 내용물

옵션에 대해서

상세한 내용은 당사 또는 대리점으로 문의해 주십시오.

참조: "부록17 측정 리드(옵션)에 대해서"(p. 부35)

인터페이스 통신 관계

- □ 9637 RS-232C케이블(9 pin 9 pin / 1.8 m / 크로스)
- □ 9638 RS-232C케이블(9 pin 25 pin / 1.8 m / 크로스)
- □ 9151-02 GP-IB 접속 케이블(2 m)

멀티플렉서 유닛 관련

□ Z3003 멀티플렉서 유닛

아전에 대해서

본 기기는 IEC61010 안전규격에 따라 설계되어 시험을 거쳐 안전한 상태로 출하되었습니다. 단. 이 사용설명서의 기재사항을 준수하지 않을 경우, 본 기기가 갖추고 있는 안전 확보를 위한 기능이 제대로 작동하지 않을 수 있습니다.

본 기기를 사용하기 전에 다음 안전에 관한 사항을 잘 읽어 주십시오.

♠ 위 험 잘못된 방법으로 사용하면 인명사고나 기기의 고장으로 이어질 가능성이 있습니다. 이 사용설명서를 숙지하시고 충분히 내용을 이해하신 후 조작하십시오.

↑ 경 고 전기는 감전, 발열, 화재, 단락에 의한 아크방전 등의 위험이 있습니다. 전기 계측기를 처음 사용하시는 분은 전기 계측 경험자의 감독하에서 사용하십시오.

이 사용설명서에는 본 기기를 안전하게 조작하여, 안전한 상태로 유지하는 데 필요한 정보와 주의사항이 기재되어 있습니다. 본 기기를 사용하기 전에 다음의 안전에 관한 사항을 주의깊게 읽어 주십시오.

안전 기호

사용자는 사용설명서 내의 \Lambda 마크가 있는 곳은 반드시 읽고 주의할 필요가 있음을 나타 낸니다

사용자는 기기상에 표시되어 있는 \Lambda 마크의 위치에 대해서, 사용설명서의 🖟 마크의 해 당 부분을 참조하여 기기를 조작하십시오.

교류(AC)를 나타냅니다.

전원의 "ON"을 나타냅니다.

전원의 "OFF"를 나타냅니다.

 \blacksquare

퓨즈를 나타냅니다.

사용설명서의 주의사항에는 중요도에 따라 다음과 같은 표기가 있습니다.

조작이나 취급을 잘못하면 사용자가 사망 또는 중상으로 이어질 위험성이 매우 높다는 것 ⚠ 위험 을 의미합니다.

조작이나 취급을 잘못하면 사용자가 사망 또는 중상으로 이어질 위험성이 있음을 의미합 ⚠경고

조작이나 취급을 잘못하면 사용자가 상해를 입거나 기기가 손상될 가능성이 있음을 의미 ⚠ 주의 합니다.

주의 사항 제품 성능 및 조작상의 도움말을 의미합니다.

규격에 관한 기호

 ϵ

EU 지령이 제시하는 규제에 적합하다는 것을 나타냅니다.

EU 가맹국의 전자, 전기기기의 폐기에 관한 법 규제(WEEE 지령) 마크입니다.

표기에 대하여

해서는 안 되는 행위를 나타냅니다.

(p.) 참조 페이지를 나타냅니다.

* 설명을 아래에 기술하고 있습니다.

[] 설정 항목 등 화면상의 명칭은 []로 표기하고 있습니다.

SET

당한 문장 중에 굵은 글자로 된 영숫자는 조작 키에 표시되어 있는 문자를 나타냅니다.

정확도에 대해서

당사에서는 측정치의 한계오차를 다음에 나타내는 f.s.(full-scale), rdg.(reading), dgt.(digit)에 대한 값으로서 정의하고 있습니다.

f.s. (최대 표시치)

일반적으로 최대 표시 값을 나타냅니다. 본 기기에서는 현재 사용 중인 레인지를 나타냅니다.

rdg. (측정치, 표시치, 지시치)

현재 측정하고 있는 값, 측정기가 현재 표시하고 있는 값을 나타냅니다.

dgt. (분해능)

디지털 측정기의 최소 표시단위, 즉 최소 자릿수 "1"을 나타냅니다.

참조: "정확도 계산 예"(p.259)

사용 시 주의사항

본 기기를 안전하게 사용하기 위해. 또한 기능을 충분히 활용하기 위해 다음 주의사항을 지켜 주십 시오.

사용 전 확인

사용하기 전에 보관이나 수송에 의한 고장이 없는지 점검과 동작 확인을 하신 후 사용하십시오. 고 장이 확인된 경우는 당사 또는 대리점으로 연락 주십시오.

↑ 위 험 전원 코드, 리드선 케이블의 피복이 벗겨지거나 금속이 노출되지 않았는지 사용하기 전에 확인하십시오. 손상이 있을 경우는 감전사고로 이어질 수 있으므로 당사가 지정 한 제품으로 교체해 주십시오.

본 기기의 설치에 대해서

사용 온습도 범위: 0℃ ~40℃, 80% RH 이하(결로 없을 것) 보관 온습도 범위: -10℃ ~ 50℃, 80% RH 이하(결로 없을 것)

본 기기의 고장, 사고의 원인이 되므로 다음과 같은 장소에는 설치하지 마십시오.

직사광선에 노출되는 장소 온도가 높은 장소

부식성 가스나 폭발성 가스 가 발생하는 장소

물, 기름, 약품, 용제 등에 노 출되는 장소 습도가 높거나 결로 현상이

강력한 전자파를 발생시키 는 장소 전기를 띤 물체 근처

먼지가 많은 장소

일어나는 장소

유도가열장치 근처 (고주파 유도가열장치, IH 조리기구 등)

기계적인 진동이 많은 장소

주의 사항 변압기나 대전류로 등 강한 자계(magnetic field)가 발생하고 있는 장소, 또는 무선기 등 강한 전계(electromagnetic field)가 발생하는 근처에서는 정확하게 측정할 수 없 는 경우가 있습니다.

설치 방법

- · 바닥면 이외의 부분을 아래로 설치하지 않는다.
- · 불안정한 받침대 위나 기울어진 곳에 두지 않는다.

본 기기는 스탠드를 세워서 사용할 수 있습니다(p.24). 또 랙에 설치할 수도 있습니다(p.부36).

주의 사항 본 기기의 전원 공급을 차단하는 수단은 전원 코드의 플러그입니다. 긴급 상황 시 전원 코드의 플러그를 뽑아 신속하게 전원 공급을 차단할 수 있도록 조작의 방해가 되지 않는 충분한 공간을 확보하십시오.

본 기기의 취급에 대해서

- ↑ 경고 · 본기기를 물에 적시거나 젖은 손으로 측정하지 마십시오. 감전사고의 원인이 됩 니다.
 - · 개조, 분해, 수리하지 마십시오, 화재나 감전사고, 부상의 원인이 됩니다.

- ↑ 주의 ·본기기의 손상을 방지하기 위해서 운반 및 취급시에는 진동, 충격을 피해 주십시 오. 특히, 낙하 등에 의한 충격에 주의하십시오.
 - 본 기기의 손상을 피하기 위해서 측정단자, TEMP.단자, COMP.OUT단자, D/A OUTPUT단자에 전압이나 전류를 입력하지 마십시오.

- 주의 사항 · 본 기기를 수송할 경우, 수령했을 당시의 포장 재료를 사용하십시오.
 - 본 기기는 EN61326 Class A 제품입니다. 주택지 등 가정 환경에서 사용하면 라디오 및 TV방송의 수신을 방해할 수 있 습니다. 그 경우에는 작업자가 적절한 대책을 강구하십시오.

코드, 리드선 등의 취급에 대해서

♠ 위험

감전사고를 방지하기 위해 측정 리드의 선단으로 전압이 걸려있는 라인을 단락하지 미십시오.

⚠ 주의

- 코드류의 피복에 손상을 주지 않기 위해서 밟거나 끼우거나 하지 마십시오.
- 단선에 의한 고장을 방지하기 위해서 케이블이나 리드선의 밑부분을 구부리거나 잡아당기지 마십시오.
- 단선 방지를 위해서 전원 코드를 콘센트 또는 본 기기에서 뽑을 때는 플러그 부분(코드 이외)을 잡고 뽑으십시오.
- 단선 방지를 위해서 커넥터를 뽑을 때는 플러그 부분(케이블 이외)을 잡고 뽑으십 시오.
- 핀형 리드의 끝은 뾰족하기 때문에 위험합니다. 다치지 않도록 취급에 충분히 주의 하십시오.
- 코드가 녹으면 금속 부분이 노출되어 위험합니다. 발열부에 닿지 않도록 주의하십 시오.
- 온도센서는 정밀가공 되어 있습니다. 지나치게 높은 전압 펄스나 정전기가 걸리면 파손될 가능성이 있습니다.
- 온도센서 선단에 과도한 충격을 가하거나 리드선을 무리하게 구부리지 마십시오. 고장이나 단선의 원인이 됩니다.
- 감전사고 방지를 위해 본 기기와 측정 리드 중 낮게 표시된 쪽의 정격에서 사용해 주 십시오.

- 주의 사항 •본 기기를 사용할 때는 반드시 당사가 지정한 코드, 리드선류를 사용하십시오. 지정 이외의 코드, 리드선류를 사용하면 접촉불량 등으로 정확한 측정을 할 수 없 는 경우가 있습니다.
 - 온도센서의 본 기기 연결부가 오염된 경우는 깨끗이 닦아주십시오. 오염이 있는 경우 접촉저항의 증가로 인해 온도 측정치에 영향을 줍니다.
 - 온도센서의 커넥터가 빠지지 않도록 주의하십시오. (빠지면 온도 보정, 온도 환산 기능을 사용하지 못하게 됩니다)

CD 사용시 주의사항

- ↑ 주의 •디스크 기록면에 먼지가 묻거나 상처가 나지 않도록 주의하십시오. 또 레이블면 에 글자를 기입할 때에는 끝이 부드러운 필기구를 사용하십시오.
 - 디스크는 보호케이스에 넣어 직사광선이나 고온 다습한 환경에 노출하지 마십시
 - 디스크를 사용함에 있어서 일어나는 컴퓨터 시스템 상의 문제에 대해 당사는 일절 책임을 지지 않습니다.

전원 코드를 연결하기 전에

- ↑ 경 고 · 감전사고를 피하고 본 기기의 안전성을 확보하기 위해서 접지형 2극 콘센트에 부 속되어 있는 전원 코드를 연결하십시오.
 - · 본 기기를 사용할 때는 반드시 지정된 전원 코드를 사용하십시오. 지정 이외의 전 원 코드를 사용하면 화재의 우려가 있습니다.
 - · 코드류의 피복이 벗겨지거나 금속이 노출되지 않았는지 사용하기 전에 확인하십 시오. 손상이 있는 경우는 감전사고로 이어질 수 있으므로 당사 또는 대리점으로 연락 주십시오.

↑ 주의 단선 방지를 위해서 전원 코드를 콘센트 또는 본 기기에서 뽑을 때는 플러그 부분 (코드 이외)을 잡고 뽑으신시오.

측정 리드를 연결하기 전에

↑ 위 함 <mark>감전, 단락 사고를 방지하기 위해 측정 리드를 연결하기 전에 측정대상의 전원을 꺼</mark> 주십시오.

전면 콤퍼레이터 램프를 연결하기 전에

- ↑ 주의 ·기기와 전면 콤퍼레이터 램프의 고장을 방지하기 위해. 본 기기의 전원을 끄고 나 서 연결하십시오.
 - COMP.OUT 단자는 L2105 전용단자입니다. L2105 외에는 연결하지 마십시오.
 - 커넥터를 확실하게 연결하지 않으면 사양을 만족시키지 못할 경우가 있습니다.
 - 측정 리드에 결속밴드를 너무 강하게 조이지 마십시오. 측정 리드가 파손될 우려 가 있습니다.
 - 케이블의 심선이나 피복이 손상될 가능성이 있으므로 다음과 같은 행동은 삼가해 주십시오.

케이블을 꼬거나 잡아당긴다.

램프 부근의 케이블을 작게 구부려서 연결한다.

온도센서를 연결하기 전에

⚠ 경고

커넥터를 확실하게 연결하지 않으면 사양을 만족시키지 못하거나 고장의 원인이 된 니다.

⚠ 주의

본 기기의 손상을 피하기 위해 다음 사항에 주의하십시오.

- 기기와 온도센서의 고장을 방지하기 위해. 본 기기의 주 전원 스위치를 끄고 나서 연결하십시오
- 온도센서는 TEMP.SENSOR 단자에 안쪽까지 깊숙이 꽂아 주십시오. 연결이 충분 하지 않을 경우 측정치에 큰 오차가 생길 수 있습니다.

- 주의 사항 온도센서 잭이 오염된 경우는 깨끗이 닦아주십시오. 오염된 채로 있으면 온도 측 정치에 오차가 발생합니다.
 - 온도센서를 연결할 경우에는 TEMP.ANALOG INPUT 단자에는 아무것도 연결하 지 마십시오. 잘못된 측정치가 표시됩니다.

온도계를 연결하기 전에

- ↑ 경 고 · 온도측정회로는 접지되어 있습니다. 감전사고나 본 기기의 손상을 방지하기 위해 대지에 대해 전위를 가진 아날로그 출력 온도계를 본 기기 뒷면의 TEMP.ANA-LOG INPUT 단자에 연결하지 마십시오.
 - 커넥터를 확실하게 연결하지 않으면 사양을 만족시키지 못하거나 고장의 원인이 됩니다.

↑ 주의 본기기의 손상을 피하기 위해 다음 사항에 주의하십시오.

- 본 기기에 연결하기 전에 본 기기와 온도계의 전원이 꺼져있는 것을 확인하십시오.
- 아날로그 출력이 가능한 온도계를 사용하여 입력할 수 있는 전압은 0 ~ 2 V(단자 간)입니다. 이 범위를 넘는 전압을 입력하지 마십시오.

- 주의 사항 4 ~ 20 mA 출력의 온도계의 경우. 50 Ω 정도의 션트저항을 연결하여 전압으로 변 환한 후 연결하십시오.
 - 온도계를 연결할 경우는 TEMP.SENSOR 단자에는 아무것도 연결하지 마십시오. 잘못된 측정치가 표시됩니다.

통신 케이블을 연결하기 전에 (USB, RS-232C, GP-IB)

↑ 주의 본기기와 컨트롤러를 연결할 때는 다음 사항에 주의하십시오.

- 고장을 피하기 위해 조작 중에는 USB케이블을 꽂거나 빼지 마십시오.
- USB RS-232C GP-IB는 접지(어스)로부터 절연되어 있지 않습니다. 본 기기와 컨트롤러의 접지(어스)는 공통으로 하십시오. 접지가 다르면 본 기기의 GND와 컨 트롤러 GND 간에 전위차가 발생합니다. 전위차가 있는 상태에서 통신 케이블을 연결하면 오동작이나 고장의 원인이 됩니다.
- RS-232C 케이블, GP-IB 접속 케이블을 연결하거나 제거할 때는 반드시 본 기기 및 컨트롤러의 전원을 꺼주십시오. 오동작이나 고장의 원인이 됩니다.
- RS-232C 케이블, GP-IB 접속 케이블을 연결한 뒤에는 커넥터에 부속된 나사를 제 대로 고정하십시오. 커넥터를 확실하게 연결하지 않으면 오동작이나 고장의 원인 이 됩니다.

프린터를 연결하기 전에

↑ 경 고 감전의 위험이나 기기의 고장으로 이어질 가능성이 있으므로 프린터 연결은 다음 사 항을 준수하십시오.

- 반드시 본 기기 및 프린터의 전원을 끄고 나서 연결하십시오.
- · 동작 중에 연결이 빠져 다른 도전부에 접촉되면 위험합니다. 확실하게 연결하십 시오.

전류싱크 (NPN) / 전류소스 (PNP) 를 전환하기 전에

- ↑ 주의 · NPN / PNP 설정은 외부에 연결할 기기에 맞춰 주십시오.
 - 본 기기의 전원이 들어간 상태에서 NPN / PNP의 스위치를 조작하지 마십시오.

EXT I/O 커넥터에 연결하기 전에

↑ 경 고 <mark>감전사고, 기기 고장을 방지하기 위해 EXT I/O 커넥터에 연결할 때는 다음 사항을 준</mark> 수하십시오.

- · 본 기기 및 연결할 기기의 주 전원 스위치를 끄고 나서 연결하십시오.
- EXT I/O 커넥터 신호의 정격을 넘지 않도록 하십시오(p.206).
- · 동작 중에 연결이 빠져 다른 도전부에 접촉되면 위험합니다. 외부 커넥터를 연결 할 때는 나사로 확실하게 고정시키십시오.
- EXT I/O의 ISO 5V 단자는 5 V(NPN) / -5 V(PNP) 전원 출력입니다. 외부에서 전원 을 입력하지 마십시오. (본 기기의 EXT I/O는 외부전원을 입력할 수 없습니다.)

↑ 주의 본기기의 손상을 피하기 위해 다음 사항에 주의하십시오.

- EXT I/O 커넥터에 정격 이상의 전압 또는 전류를 입력하지 마십시오.
- 릴레이 사용 시는 역기전력 흡수용 다이오드를 반드시 부착하십시오.
- ISO 5V와 ISO COM을 단락하지 마십시오.
- NPN / PNP 설정은 외부에 연결할 기기에 맞춰 주십시오.
- 본 기기의 전원이 들어간 상태에서 NPN / PNP의 스위치를 조작하지 마십시오. 李몄":"사용 커넥터와 신호 배치"(p.179)

멀티플렉서 유닛을 장착하기 전에 멀티플렉서 커넥터를 연결하기 전에

- ↑ 경 고 · 감전사고를 피하기 위해 멀티플렉서 유닛은 본체의 주 전원 스위치를 끄고 측정 리드, 모든 커넥터, 전원 코드를 빼고나서 장착 또는 제거하십시오.
 - · 나시를 확실하게 고정하지 않으면 사양을 만족시키지 못하거나 고장의 원인이 된 니다.
 - · 커넥터를 확실하게 연결하지 않으면 사양을 만족시키지 못하거나 고장의 원인이 됩니다.
 - · 기전력을 가진 측정대상(배터리, 전원)을 연결할 경우에는 단락 보호를 하십시오.
 - 건3003 멀티플렉서 유닛의 전적 최대허용전안은 실효치 30 V 및 피크치 42.4 V 또 는 직류 60 V입니다. 내압시험기와 절연저항계를 직접 연결하지 마십시오.
 - · 감전사고를 피하기 위해 멀티플렉서 유닛을 떼어낸 채로 사용하지 마십시오. 유 닛을 떼어냈을 때에는 블랭크 판넬(blank panel)을 장착하십시오.

- ↑ 주의 · 멀티플렉서 유닛을 끼워넣을 때는 판금 부분을 잡고 끼워 넣으십시오. 기판을 직 접 만지면 정전기의 영향으로 고장이 나거나 고저항 레인지에서 정확도 불량의 원 인이 될 우려가 있습니다. 대전 방지 장갑을 사용함과 동시에 정전기 대책(정전기 대책용 손목끈 등을 사용)을 할 것을 권장합니다.
 - 멀티플렉서 유닛을 사용하지 않는 경우 고장을 방지하기 위해 수령했을 당시의 포 장 재료를 사용하여 보관하십시오.

D/A 출력을 사용하기 전에

⚠ 주의

- 감전, 기기의 고장을 피하기 위해 D/A 출력단자에 연결할 때는 본 기기 및 연결할 기기의 주 전원 스위치를 끄고, 측정 리드를 측정대상에서 분리한 상태에서 실행 하십시오.
- D/A 출력에서의 최대 출력전압은 5 V입니다. 연결할 기기의 정격전압이 5.5 V보 다 작으면 연결 기기가 고장날 수 있습니다.
- D/A 출력은 접지(어스)로부터 절연되어 있지 않습니다. D/A 출력에 연결할 기기는 접지로부터 절연되어 있지 않으면 오차가 커집니다.

전원을 켜기 전에

⚠경고

전원을 켜기 전에 본 기기의 전원 연결부에 기재되어 있는 전원 전압과, 사용할 전원 전압이 일치하는지 확인하십시오. 지정된 전원 전압 범위 외에서 사용하면, 본 기기가 파손되거나 전기사고의 원인이 됩니다.

↑ 주의 UPS(무정전 전원)와 DC-AC 인버터를 사용해서 본 기기를 구동할 경우에는 구형파 및 유사 정현파 출력의 UPS 및 DC-AC 인버터를 사용하지 마십시오. 본 기기가 파 손될 수 있습니다.

측정하기 전에

⚠경고

 : 감전사고와 본 기기의 손상을 방지하기 위해 측정 단자부에 전압을 입력하지 마십시오. 또한 전기사 고를 방지하기 위해 측정대상의 전원을 끄고 나서 측정하십시오.

측정대상이 전원에 연결 되어 있다.

 측정대상에 연결한 순간 혹은 제거하는 순간에는 불꽃이 발생하는 경우가 있습니다. 화재나 인명사고를 피하기 위해 폭발성 가스가 발생하는 장소에서는 사용하지 마십시오.

⚠ 주의

• 전압이 가해지고 있는 부분은 측정하지 마십시오. 모터 전원을 꺼도 모터가 타성회전하고 있는 상태에서는 단자에 큰 기전력이 발생하고 있습니다. 변압기와 모터를 내압시험 직후에 측정하면 유기 전압과 잔류 전하로 인해 본 기기가 손상됩니다.

타성회전중

• 릴레이를 통해 내압시험기와 본 기기를 전환하여 사용할 경우에는 다음 사항에 유의하여 설비를 설계하십시오.

李몄":"부록16 내압시험기와의 조합"(p. 부34)

- (1) 전환에 사용할 릴레이의 접점 내압은 내압시험의 피크전압에 대해서 충분히 여유를 갖게 해 주십시오.
- (2) 릴레이 접점에서 나오는 아크방전에 의한 고장을 방지하기 위해, 내압시험 중에는 본 기기의 측정 단자를 모두 접지하십시오.
- (3) 잔류전하에 의한 고장을 방지하기 위해, 처음에 저항측정을 실시하고 마지막 에 내압시험을 하십시오.

내압시험에 따른 전하가 남아있다.

• 배터리의 내부저항 측정은 할 수 없습니다. 본 기기가 파손됩니다. 배터리 내부저항을 측정하는 경우는 Hioki 3555, BT3562, BT3562-01, BT3563, BT3563-01, 3561 배터리 하이테스터, BT3554, BT3554-01, BT3564, BT3554-10, BT3554-11배터리 테스터 등을 이용하십시오.

- 주의 사항 · 측정 정확도를 만족시키기 위해 60분 이상 워밍업을 실시하십시오.
 - 인덕턴스가 큰 전원 변압기나 개방형 솔레노이드 코일 등을 측정할 경우에는 측정 치가 안정되지 않을 수가 있습니다. 그런 경우에는 SOURCE A - B 사이에 1 µF 정도의 필름 콘덴서를 연결하십시오.
 - SOURCE A . SENSE A . SENSE B . SOURCE B 배선은 각각 확실하게 절연하십시 오. 심선과 실드가 서로 닿으면 정확한 4단자 측정을 유지할 수 없게 되어 오차가 발생합니다.
 - SOURCE 단자는 퓨즈로 보호되고 있습니다. 퓨즈가 단선된 경우에는 "Blown FUSE."라고 표시되고 저항치를 측정할 수 없습니다. 퓨즈가 단선된 경우에는 퓨 즈를 교체하십시오.

李멌":"14.2 측정회로 보호용 퓨즈의 교체"(p.299)

- 본 기기는 직류전류로 측정을 하기 때문에 열기전력의 영향을 받아 측정오차가 발 생할 경우가 있습니다. 그런 경우에는 오프셋 전압 보정 기능(OVC)을 이용하십시. Q
 - 李몄":"4.8 열기전력에 의한 측정치 오프셋을 보정하기 (오프셋 전압 보정 기능: OVC)"(p.82)

李<u>兄</u>":"부록10 열기전력의 영향에 대해서"(p. 부24)

온도센서를 사용할 경우

↑ 주의 <u>P도센서는 방수구조로 되어 있지 않습니다.</u> 물속에 넣지 마십시오.

- 주의 사항 ㆍ온도 보정할 측정대상과 온도센서가 주위 온도와 충분히 같아진 뒤에 측정하십시 오(10분 이상). 그렇지 않은 상태에서 측정하면 큰 오차가 발생합니다.
 - 온도센서를 맨손으로 잡으면 유도 노이즈가 들어가 측정치가 안정되지 않는 경우 가 있습니다.
 - 온도센서는 주위 온도를 측정하는 용도로 제작되었습니다. 온도센서를 측정대상 의 표면 등에 설치해도 측정대상 그 자체의 온도는 올바르게 측정할 수 없습니다. 주위환경과 측정대상의 온도차가 큰 경우에는 방사온도계를 이용한 보정이 적합 합니다.
 - 온도센서는 TEMP.SENSOR 단자에 안쪽까지 깊숙이 꽂아 주십시오. 연결이 충분 하지 않을 경우 측정치에 큰 오차가 생길 수 있습니다.

개요

제 1 장

1.1 제품 개요와 특장점

모터 • 변압기 등의 코일저항, 릴레이 • 스위치의 접촉저항, 프린트 기판의 패턴저항, 퓨즈나 저항기, 도전성 고무 등 각종 소재의 직류저항을 4단자에 의해 고속 그리고 고정밀도로 측정할 수 있습니다. 본 기기에는 온도 보정기능이 탑재되어 있으므로 온도에 따라 저항치가 변화하는 측정대상 측정에 특히 적합합니다. 또한 콤퍼레이터 기능, 통신, 외부제어, 멀티플렉서* 등을 탑재하여 개발이나 생산라인 등 여러 장면에서 사용할 수 있습니다.

*멀티플렉서는 RM3545-02에서 사용 가능합니다.

선진적인 개발, 생산에 대응하는 여유로운 고사양

- · 측정 레인지 10 mΩ ~ 1000 MΩ / 기본정확도 0.006%rdg.
- · 최고 분해능 10 nΩ

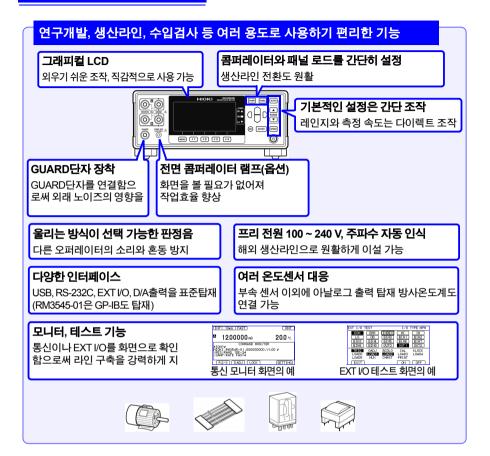
전류검출 저항기, 리액터, 용접부 등의 저 저항측정에 대응

・ 최대 1 GΩ 레인지

접점의 오픈테스트에 사용 가능

· 개방전안 20 mV 이하

저전력 측정으로 IEC60512-2 등 접점 규격에 따른 시험이 가능


• 영점 조정 없이도 정확도 규정

영점 조정을 하지 않아도 안심 측정

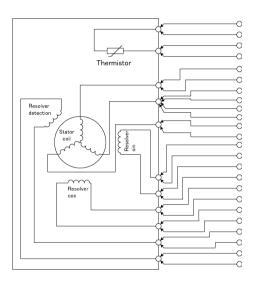
· 저 저항 레인지에서의 배선저항 허용치 1.5 Ω

측정전류 1 A의 레인지라도 측정 케이블의 연장이 용이

1.1 제품 개요와 특장점

다점측정, 종합 판정 가능한 멀티플렉서 지원(RM3545-02)

· 최대 4단자 20군데, 2단자 42군데(Z3003을 2유닛 사용시)

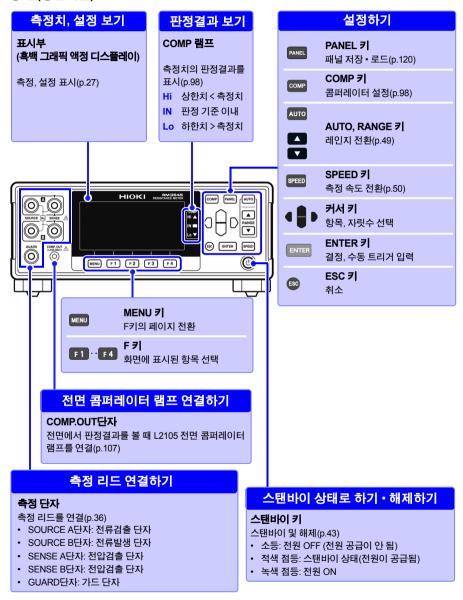

• **다점측정** 네트워크 저항기나 스티어링 스위치, 3상모터 등에 대응

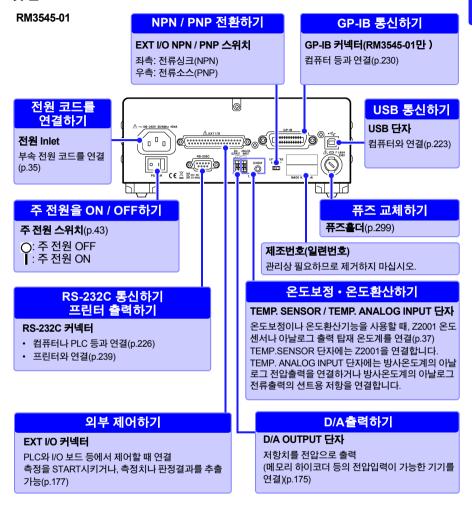
• 종합판정 각각의 장소의 측정결과로부터 종합판정을 출력

• 측정결과를 기준으로 콤퍼레이터 판정

서미스터 등 온도의 영향을 받기 쉬운 측정대상은 기준소자와의 비교 판정이 가능

• 외부 측정기 연결 LCR 미터 등 외부계측기를 포함하여 다점측정이 가능

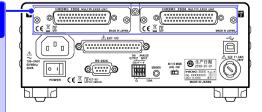

Z3003 멀티플렉서 유닛



1.2 각부의 명칭과 기능

정 면(정면패널)

뒷 면



RM3545-02

멀티플렉서 유닛을 사용하기

멀티플렉서 슬롯 (멀티플렉서 유닛 삽입구) (RM3545-02만)

Z3003 멀티플렉서 유닛을 장착 (최대 2유닛)(p.42)

1.2 각부의 명칭과 기능

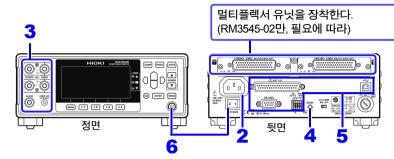
바닥면

본 기기는 랙에 설치할 수도 있습니다. 참조:랙 마운트 (p. 부 36)

본 기기에서 분리한 부품은 다시 사용할 때를 위해 소중히 보관해 주십시오.

스탠드를 세울 때

도중에서 멈추지 말고 반드시 끝까지 여십시오. 반드시 양쪽의 스탠드를 세워 주십시오.


스탠드를 닫을 때

도중에서 멈추지 말고 반드시 끝까지 닫으십시오.

⚠ 주의

스탠드를 세운 채 위쪽에서 강한 힘을 가하지 마십시오. 스탠드가 손상됩니다.

1.3 측정의 순서

본 기기 설치하기(p.7)

전원 코드 연결하기(p.35)

측정 리드 연결하기(p.36)

(필요에 따라

멀티플렉서 유닛에 커넥터를 연결)

온도센서나 방사온도계를 연결하기 (p.37)

(온도 보정 기능이나 ΔT를 사용할 때)

가는 선을 클립할 때 굵은 선을 클립할 때

(선단부에 클립하십시오) (이가 없는 부분에 클립하십시오)

외부 인터페이스와 연결하기 (필요에 따라)

- 프린터를 사용한다(p.239)
- USB, RS-232C 또는 GP-IB 인터페이스를 사용한다(p.221)
- EXT I/O를 사용한다(p.177)
- D/A 출력을 사용한다(p.175)

전원을 켜고, 스탠바이 상태를 해제한다(p.43)

측정대상 확인하기(p.48)

본 기기 설정하기*1

측정대상을 연결한기(p.51)

사용 후 전원을 끈다(p.43)

1.3 측정의 순서

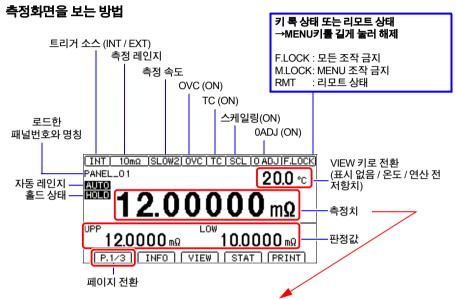
*1 영점 조정에 대해서

다음 경우는 영점 조정을 실시해 주십시오.

- 열기전력 등의 영향으로 잔류 표시가 신경 쓰이는 경우
 - →표시가 0으로 조정됩니다.(*2)
- 4단자에서의 배선(켈빈배선)이 어려운 경우
 - →2단자 배선되어 있는 잉여저항을 취소합니다.

참조: "4.3 영점 조정하기"(p.68)

"부록6 영점 조정에 대해서"(p. 부7)


*2 영점 조정을 한 경우와 안 한 경우 정확도 사양이 달라집니다. 자세히는 "제13장 사양"(p.251)을 참조하십시오. 열기전력은 OVC로도 취소할 수 있습니다.

참조: "4.8 열기전력에 의한 측정치 오프셋을 보정하기 (오프셋 전압 보정 기능: OVC)"(p.82)

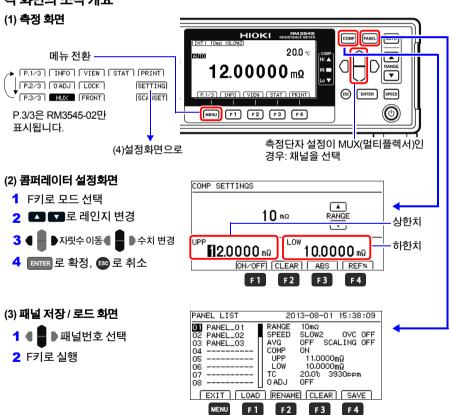
1.4 화면구성과 조작 개요

본 기기는 측정화면, 각 설정화면으로 구성되어 있습니다.

본서의 화면 설명에서는 인쇄 상 보기 쉽도록 화면을 흑백 반전시켜 기재했지만, 본 기기에서는 표 시반전은 할 수 없으므로 그 점 양해바랍니다.

측정치 이외의 표시(자세하게는 "측정이상을 확인하기"(p.55)를 참조하십시오.)

표시	내용
+OvrRng -OvrRng	오버 레인지
CONTACT TERM.A CONTACT TERM.B	콘택트 에러
	미측정 또는 측정대상이 단선되어 있다*


^{*} 전류 이상(SOURCE배선이 오픈)을 오버 레인지로 취급하고 싶은 경우는 전류 이상 출력 모드의 설정을 변경해 주십시오.(p.59)

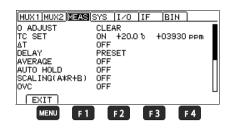
1.4 화면구성과 조작 개요

스캔기능이 자동 또는 스텝인 경우(RM3545-02만)

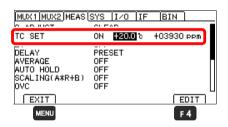
각 화면의 조작 개요

(4) 설정화면

- 1 (MEAS) [SYS] [I/O] [IF] [BIN] [MUX1] [MUX2]* 탭 이동
 - * MUX1 / MUX2는 RM3545-02만 표시 됩니다.
- 2 ◀ ▶설정항목 선택 ◀ ▶항목 이동
- 3 F키로 기능 전환 또는 수치 설정
- 4 MENU 로 측정화면으로 돌아가기


측정단자 설정이 MUX(멀티플렉서)인 경우

측정조건을 채널마다 설정


- F3 [CH-]: 채널을 변경(감소)
- F 4 [CH+]: 채널을 변경(증가)

<수치 설정 방법>

- 1 F4 로 수치 편집할 수 있게 한다
- 2 ◀ ▶자릿수이동 ◀ ▶수치 변경
- 3 ENTER 로 결정, 🚳 로 취소

1.4 화면구성과 조작 개요

설정 일람

화면		설정 및 키	개요	참조
10-12		COMP	콤퍼레이터 기능	(p.100)
		PANEL	패널 저장 • 로드	
		AUTO	추저 케이크	(n.40)
		▲▼(RANGE)	- 측정 레인지	(p.49)
		SPEED	측정 속도	(p.50)
측정화면(P.1	,	INFO (F1)	측정조건 표시	(p.54)
(RM3545-02	는 P.1/3)	VIEW (F2)	측정화면 표시 전환	(p.52)
		STAT (F3)	통계 연산 결과 표시	(p.111)
		STOP (F3) *2	스캔정지	
		PRINT (F4)	인쇄	(p.241)
측정화면 (P.	2/2)	0 ADJ (F2)	영점 조정	(p.68)
(RM3545-02	는 P.2/3)	LOCK (F3)	키록	(p.126)
		SETTING (F4)	설정화면으로 이동	
측정화면 (P.	3/3) *2	FRONT (F1)	멀티플렉서 사용	
		MUX (F2)	정면 측정단자 사용	(p.151)
		SCANSET (F3)	스캔기능	
설정화면	멀티플렉서	CH	각채널의 사용	
(SETTING)	채널 설정 화면	TERM	각 채널의 단자	(p.154)
	(MUX1) *2	INST	각 채널의 측정기기	
		0ALL	각 채널의 스캔	
		OALL	영점 조정 설정	(p.164)
		0ADJ	각 채널의 영점 조정 상태	
	멀티플렉서	SPD	각 채널의 측정 속도	
	기본 측정화면 (MUX2) ^{*2}	RANGE	각 채널의 레인지	
	(IVIOXZ)	UPP / REF	각 채널의 콤퍼레이터 설정	(p.158)
		LOW%	그 깨르의 다쒸네이니 글이	
		PASS	각 채널의 PASS조건	

	화면	설정 및 키	개요	참조
설정화면	측정 설정화면	0 ADJUST	영점 조정 clear	(p.71)
(SETTING)	(MEAS) *3	TC SET	온도 보정	(p.75)
		ΔΤ		
		R0, T0	온도 환산	(p.116)
		k		
		DELAY	딜레이	(p.84)
		AVERAGE	에버리지	(p.73)
		AUTO HOLD	측정치 홀드하기	(p.60)
		SCALING(A*R+B)		
		A:	_ - 스케일링	(p.77)
		B:		u ,
		UNIT:		
		OVC	오프셋 전압 보정 기능 (OVC)	(p.82)
		LOW POWER	저전력 측정(LP)	(p.64)
		MEAS CURRENT	전류 전환	(p.66)
		ΩDIGITS	표시 자릿수 설정	(p.81)
		CURR ERROR MODE	전류 이상 출력 포맷	(p.59)
		CONTACT CHECK	콘택트 체크 기능	(p.88)
		CONTACT IMPRV	접촉 개선 기능	(p.90)
		100MΩ PRECISION	100MΩ 고정밀도 모드	(p.96)
	시스템 설정화면 (SYS)	TERMINAL *2	측정 단자 설정	
		WIRE *2	멀티플렉서 측정 방식	(= 400)
		SCAN MODE *2	스캔기능	(p.139)
		FAIL STOP *2	스캔시 FAIL 정지	
		UNIT TEST *2	Z3003 유닛 테스트	(p.167)
		STATISTICS	통계 연산 기능	(p.112)
		TEMP INPUT		
		ANALOG SET1	온도센서 설정	(p.37)
		ANALOG SET2		
		CALIBRATION	셀프 캘리브레이션	(p.92)
		KEY CLICK	조작음 설정	(p.128)
		COMP BEEP Hi		
		IN	피되으 서저	
		Lo	─ 판정음 설정 _ (PASS/FAIL는 RM3545-02만)	(p.105)
		PASS	(I AOO/I AILE ((VI))	
		FAIL		
		PANEL LOAD 0ADJ	영점 조정값 로드	(p.122)
		CONTRAST	콘트라스트 설정	(p.131)
		BACK LIGHT	백라이트 휘도 설정	(p.132)
		POWER FREQ	전원 주파수 설정	(p.129)
		CLOCK	시계 설정	(p.133)

1.4 화면구성과 조작 개요

화면		설정 및 키	개요	참조
설정화면	EXT I/O 설정화면	TRIG SOURCE	트리거 소스	(p.209)
(SETTING)	(I/O)	TRIG EDGE	트리거 신호 논리	(p.211)
		TRIG / PRINT FILT	트리거 / 프린트 필터 기능	(p.213)
		EOM MODE	EOM 신호 설정	(p.215)
		JUDGE / BCD MODE	EXT I/O 출력 모드	(p.217)
		EXT I/O TEST	EXT I/O 테스트	(p.218)
	통신 인터페이스	INTERFACE	인터페이스 설정	(p.223)
	설정화면(IF)	SPEED		
		GP-IB *1	- 통신	(p.221)
		DATA OUT	<u>800</u>	(p.221)
		CMD MONITOR		
		PRINT INTRVL		
		PRINT COLUMN	인쇄	(p.239)
		STAT CLEAR		
	BIN 설정화면(BIN)	BIN	BIN 측정 설정	(p.108)

^{*1} RM3545-01만

^{*2} RM3545-02만

^{*3} 멀티플렉서 사용시는 "MEAS" 옆에 선택되어 있는 채널번호가 표시됩니다.

1.5 측정대상 확인하기

적절한 저항측정을 위해 측정대상에 따라 측정조건을 변경할 필요가 있습니다. 아래 표의 권장 예를 참고해 본 기기 설정을 하고 측정을 시작하십시오.

	권장 설정 (굵은 글자는 초기설정에서 변경)					
측정대상	저전력 (p.64)	측정전류 (p.66)	TC/ ΔT (p.75)(p.116)	OVC (p.82)	콘택트 체크 (p.88)	
모터, 솔레노이드, 초크코일, 변압기						
	OFF	High	TC	OFF	ON	
신호용 접점 와이어 하네스, 커넥터, 릴레이 접점, 스위치	ON	-	тс	-	OFF *3	
전력용 접점 와이어 하네스, 커넥터, 릴레이 접점, 스위치	OFF	High	тс	ON	ON	
퓨즈, 저항기 	OFF	Low *1	-	ON	ON	
도전성 도료, 도전성 고무	OFF	High	-	OFF	OFF	
기타, 일반 저항측정 히터, 전선, 용접부	OFF	High	*2	ON	ON	
온도상승시험 모터, 초크코일, 변압기	OFF	High	ΔΤ	OFF	ON	

^{*1} 정격전력에 여유가 있는 경우는 High를 선택

주의 사항

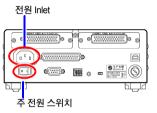
상용전원 변압기를 외부 트리거로 측정하는 경우, 딜레이 설정 프리셋에서는 측정할 수 없습니다. 딜 레이를 충분히 길게 하거나 내부 트리거로 측정하십시오.(p.84)

^{*2} 측정대상의 온도 의존성이 큰 경우에는 온도보정을 사용

^{*3} 허용인가 전압에 여유가 있는 경우에는 ON을 선택

측정 전 준비

제 2 장


본 기기를 설치 • 연결하기 전에, "사용 시 주의사항"(p.6)을 잘 읽어 주십시오. 랙 마운트에 대해서는 "부록18 랙마운트"(p. 부36)를 참조하십시오.

2.1 전원 코드 연결하기

전원을 끈 후 전원 코드를 꽂거나 뽑아 주십시오.

뒷면

- 본 기기의 주 전원 스위치(뒷면)가 OFF(◯)로 되어 있는 것을 확인합니다.
- 전원 전압이 일치하는 것을 확인하고, 전원 코드를 전원 Inlet에 연결합니다.
- 전원 코드의 삽입플러그를 콘센트에 연결합니다.

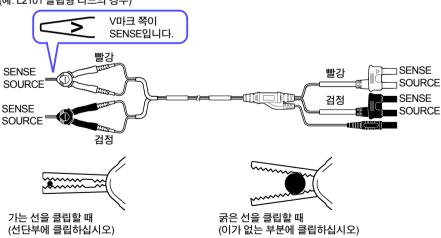
전원이 켜진 상태에서 전원 공급이 차단되고(브레이커 차단 등), 다음에 전원을 공급한 경우는 스탠바이 키를 누르지 않 아도 기동합니다.

2.2 측정 리드 연결하기

측정단자에 부속 또는 당사 옵션의 측정 리드를 연결합니다. 측정 리드를 연결하기 전에, "사용 시 주의사항"(p.6)를 잘 읽어 주십시오. 당사 옵션에 대해서는 "옵션에 대해서"(p.3)를 참조해 주십시오.

주의 사항 측정 리드(옵션)는 Hioki 제품을 사용하십시오.

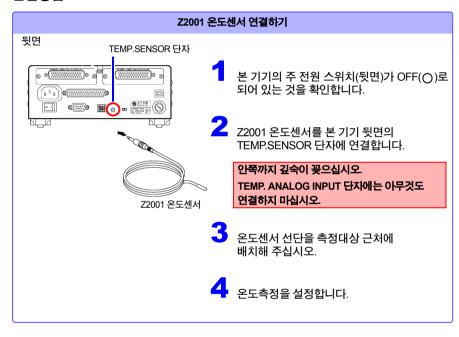
연결방법


측정 리드 연결하기

빨간색 플러그를 SOURCE A단자와 SENSE A단자에 , 검은색 플러그를 SOURCE B단자와 SENSE B단자 에, 가드 플러그를 GUARD 단자에 연결합니다.

측정 리드에 대해서

(예: L2101 클립형 리드의 경우)


주의 사항 측정 리드를 자체제작, 연장하는 경우는 "부록14 측정 리드를 자체제작하기, 멀티플렉서에 배선하기"(p. 부30)를 참조해 주십시오.

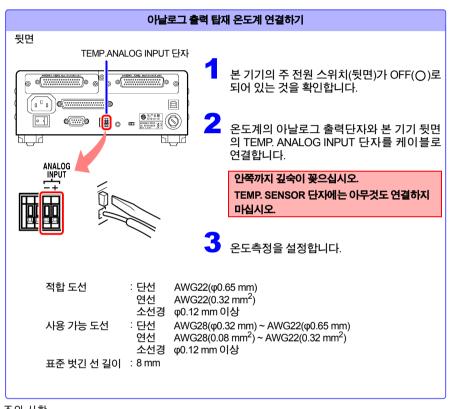
2.3 Z2001 온도센서나 아날로그 출력 탑재 온도계를 연결하기(TC, ΔT를 사용하는 경우)

Z2001 온도센서 연결하기


온도센서를 연결하기 전에, "사용 시 주의사항"(p.6)을 잘 읽어 주십시오.

연결방법

2.3 Z2001 온도센서나 아날로그 출력 탑재 온도계를 연결하기 (TC, ΔT 를 사용하는 경우)


전원을 투입한 뒤, 온도측정 설정이 올바른지 확인하십시오, 필요하면 변경하십시오.

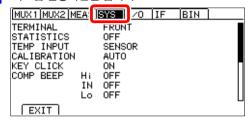
아날로그 출력 탑재 온도계 연결하기

본 기기에 아날로그 출력 탑재 온도계를 연결하여 온도를 측정할 수 있습니다. 온도계를 연결하기 전에 "사용 시 주의사항"(p.6)을 잘 읽어 주십시오.

연결방법

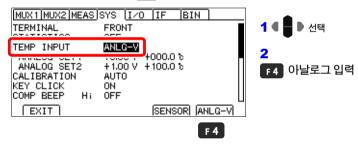
주의 사항

4 ~ 20 mA 출력 온도계인 경우는 50 Ω 정도의 션트저항을 + / – 단자간에 연결해 전압으로 변환하고 나서 연결하십시오. 50 Ω 을 연결한 경우의 기준전압 (V_1 , V_2)의 설정은 V_4 : 0.20 V, V_2 : 1.00 V가 됩니다

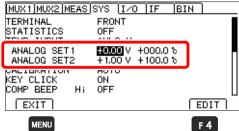

.

2.3 Z2001 온도센서나 아날로그 출력 탑재 온도계를 연결하기 (TC, ΔT 를 사용하는 경우)

전원을 투입한 뒤, 온도측정 설정이 올바른지 확인하십시오. 필요하면 변경하십시오.



2 시스템 설정화면을 엽니다.



TEMP INPUT을 선택하고 F4 (ANLG-V)를 누릅니다.

4 2점의 기준전압과 그에 대응하는 기준온도를 설정합니다.

(기준전압 V₁, V₂과 기준온도 T₁, T₂ 각각 **1 ~ 3**의 순서로 설정합니다)

1 ◀ ■ ▶ ◀ ■ ▶ 설정할 항목에 커서를 이동 F4 로 수치 편집할 수 있게 한다

2 ◀ ■ ▶ 자릿수이동 ■ ▶ 수치 변경 좌우 커서 키로 설정하고 싶은 자릿수에 커서를 이동 상하 커서 키로 수치를 변경

3 ENTER 확정

(🙉 취소)

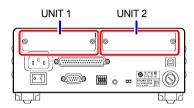
설정범위 기준전압 (V₁, V₂): 00.00 ~ 02.00 V(초기설정 V₁: 0 V, V₂: 1 V) 기준온도 (T₁, T₂): -99.9 ~ 999.9 ℃(초기설정 T₁: 0 ℃, T₂: 100 ℃)

5 측정화면으로 돌아갑니다.

MENU 측정화면으로 돌아가기

표시치는 다음 연산식으로 계산합니다.

$$\frac{T_2-T_1}{V_2-V_1}$$
 • (입력전압) + $\frac{T_1V_2-T_2V_1}{V_2-V_1}$



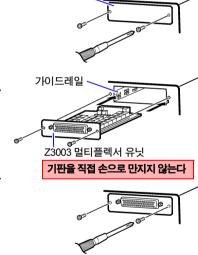
2.4 멀티플렉서 유닛 장착하기

멀티플렉서 유닛을 사용하는 경우는 Z3003 멀티플렉서 유닛을 장착하십시오. 멀티플렉서 유닛을 연결하기 전에 "사용 시 주의사항"(p.6)을 잘 읽어 주십시오.

멀티플렉서 유닛 장착하기

뒷면

준비물: 십자 드라이버


- 1 본 기기의 주 전원 스위치를 끊고, 코드· 리드선 종류를 분리합니다.
- 2 2개의 고정나사를 십자 드라이버로 분리하고, 블랭크 판넬을 분리합니다.
- 3 멀티플렉서 유닛의 방향에 주의하여 안쪽까지 깊숙이 꽂으십시오. 가이드레일에 따라 서 꽂으십시오.

유닛을 끼워넣을 때는 대전 방지 장갑을 사용하고 동시에 정전기 대책(정전기 대책용 손목끈 등을 사용)을 하실 것을 권장합니다.

설 멀티플렉서 유닛의 2개의 고정나사를 십자 드라 이버로 확실하게 조입니다.

장착 UNIT번호와 맞도록 설정하십시오.

참조: "채널의 핀 할당을 커스터마이즈하기"(p.152)

블랭크 판넬

주의 사항

멀티플렉서 유닛을 1유닛만 사용하는 경우는 UNIT1, UNIT2 어느 쪽에 장착해도 상관없습니다.

멀티플렉서 유닛 분리하기

본 기기의 주 전원 스위치를 끄고, 코드 • 리드선 종류를 분리하고나서 상기의 역 순서대로 멀티플 렉서 유닛을 분리하고 블랭크 판넬을 장착합니다.

2.5 전원 켜기, 끄기

주 전원 스위치로 전원 켜기

뒷면의 주 전원 스위치를 ON(▮)으로 합니다.

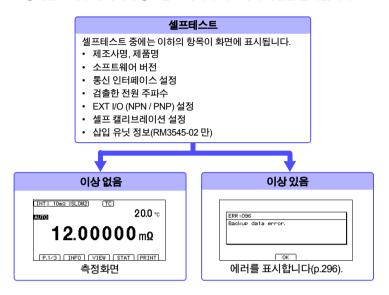
스탠바이 상태가 해제된 상태에서 주 전원 스위치를 OFF로 한 뒤, 주 전원 스위치를 ON으로 하면 스탠바이 상태는 자동적으로 해제됩니다.

전원 ON

주 전원 스위치로 전원 끄기

뒷면의 주 전원 스위치를 OFF (○)로 합니다.

전원 OFF 🔵


스탠바이 상태를 해제하기

 스탠바이 키를 누릅니다.
 (스탠바이 키가 적색에서 녹색 점등으로 바뀝니다.)

2.5 전원 켜기, 끄기

스탠바이 해제 후, 셀프테스트(기기의 자가진단)를 시작합니다. 셀프테스트 중에는 표시부에 이하의 정보를 표시하여 하드웨어 확인을 실시합니다.

주의 사항

Z3003 멀티플렉서 유닛 테스트는 기동시의 셀프테스트에서는 실시하지 않습니다.

참조: "8.6 멀티플렉서 유닛의 테스트를 실행하기 "(p.167)

측정을 시작하기 전에

정밀도가 높은 측정을 하기 위해서 전원을 켠 후 60분 이상 워밍업을 실시해 주십시오. SOURCE 단자는 퓨즈에 의해 보호되고 있습니다. 퓨즈가 단선된 경우에는 "Blown FUSE."라고 표 시되고 저항치를 측정할 수 없습니다. 그 경우에는 퓨즈를 교체하십시오.

참조: "14.2 측정회로 보호용 퓨즈의 교체 "(p.299)

측정조건은 전회 전원을 껐을 때의 조건으로 설정됩니다(백업).

스탠바이 상태로 하기

스탠바이 키를 누릅니다.(스탠바이 키가 녹색에서 적색 점등으로 바뀝니다)

전원 코드를 전원 Inlet에서 분리하면 스탠바이 키는 불이 꺼집니다. 다시, 전원을 켜면 전원을 끄기 직전의 상태로 기동합니다.

전원이 켜진 상태에서 전원 공급이 차단되고(브레이커 차단 등), 다음에 전원을 공급한 경우는 스 탠바이 키를 누르지 않아도 기동합니다.

2.6 측정 전 점검

점검 완료

사용하기 전에 보관이나 수송에 의한 고장이 없는지, 점검과 동작 확인을 하신 후 사용하십 시오. 고장이 확인된 경우는 당사 또는 대리점으로 연락 주십시오.

1 주변기기의 점검

기본 측정

제 3 장

측정하기 전에 "사용 시 주의사항"(p.16)을 잘 읽어 주십시오.

이 장에서는 본 기기를 사용하는데 필요한 기본적인 조작방법에 대해서 설명합니다.

- "3.1 측정대상 확인하기"(p.48)
- "3.2 측정 레인지 설정하기"(p.49)
- "3.3 측정 속도 설정하기"(p.50)
- "3.4 측정대상에 측정 리드 연결하기"(p.51)
- "3.5 측정치 확인하기"(p.52)

측정조건의 커스터마이즈에 대해서는 "제4장 측정조건의 커스터마이즈"(p.63)를 참조해 주십시 오.

3.1 측정대상 확인하기

적절한 저항축정을 위해 측정대상에 따라 측정조건을 변경할 필요가 있습니다. 이래 표의 권장 예를 참고해 본 기기 설정을 하고 측정을 시작하십시오.

굵은 글자는 초기설정에서 변경

	권장 설정						
측정대상	저전력 (p.64)	측정전류 (p.66)	TC / ΔT (p.75)(p.116)	OVC (p.82)	콘택트 체크 (p.88)		
모터, 솔레노이드, 초크코일, 변압기							
	OFF	High	тс	OFF	ON		
신호용 접점 와이어 하네스, 커넥터, 릴레이 접점, 스위치	ON	-	тс	-	OFF *3		
전력용 접점 와이어 하네스, 커넥터, 릴레이 접점, 스위치	OFF	High	тс	ON	ON		
퓨즈, 저항기 	OFF	Low *1	-	ON	ON		
도전성 도료, 도전성 고무	OFF	High	-	OFF	OFF		
기타, 일반 저항측정 히터, 전선, 용접부	OFF	High	*2	ON	ON		
온도상승시험 모터, 초크코일, 변압기	OFF	High	ΔΤ	OFF	ON		

- *1 정격전력에 여유가 있는 경우는 High를 선택
- *2 측정대상의 온도 의존성이 큰 경우에는 온도보정을 사용
- *3 허용인가 전압에 여유가 있는 경우에는 ON을 선택

주의 사항

상용전원 변압기를 외부 트리거로 측정하는 경우, 딜레이 설정 프리셋에서는 측정할 수 없습니다. 딜 레이를 충분히 길게 하거나 내부 트리거로 측정하십시오.(p.84)

3.2 측정 레인지 설정하기

측정 레인지를 선택합니다. 자동선택(자동 레인지)도 할 수 있습니다.

수동 레인지로 하기

사용할 레인지를 선택합니다.(AUTO 소등)

누를 때마다 소수점의 위치와 단위가 바뀝니다.

자동 레인지로 하기

AUTO

수동 레인지 상태에서 누릅니다.(AUTO 점등) 최적의 측정 레인지를 자동으로 선택합니다.

자동 레인지에서 수동 레인지로 하고 싶을 때는

다시 시대를 누릅니다. 선택되어 있는 레인지로 수동 레인지가 됩니다.

주의 사항

- 콤퍼레이터 기능 및 BIN 측정기능을 ON으로 하면 레인지가 고정되어 변경할 수 없게 됩니다 (자동 레인지로도 전환할 수 없습니다). 레인지를 변경하는 경우는 콤퍼레이터 기능 및 BIN 측정 기능을 OFF로 하거나, 콤퍼레이터 설정 및 BIN 번호 설정 중에 레인지를 변경하십시오.
- 모터나 변압기, 코일 등 측정대상에 따라서는 자동 레인지가 안정되지 않는 경우가 있습니다. 그 때는 수동으로 레인지를 지정하거나 딜레이 시간을 길게 설정 하십시오.

李몄":"4.9 측정 개시까지의 지연시간 설정하기 (딜레이 기능)"(p.84)

측정대상의 전력은 각 레인지의 측정범위 내라면 저항치×(측정전류)²가 됩니다. 측정범위를 넘으면 최대 개방전압×측정전류가 되는 경우가 있습니다. 측정 레인지를 확인하고나서 측정대상을 연결하십시오. 측정전류 High의 경우, 100 Ω 이하의 저항 레인지에서는 측정대상에 큰 전력이 인가되는 경우가 있습니다. 특히 100 mΩ 레인지 이하(측정전류가 1 A가 되는 레인지)에서는 최대 2 W 정도의 전력이 인가될 가능성이 있습니다. 측정 레인지, 전류 전환을 확인하고나서 측정대상을 연결하십시오.

참조: "4.2 측정전류 전환하기 (100 mΩ ~ 100 Ω 레인지)"(p.66)

- 망가지기 쉬운 소자를 측정하는 경우는 저전력 측정기능으로 측정하십시오.
 참조: "4.1 저전력 저항측정으로 전환하기"(p.64)
- 각 레인지의 측정 정확도는 "저항 측정 정확도"(p.252)를 참조해 주십시오.
- 트리거 소스 INT의 경우, 콘택트 에러 시(측정대상 미접속 시)에 전류를 정지합니다. 한편, 트리거 소스 INT에서 콘택트 체크 기능 OFF인 경우에는 측정대상 미접속 시에도 측정전류를 항상 인가합니다. 때문에 측정대상에 연결한 순간에는 돌입전류가 흐릅니다(예: 측정전류 1 A의 레인지에서 순저항을 측정한 경우, 최대 5 A, 수속(収束)시간 0.5 ms). 망가지기 쉬운 소자를 측정하는 경우는 콘택트 체크를 ON으로 하거나, 측정전류가 작은 레인지를 사용하십시오. 단, 콘택트 체크를 ON으로 해도 채터링이 있는 경우에는 돌입전류를 완전히 막을 수는 없습니다.
- 멀티플렉서에서 2선식으로 설정한 경우는 10 Ω 레인지 이하는 사용할 수 없습니다.

3.3 측정 속도 설정하기

측정 속도를 FAST, MED(MEDIUM), SLOW 1, SLOW2의 4단계로 변경할 수 있습니다. FAST보다도 MED(MEDIUM), SLOW1, SLOW2 쪽이 측정 정밀도가 높으며 외부 환경의 영향을 잘 받지 않습니다. 외부 환경의 영향을 받기 쉬운 경우는 측정대상 및 측정 리드를 충분히 실드하고 케이블을 트위스트해 주십시오.

李몄":"부록9 노이즈 대책에 대해"(p. 부20)

SPEED

누를 때마다 측정 속도가 바뀐니다.

주의 사항

측정과 측정 사이에 약 5 ms 간의 셀프 캘리브레이션을 실행합니다. 측정 간격을 짧게 하고 싶은 경우에는 셀프 캘리브레이션을 수동 설정으로 하십시오.

李몄":"4.12 측정 정밀도를 유지하기 (셀프 캘리브레이션 기능)"(p.92)

적분시간(단위: ms) (검출전압의 데이터 취득 시간)

LP	레인지	FAST		MEDIUM		SLOW1	SLOW2	
	내신지	50 Hz	60 Hz	50 Hz	60 Hz	SLOWI	OLOVVZ	
OFF	1000 kΩ 이하	0.3*		20.0	16.7	100	200	
OII	10 MΩ 이상	20.0	16.7	20.0	16.7	100	200	
ON	전 레인지	20.0	16.7	40.0	33.3	200	300	

OVC가 ON일 때는 적분을 2회 실행합니다. LP ON일 때는 OVC ON 고정이 됩니다. LP가 ON이고 측정 속도가 SLOW2인 경우는 OFF 설정이라도 평균화 2회가 됩니다.

* 측정단자가 MUX인 경우 10 mΩ 레인지만 1.0 ms

참조: "13.1 본체 사양"(p.251)

트리거 소스 INT 그리고 연속측정 ON(프리런)일 때의 최단 측정 시간

LP OFF(단위: ms) 허용차 ±10%±0.2 ms

•	,						
레인지	FAST		MEDIUM		SLOW1	SLOWS	
데인시	50 Hz	60 Hz	50 Hz	60 Hz	OLOWI	OLOWZ	
1000 kΩ 이하	1.0*		20.7	17.4	101	201	
10 MΩ 이상	20.7	17.4	20.7	17.4	101	201	

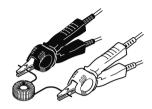
LP ON(단위: ms) 허용차 ±10%±0.2 ms OVC ON인 경우만

CI (E11:113) 018X1 1107010:2113 010 011E 8 FE							
레인지	FA	ST	MEDIUM		SLOW1	SLOW2	
네근지	50 Hz	60 Hz	50 Hz	60 Hz	OLOWI	OLOWZ	
1000 mΩ	71	65	111	98	431	631	
10 Ω	111	105	151	138	471	671	
100 Ω	111	105	151	138	471	671	
1000 Ω	113	107	153	140	473	673	

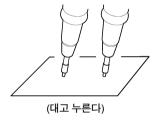
최단조건

딜레이: 0 ms. ON. OVC: OFF. 에버리지: OFF.

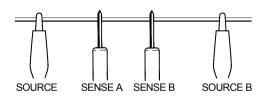
셀프 캘리브레이션: MANUAL, 접촉 개선: OFF, 스케일링: OFF


측정치 표시 전환: 없음

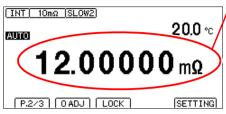
* 측정단자가 MUX인 경우 10 mΩ 레인지만 1.7 ms


3.4 측정대상에 측정 리드 연결하기

측정하기 전에 "사용 시 주의사항"(p.6)을 잘 읽어 주십시오.


L2101의 예

L2102의 예



L2104의 예

SENSE단자는 SOURCE단자보다 안쪽에 배치

3.5 측정치 확인하기

저항치가 표시됩니다.

- 측정치 이외가 표시될 때는 "측정이상을 확인 하기"(p.55)를 참조하십시오.
- 저항 이외의 측정치로 환산하고 싶은 경우는 이하를 참조해 주십시오.

참조: "5.4 온도상승시험하기(온도 환산 기능 (ΔΤ))"(p.116)

참조: "4.6 측정치 보정하기, 저항치 이외의 물리 량으로 표시하기(스케일링 기능)"(p.77)

주의 사항


0 Ω 부근을 측정하고 있으면 측정치가 마이너스가 되는 경우가 있습니다. 그 이외의 경우에 측정 치가 마이너스가 되는 경우는 다음을 확인하십시오.

- SOURCE 선 또는 SENSE 선의 결선이 반대로 되어 있다.
 - →올바르게 배선해 주십시오.
- 영점 조정을 한 뒤 접촉저항이 작아졌다.
 - →다시 영점 조정해 주십시오.
- 스케일링 연산 결과가 마이너스가 되어 있다.
 - →스케잌링 설정을 변경해 주십시오

표시를 전환하기

측정화면에 표시할 정보를 변경할 수 있습니다.

온도와 연산 전의 측정치를 표시하기

표시 없음 / 온도 표시 / 연산 전의 측정치로 전환됩니다.

李咒":"표시 예"(p.53)

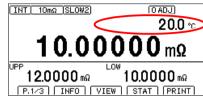
1 MENU 기능 메뉴를 P.1/3으로 전환

2 _{F2} [VIEW] 측정화면을 전환

표시 예

연산 전의 측정치에 대해서는 설정에 따라서 표시되는 값이 바뀝니다.

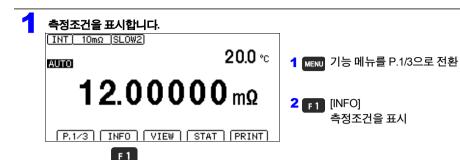
(TC연산 전의 값: TC가 ON인 경우)


Rt: TC 연산 전의 저항측정치

(REF% 연산 전의 값: 콤퍼레이터 설정이 REF%에서 스케일링이 OFF인 경우)

R: 저항측정치(상대연산 전)

(온도 표시)


(스케일링 연산 전의 값 : 스케일링이 ON인 경우)

(REF% 연산 전의 값: 콤퍼레이터 설정이 REF%에서 스케일링이 ON인 경우)

측정조건이나 설정을 일람 표시하기

2 측정조건을 확인합니다.

	¬-1·			
INFO	Ver. 1.00	No.	0000	00000
RANGE 10mΩ(1A) SPEED SLOW2 OVC OFF A.HOLD OFF TC 20.05 3930	AVG OFF DELAY O.Oms CALIB AUTO		TRIG I/O I/F	INT NPN PRINT
O ADJ OFF SCALE OFF LINE AUTO(60Hz:)		PR	ТИТ

인터페이스의 종류를 프린터로 설정한 경우는 [4]로 설정을 인쇄할 수 있습니다.

측정화면으로 돌아갑니다.

MENU 측정화면으로 돌아가기

주의 사항

스캔기능이 자동 또는 스텝인 경우는 측정조건이나 설정 일람은 표시할 수 없습니다.

F 4

측정이상을 확인하기

측정이 올바르게 이루어지지 않은 경우, 화면에 측정이상을 나타내는 표시가 뜨고, EXT Ⅳ이의 ERR 신호를 출력합니다(오버 레인지나 미측정일 때는 ERR 신호가 출력되지 않습니다). 또한 전류 이상일 때의 동작은 설정에서 변경할 수 있습니다.

참조: "부록15 측정 이상 시의 확인방법"(p. 부33)

오버 레인지

표시 +OvrRna

-OvrRng

다음 2가지 경우에 표시합니다.

- (1) 측정범위나 표시범위를 넘었을 때 표시합니다.^(*1)
 - (2) 측정이상^(* 2)(전류 이상 모드 설정이 "오버 레인지"인 경우)

SOURCE A단자에서 SOURCE B단자로 측정전류를 흘려보낼 수 없는 상태 온도 측정도 마찬가지로 측정범위를 넘으면 OvrRng표시가 됩니다.

+OvrRng 표시 시의 콤퍼레이터 판정은 "Hi", - OvrRng 표시 시의 콤퍼레이터 판정은 "Lo"가 됩니다. 외부로 ERR신호는 출력되지 않습니다.

콘택트 에러

참조: 블록도 (p.부1)

표시 CONTACT TERM.A / B

(스캔기능 자동 또는 스텝인 경우는 CONTACT A/CONTACT B, 통신 모니터 기능이 ON인 경우는 CA/CB라고 표시됩니다)

SENSE A-SOURCE A 단자 간 및 SENSE B-SOURCE B 단자 간의 저항치를 측정하여 약 50 Ω 이상이 된 경우에 에러 표시를 합니다.

이런 에러 상태가 계속되는 경우는 프로브의 마모, 케이블의 단선을 생각할 수 있습니다. 측정대상이 도전성 도료, 도전성 고무 등 SENSE–SOURCE 간의 저항치가 큰 경우는 항상 에러가 되어 측정할 수 없습니다. 그 경우는 콘택트 체크 기능을 OFF로 하십시오.

李몄":"4.10 접촉불량이나 접촉상태를 확인하기 (콘택트 체크 기능)"(p.88)

전류 이상 또는 미측정

표시

다음 2가지 경우에 표시합니다. "-----" 표시인 경우는 콤퍼레이터 판정은 실행하지 않습니다.

- (1) 전류 이상^(*2) (전류 이상 모드 설정이 "전류 이상"인 경우) SOURCE A단자에서 SOURCE B단자로 측정전류를 흘려보낼 수 없는 상태
- (2) 측정조건을 변경하고나서 한번도 측정이 실시되지 않았다.

멀티플렉서 채널 에러

표시 SW.ERR 멀티플렉서 릴레이의 핫 스위칭 방지 기능 이상입니다. 측정대상에서 오는 전류가 작아지지 않기 때문에 릴레이를 전환할 수 없습니다. 변압기 등은 역기전력의 영향을 받고 있을 가능성이 있으므로 딜레이를 길게 설정하십시오. 또 측정단자에는 전류와 전압을 가하지 마십시오.

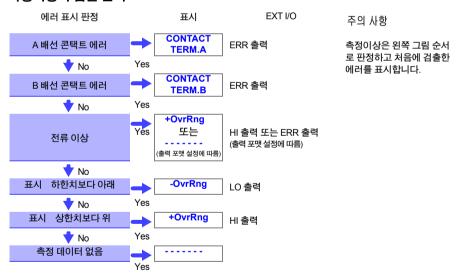
李멌":"4.9 측정 개시까지의 지연시간 설정하기 (딜레이 기능)"(p.84)

표시 NO UNIT

멀티플렉서 유닛을 검출할 수 없습니다. 유닛의 삽입을 확인하십시오.

삽입되지 않는 유닛은 채널에 할당하지 마십시오.

온도센서 미연결


표시 --.-°C 온도센서가 연결되어 있지 않기 때문에 온도측정을 할 수 없습니다. TC나 Δ T를 사용하지 않는 경우는 온도센서를 연결할 필요가 없습니다. 온도를 표시하고 싶지 않은 경우는 표시를 전환하십시오.

李였":"표시를 전환하기"(p.52)

표시 예: 프로브 개방상태 또는 측정대상이 오픈일 때의 표시 및 출력

전류 이상 검출 시		전류 이상 모드 설정(p.59)		
표시 및 출	돌 력	전류 이상	오버 레인지	
콘택트 체크 결과	정상 (에러 없음)	표시: COMP 램프: 무판정 EXT I/O: ERR 신호촐력	표시: + OvrRng COMP 램프: Hi EXT I/O: ERR 신호 출력 없음, HI신호 출력	
	이상 (에러)	표시: CONTACT TER COMP 램프: 무판정 EXT I/O: ERR 신호출력	M.B / CONTACT TERM.A	

측정이상의 검출 순서

*1 오버 레인지 검출 기능

오버 레인지로 검출되는 예

오버 검출	측정 예
측정범위를 넘었을 때	10 kΩ 레인지로 13 kΩ을 측정
측정치의 상대표시(%표시)가 표시범위(999.999%)를 넘었을 때	기준치 20 Ω으로 500 Ω(+ 2400%)을 측정
영점 조정 연신의 결과가 표시범위를 넘었을 때	1 Ω 레인지로 0.5 Ω 을 영점 조정 → 0.1 Ω 을 측정 → 연산결과 - 0.4 Ω 이 되어 표시범위를 넘는다
측정 중 A/D 컨버터 입력이 범위를 넘었을 때	외래 노이즈가 큰 환경에서 고저항 측정을 한 경우 등
측정대상에 정상적으로 전류를 흘려보낼 수 없을 때 (전류이상 모드 설정이 오버 레인지 출력일 때만)	측정대상이 오픈 불량일 때 SOURCE A 단자 또는 SOURCE B 단자가 접촉불량일 때 * 전류 이상을 " "로 표시하고 싶은 경우는, 전류 이상 모드 설정을 전류 이상으로 해주십시오.(p.59)

*2 전류이상 검출기능

전류 이상이 되는 예

- SOURCE A, SOURCE B 프로브를 개방하고 있다
- 측정대상이 단선되어 있다(오픈 워크)
- SOURCE A, SOURCE B 배선 단선, 연결 불량

주의 사항

SOURCE 배선의 저항이 다음의 값을 넘으면 전류 이상이 되어 측정할 수 없게 됩니다. 측정전류 1 A인 레인지에서는 배선저항 및 측정대상과 측정 리드와의 접촉저항을 낮게 억제하십시오.

3.5 측정치 확인하기

LP OFF

레인지	100 MΩ레인지 고정밀도 모드	전류 전환	측정전류	SOURCE B-SOURCE A (측정대상 이외) [*]
10 mΩ	-	_	1 A	1.5 Ω
100 mΩ	-	High	1 A	1.5 Ω
100 mΩ	-	Low	100 mA	15 Ω
1000 mΩ	-	High	100 mA	15 Ω
1000 mΩ	-	Low	10 mA	150 Ω
10 Ω	-	High	10 mA	150 Ω
10 Ω	-	Low	1 mA	1 kΩ
100 Ω	-	High	10 mA	100 Ω
100 Ω	-	Low	1 mA	1 kΩ
1000 Ω	-	-	1 mA	1 kΩ
10 kΩ	-	-	1 mA	1 kΩ
100 kΩ	-	-	100 μΑ	1 kΩ
1000 kΩ	-	-	10 μΑ	1 kΩ
10 ΜΩ	-	-	1 μΑ	1 kΩ
100 ΜΩ	ON	_	100 nA	1 kΩ
100 MΩ	OFF	-	1 µA 이하	1 kΩ
1000 ΜΩ	OFF	-	1 µA 이하	1 kΩ

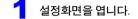
LP ON

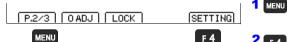
레인지	측정전류	SOURCE B-SOURCE A (측정대상 이외) [*]
1000 mΩ	1 mA	2 Ω
10 Ω	500 μA	5 Ω
100 Ω	50 μA	50 Ω
1000 Ω	5 μΑ	500 Ω

* Z3003 멀티플렉서 유닛을 사용하는 경우는 유닛 내부의 배선저항(릴레이 포함)과 커넥터로부터 측정대상까지의 배선저항의 합이 상기 표의 값을 넘지 않도록 하십시오.

유닛 테스트를 통해 유닛 내부의 배선저항이 1 Ω 이하임을 확인할 수 있습니다.

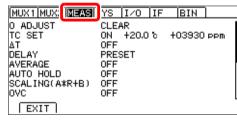
참조: "8.6 멀티플렉서 유닛의 테스트를 실행하기"(p.167)

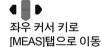

오픈 시의 측정방법을 설정하기(전류 이상 모드의 설정)

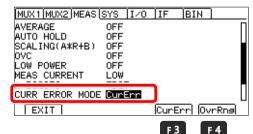

전류 이상 출력을 검출했을 때의 동작을 설정합니다.

전류 이상으로 설정한 경우에는 측정대상의 단선을 에러라고 판정하고 콤퍼레이터 판정은 무판 정이 됩니다. 오버 레인지로 설정한 경우에는 측정 리드의 단선이나 개방상태를 오버 레인지로 판 정하고 콤퍼레이터 판정은 Hi판정이 됩니다. 용도에 따라 나누어 사용하십시오.

주의 사항

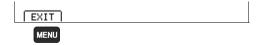

전류 이상 모드의 설정은 전 채널 공통의 설정이 됩니다.(RM3545-02 만)




- 1 MENU 기능 메뉴를 P.2/3으로 전환
- **2** F4 설정화면 표시

2 측정 설정화면을 엽니다.

3 전류 이상 모드를 선택합니다.



2

F3 전류 이상(초기설정)

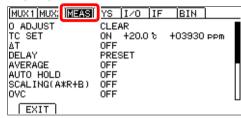
F 4 오버 레인지

4 측정화면으로 돌아갑니다.

MENU 측정화면으로 돌아가기

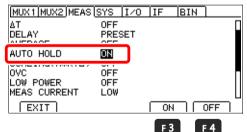
측정치 홀드하기

측정치를 확인할 경우에는 자동 홀드 기능이 편리합니다. 측정치가 안정되면 부저가 울리고 자동 으로 홀드 합니다.


주의 사항

자동 홀드 기능은 전 채널 공통의 설정이 됩니다.(RM3545-02 만)

설정화면을 엽니다.



2 측정 설정화면을 엽니다.

<mark>3</mark> 자동 흩드 기능을 ON으로 합니다.

F3 ON

F4 OFF(초기설정)

4 측정화면으로 돌아갑니다.

MENU 측정화면으로 돌아가기

5 흩드 중에는 HOLD 인디케이터가 점등합니다.

자동 홀드 해제에 대해서

일단 측정대상에서 측정 리드를 분리하여 다시 측정대상에 측정 리드를 접촉시키면 홀드는 자동적으로 해제됩니다. 레인지 및 측정 속도 변경이나 🚳 를 눌러도 홀드가 해제됩니다. 홀드가 해제되면 HOLD 인디케이터가 소등합니다.

측정조건의 커스터마이즈 제 4 장

측정하기 전에 "사용 시 주의사항"(p.16)을 잘 읽어 주십시오.

이 장에서는 좀더 고도의 측정, 정확한 측정을 하기 위한 기능에 대해서 설명합니다. 각 기능과 사용 예는 다음과 같습니다.

사용 예		기능	참조
저항치를 기준 온도에서의 값으로 환산하고 싶다		온도보정(TC)	p.75
측정의 정밀도를 올리고 싶다		영점 조정 오프셋 전압 보정 기능(OVC) 100 MΩ 레인지 고정밀도 모드	p.68 p.82 p.96
잔류 표시를 없애고 싶다		영점 조정 측정치의 자릿수 변경	p.68 p.81
2단자 배선의 잉여저항을 취소하고 싶다		영점 조정	p.68
열기전력의 영향을 보정하고 싶다	•	영점 조정 오프셋 전압 보정 기능(OVC)	p.68 p.82
측정치를 보정하고 싶다		스케일링 기능	p.77
측정을 안정시키고 싶다	•	에버리지 기능 딜레이 기능	p.73 p.84
자동 레인지를 빠르게 하고 싶다		딜레이 기능	p.84
개방 전압을 억제하고 싶다	•	저전력 저항측정	p.64
전류를 제한하고 싶다	•	저전력 저항측정 측정전류 전환	p.64 p.66
접점 표면의 상태에 가능한 한 영향을 주지않는 측정을 하고 싶다	•	저전력 저항측정	p.64
접촉불량이나 측정 케이블의 단선 상태를 검출하고 싶다	•	콘택트 체크 기능	p.88
저항 이외의 물리량(예를 들어 길이)으로 환산하고 싶다	•	스케일링 기능	p.77
프로브나 전환 릴레이의 접촉을 개선하고 싶다		접촉 개선 기능	p.90
최속으로 측정을 하고 남은 시간에 셀프 캘리브레이션을 하고 싶다		셀프 캘리브레이션 기능	p.92

4.1 저전력 저항측정으로 전환하기

저전력 저항측정에서는 개방단자 전압을 20 mV 로 억제하고. 미세한 전류로 측정합니다.

신호용 접점(와이어 하네스, 커넥터, 릴레이 접점, 스위치)을 측정하는 경우에는 저전력 저항측정 기능을 이용하면 접점의 상태를 가능한 한 바꾸지 않는 측정이 가능해집니다.

신호용 접점을 저전력 OFF로 측정하면 접점의 산화피막이 파괴되기 쉬워집니다. 접점의 산화피막이 파괴되면 조금 낮은 저항치를 나타내는 경향이 있습니다.

한편, 전력용 접점(대전류용 접점)에서는 실사용 상태에서 산화피막은 제거됩니다. 저전력 ON으로 측정하면 산화피막을 파괴하지 못하여 비교적 높은 측정치를 나타내는 경우가 있습니다.

참조: "3.1 측정대상 확인하기"(p.48)

참조: "부록12 접점저항측정에 대해서"(p.부27)

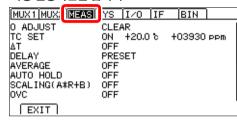
저전력 ON 에서 사용할 수 있는 레인지 및 측정전류와 개방 전압

레인지	최대 측정 범위	측정전류	개방 전압
1000 mΩ	1200.00 mΩ	1 mA	
10 Ω	12.0000 Ω	500 μA	20 mV _{MAX}
100 Ω	120.000 Ω	50 μA	20 III MAX
1000 Ω	1200.00 Ω	5 μΑ	

주의 사항

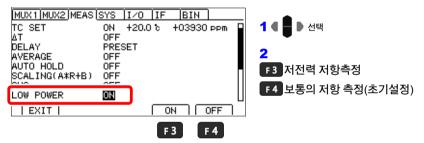
- 저전력 ON에서는 검출전압이 작아지기 때문에 외래 노이즈의 영향을 받기 쉬워집니다. 측정치가 안정되지 않는 경우에는 "부록7 측정치가 안정되지 않을 때"(p.부12) 를 참고해 노이즈 대책을 시행하십시오. 특히 유효한 대책은 다음 4가지 입니다.
 - 측정 케이블을 실드한다(실드는 본 기기의 GUARD 단자에 연결)
 - 측정 케이블을 꼬아서 합친다
 - 측정대상을 실드한다(실드는 본 기기의 GUARD 단자에 연결)
 - 측정 속도를 느리게 한다. 혹은 에버리지 기능을 이용한다
- 저전력 ON에서는 열기전력의 영향을 배제하기 위해 자동적으로 OVC ON으로 설정됩니다. 측정대상의 리액턴스 성분이 큰 경우에는 딜레이를 길게 할 필요가 있습니다.

참조: "4.8 열기전력에 의한 측정치 오프셋을 보정하기 (오프셋 전압 보정 기능: OVC)"(p.82)


참조: "4.9 측정 개시까지의 지연시간 설정하기 (딜레이 기능)"(p.84)

- 저전력 저항측정 ON이고, 측정 속도 SLOW2인 경우는 에버리지 기능이 OFF 설정이라도 측정치를
 2회 평균화하여 표시합니다. 에버리지 기능이 ON 설정일 때는 설정횟수로 평균화를 실행합니다.
- 저전력 ON에서는 접촉 개선 기능은 OFF가 됩니다.
- 저전력 ON일 때의 콘택트 체크 초기설정은 OFF입니다.

설정화면을 엽니다.



2 측정 설정화면을 엽니다.

3 저전력 저항측정 모드에서 측정할지 여부를 선택 합니다.

4 측정화면으로 돌아옵니다.

4.2 측정전류 전환하기 (100 mΩ ~ 100 Ω레인지)

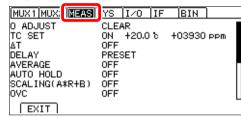
측정대상에는 저항치 × (측정전류)²의 전력이 인가됩니다. 측정전류에 의해 다음 문제가 우려되는 경우에는 측정전류를 Low로 설정하십시오.

- 측정대상이 용단된다.(퓨즈, 인플레이터)
- 측정대상이 발열하여 저항치가 변화한다.
- 측정대상이 자화(磁化)하여 인덕턴스가 변화한다.

참조: "3.1 측정대상 확인하기"(p.48)

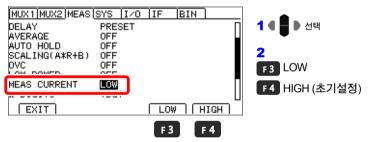
	Hi	gh	Lo)W
레인지	측정전류	최대 측정범위일 때의 전력	측정전류	최대 측정범위일 때의 전력
10 mΩ	1 A	12 mW		-
100 mΩ	1 A	120 mW	100 mA	1.2 mW
1000 mΩ	100 mA	12 mW	10 mA	120 μW
10 Ω	10 mA	1.2 mW	1 mA	12 μW
100 Ω	10 mA	12 mW	1 mA	120 μW
1000 Ω	1 mA	1.2 mW		-
10 kΩ	1 mA	12 mW	-	-
100 kΩ	100 μΑ	1.2 mW	-	-
1000 kΩ	10 µA	120 µW		-
10 ΜΩ	1 μΑ	12 µW		
100 MΩ (고정밀도 모드 ON)	100 nA	1.2 µW	-	-
100 MΩ, 1000 MΩ (고정밀도 모드 OFF)	. [41, 1 - 1 - 1	1.3 µW	-	-

주의 사항

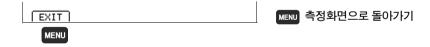

측정전류 Low에서는 검출전압이 작아지기 때문에 외래 노이즈의 영향을 받기 쉬워집니다. 측정 치가 안정되지 않는 경우에는 "부록7 측정치가 안정되지 않을 때"(p.부12)를 참고해 노이즈 대책 을 시행하십시오. 특히 유효한 대책은 다음 4가지 입니다.

- 측정 케이블을 실드한다.(실드는 본 기기의 GUARD 단자에 연결)
- 측정 케이블을 꼬아서 합친다.
- 측정대상을 실드한다.(실드는 본 기기의 GUARD 단자에 연결)
- 측정 속도를 느리게 한다. 혹은 에버리지 기능을 이용한다.

설정화면을 엽니다.



추정 설정화면을 엽니다.



3 100 mΩ 레인지의 측정전류를 선택합니다.

4 측정화면으로 돌아옵니다.

주의 사항

- 측정전류를 전환하면 영점 조정은 초기화됩니다. 다시 영점 조정을 실시하십시오.
- 트리거 소스 INT의 경우, 콘택트 에러 시(측정대상 미접속 시)에 전류를 정지합니다. 한편, 트리거 소스 INT에서 콘택트 체크 기능 OFF인 경우에는 측정대상 미접속 시에도 측정전류를 항상 인가합니다. 때문에 측정대상에 연결한 순간에는 돌입전류가 흐릅니다(예: 측정전류 1 A의 레인지에서 순저항을 측정한 경우, 최대 5 A, 수속(收束)시간 0.5 ms). 망가지기 쉬운 소자를 측정하는 경우는 콘택트 체크를 ON으로 하거나 측정전류가 작은 레인지를 사용하십시오. 단, 콘택트 체크를 ON으로 해도 채터링이 있는 경우에는 돌입전류를 완전히 막을 수는 없습니다.

4.3 영점 조정하기

다음 경우는 영점 조정을 하십시오.

- 측정의 정확도를 올리고 싶다
 - →레인지에 따라서는 영점 조정 하지 않은 경우에 가산 정확도가 있습니다.

참조: "측정 사양"(p.252)

- 열기전력 등의 영향으로 잔류 표시가 신경 쓰이는 경우
 - →표시가 0으로 조정됩니다. (*1)
- 4단자일 때 배선(켈빈배선)이 어려운 경우
 - →2단자 배선되어 있는 잉여저항을 취소합니다.
- *1 영점 조정을 한 경우와 하지 않은 경우에서 정확도 사양이 다릅니다.

자세히는 "제13장 사양"(p.251)을 참조해 주십시오.

열기전력은 OVC로도 취소할 수 있습니다(p.82).

올바른 영점 조정 방법에 대해서는 "부록6 영점 조정에 대해서"(p.부7)를 참조해 주십시오.

영점 조정하기 전에

- 한번 영점 조정한 뒤에 환경온도에 변화가 있었을 때나, 측정 리드를 바꿨을 때도 영점 조정을 해 주십시오. 단, L2102, L2103 핀형 리드 등 영점 조정이 어려운 경우에는 표준 부속인 L2101 클립형 리드 등으로 영점 조정하고 핀형 리드로 교체하고나서 측정을 하십시오.
- 사용하는 모든 레인지에서 영점 조정을 실행하십시오. 수동 레인지일 때는 현재의 레인지만, 자동 레인지인 경우는 모든 레인지에서 영점 조정을 합니다.
- 자동 레인지에서 영점 조정하는 경우, 딜레이 시간이 모자라면 정상적으로 영점 조정이 완료되지 않습니다. 이 때는 수동 레인지에서 영점 조정 하십시오.

참조: "3.2 측정 레인지 설정하기"(p.49)

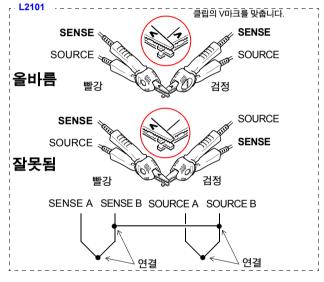
- "4.9 측정 개시까지의 지연시간 설정하기 (딜레이 기능)"(p.84)
- 영점 조정값은 전원을 꺼도 내부에 유지됩니다. 또 패널에도 저장됩니다. 패널에서 영점 조정치를 로딩하지 않는 것도 가능합니다.

참조: "6.1 측정조건 저장하기(패널 저장 기능)"(p.120)

"6.2 측정조건 로딩하기(패널 로드 기능)"(p.121)

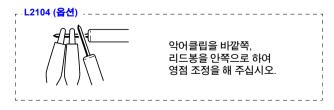
- EXT I/O의 0ADJ 신호를 ON (EXT I/O 커넥터의 ISO_COM 단자와 단락한다)으로 해도 영점 조정이 가능합니다.
- 오프셋 전압 보정 기능(OVC), 측정전류, 저전력 기능을 전환한 경우는 영점 조정이 자동으로 해제됩니다. 필요한 경우는 다시 영점 조정을 실시하십시오.
- 각 레인지 1%f.s. ~ 50%f.s.의 저항을 취소할 수 있는데, 가능한 한 1%f.s.에 들어가도록 해 주십시오. 또 100 MΩ 레인지 이상은 영점 조정할 수 없습니다.

LP	f.s.
OFF	1,000,000dgt.
ON	100,000dgt.


- 영점 조정했을 때의 저항치보다 작은 저항을 측정하면 측정치가 마이너스가 됩니다. 예) $100~\text{m}\Omega$ 레인지로 $50~\text{m}\Omega$ 을 연결하여 영점 조정
 - →30 mΩ을 측정하면, 20 mΩ이 표시된다
- 멀티플렉서 사용시는 전 채널을 스캔하여 영점 조정할 수 있습니다.

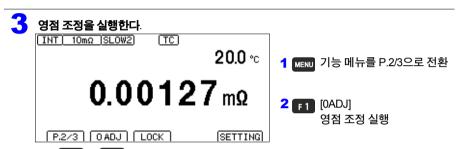
참조: "8.5 영점 조정하기 (멀티플렉서 유닛 장착 시)"(p.164)

영점 조정은 60분의 워밍업이 종료되고나서 실행하십시오.

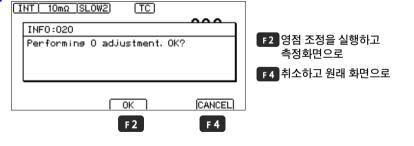

영점 조정을 실행하기

L2102, L2103 (옵션) -----

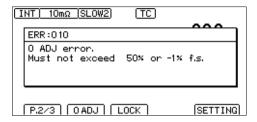
L2102, L2103은 영점 조정할 수 없으므로 영점 조정은 L2101 클립형리드 등을 사용하여 실행해 주십시오.


MENU

F 1


축정치가 ±1%f.s. 이내임을 확인합니다. 측정치가 각 레인지 50%f.s. 이하이면 영점 조정할 수 있지만, 1%f.s.을 넘는 경우에는 경고가 표시됩니다.

측정치가 표시되지 않는 경우는 측정 리드의 결선 방법이 올바른지 확인해 주십시오.



4 확인 메시지가 나오므로 확인한 뒤 측정화면으로 돌아옵니다.

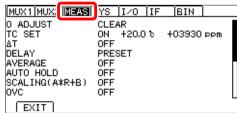
영점 조정 할 수 없을 때는

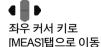
영점 조정할 수 없을 때는 다음 에러가 표시됩니다.

영점 조정을 실행하기 전에 다음 사항을 확인한 후 다시 영점 조정 해 주십시오.

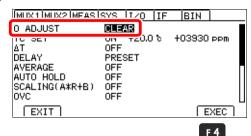
- 측정치가 각 레인지 -1%f.s. ~ 50%f.s.임을 확인하십시오.
- 자체제작 측정 리드의 경우, 배선저항이 작아지도록 해 주십시오.
- 올바르게 배선되어 있는지 확인해 주십시오.
 참조: "*2 전류 이상 검출 기능"(p.57)

주의 사항


- 자동 레인지에서 영점 조정에 실패한 경우, 모든 레인지의 영점 조정이 해제됩니다.
- 수동 레인지에서 영점 조정에 실패한 경우, 현재 레인지의 영점 조정이 해제됩니다.

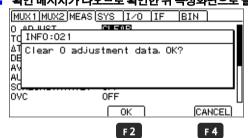

영점 조정을 해제하기

전체 레인지의 영점 조정이 해제됩니다.


측정 설정화면을 엽니다.

4.3 영점 조정하기

3 0 ADJUST를 선택합니다.



2

F4 영점 조정 해제

4 확인 메시지가 나오므로 확인한 뒤 측정화면으로 돌아옵니다.

- F2 영점 조정을 해제하고 설정화면으로
- F 4 취소하고 원래 화면으로

5 측정화면으로 돌아옵니다.

MENU 측정화면으로 돌아가기

4.4 측정치를 안정시키기(에버리지 기능)

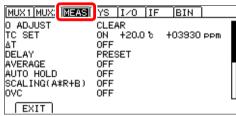
복수의 측정치를 평균하여 표시합니다. 이 기능에 의해 측정치의 편차를 줄일 수 있습니다.


내부 트리거 측정의 경우(프리런)는 이동 평균으로 연산합니다. 외부 트리거(및 :READ? 커맨드)의 경우(프리런 이외)는 단순평균이 됩니다. 통신 커맨드에 대해서는 부속 애플리케이션 디스크를 참조해 주십시오.

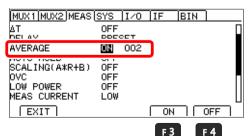
평균 횟수를 2회로 설정한 경우의 평균치(D1 ~ D6: 측정치)

	1회째	2회째	3회째
프리런(이동 평균)	(D1+D2) / 2	(D2+D3) / 2	(D3+D4) / 2
프리런 이외(단순평균)	(D1+D2)/2	(D3+D4)/2	(D5+D6) / 2

저전력 저항측정 ON이고, 측정 속도 SLOW2인 경우는 에버리지 기능이 OFF 설정이라도 내부에서 평균화 2회 실행합니다. 에버리지 기능이 ON 설정에서는 설정횟수로 평균화를 실행합니다.


설정화면을 엽니다.

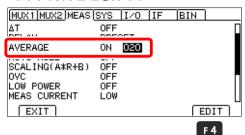
1 MENU 기능 메뉴를 P.2/3으로 전환


2 F4 설정화면 표시

2 측정 설정화면을 엽니다.

● ● ■ 좌우 커서 키로 [MEAS]탭으로 이동

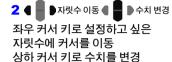
3 에버리지 기능을 ON으로 합니다.


<u>2__</u>

F3 에버리지 기능을 ON으로 한다.

F4 에버리지 기능을 OFF로 한다. (초기설정)(스텝5로)

4.4 측정치를 안정시키기(에버리지 기능)


4 에버리지 횟수를 설정합니다.

설정범위: 2회 ~ 100회 (초기설정 2회)

설정할 항목에 커서를 이동 F4 로 수치 편집할 수 있게 한다.

3 ENTER 확정

(🙉 취소)

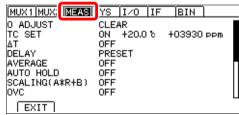
MENU 측정화면으로 돌아가기

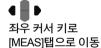
4.5 온도의 영향을 보정하기(온도 보정 기능(TC))

저항치를 기준 온도에서의 저항치로 환산하여 표시합니다.

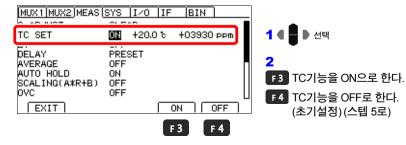
온도 보정의 원리에 대해서는 "부록4 온도 보정 기능(TC)에 대해서"(p.부4)를 참조해 주십시오. 온도 보정을 하는 경우는 온도센서 또는 아날로그 출력 탑재 온도계를 본 기기 뒷면의 TEMP. 단자 에 연결하십시오.

후였":"2.3 Z2001 온도센서나 아날로그 출력 탑재 온도계를 연결하기(TC, ΔT를 사용하는 경우)"(p.37) **후였":**"3.1 측정대상 확인하기"(p.48)

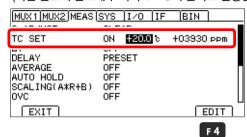

주의 사항


ΔT를 ON으로 하면 TC는 자동적으로 OFF가 됩니다.

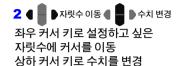
설정화면을 엽니다.



측정 설정화면을 엽니다.


3 온도 보정 기능(TC)를 ON으로 합니다.

4.5 온도의 영향을 보정하기(온도 보정 기능(TC))


기준 온도와 온도계수를 설정합니다.

(기준 온도와 온도계수 각각 1~3의 순서로 설정합니다)

설정할 항목에 커서를 이동 F4 로 수치 편집할 수 있게 한다.

3 ENTER 확정

(🚳 취소)

설정범위 기준 온도 : -10.0~99.9℃(초기설정: 20℃)

온도계수 : -99999 ~ 99999 ppm/℃(초기설정: 3930 ppm/℃)

5 측정화면으로 돌아옵니다.

MENU 측정화면으로 돌아가기

4.6 측정치 보정하기, 저항치 이외의 물리량으로 표시 하기(스케일링 기능)

측정치에 대해 보정을 거는 기능입니다. 프로빙 위치의 영향이나 측정기 간 차이를 흡수하거나 영 점 조정 대신에 임의의 오프셋을 갖게 할 수 있습니다.

그 외에도, 임의로 단위를 넣을 수 있으므로 저항 이외의 물리량(예를 들면 길이) 등으로 환산하여 표시할 수 있습니다.

스케일링은 이하의 연산식으로 이루어집니다.

$$R_s = A \times R + B$$

Rs : 스케일링 후의 값
R : 영점 조정, 온도 보정 후의 측정치
A : 게인계수 설정 범위: 0.2000×10⁻³ ~ 1.9999×10³ 설정 범위: 0 ~ ± 9×10⁹(최소 분해능 1 nΩ)

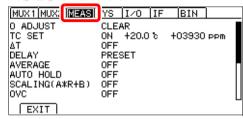
게인계수에 의해 표시나 통신 측정치, 프린터 출력의 포맷이 바뀝니다.

저전력 OFF

	게인계수						
레인지	(0.2000~1.9999) ×10 ⁻³	(0.2000~1.9999) ×10 ⁻²	(0.2000~1.9999) ×10 ⁻¹	(0.2000~1.9999) ×1(10 ⁰)	(0.2000~1.9999) ×10(10 ¹)	(0.2000~1.9999) ×10 ²	(0.2000~1.9999) ×10 ³
10 mΩ	00.000 µ	000.000 μ	0000.000 μ	00.000 00 m	000.000 0 m	0000.000 m	00.000 00
100 mΩ	000.000 μ	0000.000 μ	00.000 00 m	000.000 0 m	0000.000 m	00.000 00	000.000
1000 mΩ	0000.000 μ	00.000 00 m	000.000 0 m	0000.000 m	00.000 00	000.000 0	0000.000
10 Ω	00.000 00 m	000.000 0 m	0000.000 m	00.000 00	000.000 0	000.000	00.000 00 k
100 Ω	000.000 0 m	0000.000 m	00.000 00	000.0000	0000.000	00.000 00 k	000.000 0 k
1000 Ω	0000.000 m	00.000 00	000.000 0	000.000	00.000 00 k	000.000 0 k	0000.000 k
10 kΩ	00.000 00	000.000	000.000	00.000 00 k	000.000 0 k	0000.000 k	00.000 M
100 kΩ	000.000	000.000	00.000 00 k	000.000 0 k	0000.000 k	00.000 M	000.000 0 M
1000 kΩ	0000.000	00.000 00 k	000.000 0 k	0000.000 k	00.000 00 M	000.000 M	0000.000 M
10 MΩ	00.000 00 k	000.000 0 k	0000.000 k	00.000 M	000.000 M	0000.000 M	00.000 00 G
100 MΩ *	000.000 0 k	0000.000 k	00.000 00 M	000.000 M	0000.000 M	00.000 00 G	000.000 0 G
1000 ΜΩ	0000.0 k	00.000 M	000.00 M	0000.0 M	00.000 G	000.00 G	0000.0 G

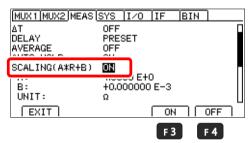
^{* 100} MΩ 레인지 고정밀도 모드가 OFF일 때는 5자리 표시

저저력 ON


		게인계수					
레인지	(0.2000~1.9999)	(0.2000~1.9999)	(0.2000~1.9999)	(0.2000~1.9999)	(0.2000~1.9999)	(0.2000~1.9999)	(0.2000~1.9999)
	×10 ⁻³	×10 ⁻²	×10 ⁻¹	×1(10 ⁰)	×10(10 ¹)	×10 ²	×10 ³
1000 mΩ	0000.00 μ	00.000 0 m	000.000 m	0000.00 m	00.000 0	000.000	0000.00
10 Ω	00.000 0 m	000.000 m	0000.00 m	00.000 0	000.000	0000.00	00.000 0 k
100 Ω	000.000 m	0000.00 m	00.000 0	000.000	0000.00	00.000 0 k	000.000 k
1000 Ω	0000.00 m	00.000 0	000.000	0000.00	00.000 0 k	000.000 k	0000.00 k

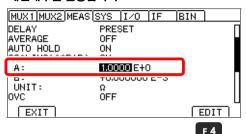
4.6 측정치 보정하기, 저항치 이외의 물리량으로 표시하기(스케일링 기능)

설정화면을 엽니다.



2 측정 설정화면을 엽니다.

3 스케일링 기능을 ON으로 합니다.



1 ◀ ■ ▶ 선택

2

- F3 스케일링 기능을 ON으로 한다.
- F4 스케일링 기능을 OFF로 한다.(초기설정) (스텝 8로)

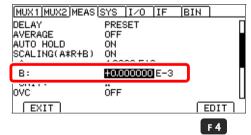
게인계수를 설정합니다.

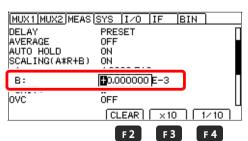
MUX1 MUX2 MEAS SYS I/O IF BIN DELAY PRESET AVERAGE OFF AUTO HOLD ON. 10000 E+0 Α: UNIT: 0 ÖFF ovc CLEAR | ×10 1/10 F 2 F 3 F 4

설정범위: 0.2000×10⁻³ ~ 1.9999×10³

설정할 항목에 커서를 이동 F4 로 수치 편집할 수 있게 한다.

2 ◀ ● ▶자릿수이동 ◀ ● ▶수치 변경 좌우 커서 키로 설정하고 싶은 자릿수에 커서를 이동 상하 커서 키로 수치를 변경


- F3 10배한다
- F4 1/10배한다.
- F2 값을 clear한다.


지수부(E+3 등)는 직접 설정할 수 없습니다. F3, F4 로 10배, 1/10배 해 주십시오.

3 ENTER 확정

(🐯 취소)

5 오프셋을 설정합니다.

설정범위: 0~± 9×10⁹(최소 분해능 1 nΩ, 초기설정: 0)

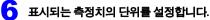
설정할 항목에 커서를 이동 F4 로 수치 편집할 수 있게 한다.

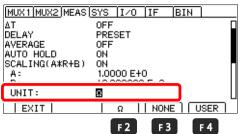
2 ◀ ■ ▶자릿수이동 ◀ ■ ▶수치 변경 좌우 커서 키로 설정하고 싶은 자릿수에 커서를 이동

상하 커서 키로 수치를 변경

F3 10배한다

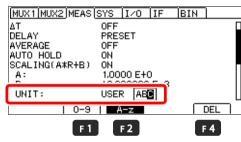
F4 1/10배한다.


F2 값을 clear한다.


지수부(E+3 등)는 직접 설정할 수 없습니다. F3, F4 로 10배, 1/10배 해 주십시오.

3 ENTER 확정

(🐼 취소)


4.6 측정치 보정하기, 저항치 이외의 물리량으로 표시하기(스케일링 기능)

- 【 ▶ 선택
- 2
- F2 단위를 Ω으로 한다.(초기설정) (스텝 8로)
- F3 단위를 없앤다. (스텝 8로)
- F4 임의의 단위로 한다.

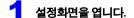
7 임의의 단위를 편집합니다.

- F 4 로 수치 편집할 수 있게 한다.
- ● 자릿수이동 ● 문자변경 좌우 커서 키로 편집하고 싶은 자릿수에 커서를 이동 상하 커서 키로 문자를 변경
- F1 숫자(0~9) 입력
- F2 알파벳(A~z) 입력
- F 4 1 문자 삭제
- 2 ENTER 확정
 - (🙉 취소)

축정화면으로 돌아옵니다.

MENU 측정화면으로 돌아가기

주의 사항

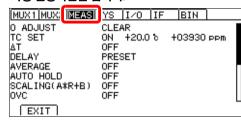

스케일링 연산은 영점 조정 연산된 측정치에 대해 실행됩니다. 따라서 영점 조정해도 측정치가 0이 되지 않는 경우가 있습니다.

- 연산 결과가 표시범위를 넘는 경우는 측정치를 풀 스케일까지 표시할 수 없습니다.
 예) 10 Ω 레인지에서 오프셋을 90 Ω으로 설정
 - → 10 Ω을 넘으면 OvrRng 표시
- 연산 결과가 마이너스가 되는 경우는 표시가 마이너스가 됩니다.
 - 예) 100 mΩ 레인지에서 오프셋을 50 mΩ으로 설정
 - \rightarrow 30 m Ω 을 측정하면 20 m Ω 표시

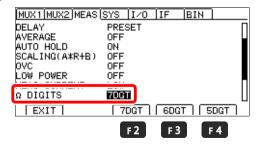
4.7 측정치의 자릿수 변경하기

주의 사항

측정치의 자릿수 설정은 전 채널 공통의 설정이 됩니다.(RM3545-02 만)



1 MENU 기능 메뉴를 P.2/3으로 전환


2 F4 설정화면 표시

측정 설정화면을 엽니다.

좌우 커서 키로 [MEAS]탭으로 이동

측정 자릿수를 선택합니다.

선택

F 2 7자리 (1,000,000dgt.) (초기설정)

F3 6자리 (100,000dgt.)

F 4 5자리 (10,000dgt.)

(설정보다 f.s.의 자릿수가 작은 경우는 f.s.의 자릿수가 됩니다. f.s.에 대해서는 "13.1 본체 사양"(p.251)을 참조하십시오)

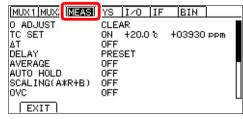
측정화면으로 돌아옵니다.

4.8 열기전력에 의한 측정치 오프셋을 보정하기 (오프셋 전압 보정 기능: OVC)

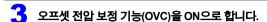
열기전력이나 본 기기 내부의 오프셋 전압 등을 자동적으로 보정합니다.(오프셋 전압 보정 기능 OVC : Offset Voltage Compensation)

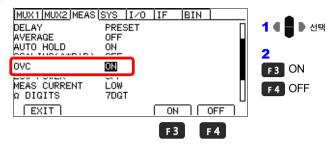
참조: "부록10 열기전력의 영향에 대해서"(p.부24) "3.1 측정대상 확인하기"(p.48)

정방향으로 측정전류를 흘려보냈을 때의 측정치 R_P 와 역방향으로 흘려보냈을 때의 측정치 R_N 으로부터 이하의 값을 참 저항치로써 표시합니다.


$$\frac{R_{P}-R_{N}}{2}$$

- 저전력 저항측정 OFF일 때
 10 mΩ 레인지 ~ 1000 Ω 레인지일 때 오프셋 전압 보정 기능을 ON으로 할 수 있습니다.
 10 kΩ 레인지 ~ 1000 MΩ 레인지에는 OVC 기능이 없습니다.
- 저전력 저항측정 ON일 때 전체 레인지에서 오프셋 전압 보정 기능은 자동적으로 ON이 됩니다. 이 기능은 해제할 수 없습니다.


설정화면을 엽니다.



2 측정 설정화면을 엽니다.

4 측정화면으로 돌아옵니다.

주의 사항

- 측정대상의 인덕턴스가 큰 경우, 지연시간(딜레이 시간) 조정이 필요합니다. (p.84) 처음에는 지연시간을 비교적 길게 설정하고 측정치를 보면서 서서히 줄여 주십시오.
- 영점 조정 기능을 사용하고 있는 경우, 오프셋 전압 보정 기능을 변경한 뒤에는 반드시 영점 조정을 실시하십시오.
- 오프셋 전압 보정 기능이 ON인 경우(OVC 점등), 계측시간이 길어집니다.

4.9 측정 개시까지의 지연시간 설정하기 (딜레이 기능)

OVC 및 자동 레인지에서 측정전류를 변화시킨 후에 대기시간을 두어 측정이 안정되는 시간을 조정합니다. 이 기능을 사용함으로써 측정대상의 리액턴스 성분이 큰 경우에도 내부회로가 안정된 후 측정을 시작할 수 있습니다.

인덕터 등 측정전류를 인가하고나서 안정될 때까지 시간이 걸려 초기상태(디폴트값)에서 측정할 수 없는 경우에는 딜레이를 조정하십시오. 딜레이 시간은 하기 계산치의 10배를 기준으로, 리액턴 스 성분(인덕턴스, 커패시턴스)이 측정치에 영향을 주지 않도록 설정하십시오.

$$t = -\frac{L}{R} \ln \left(1 - \frac{IR}{V_{\rm O}} \right)$$

L : 측정대상의 인덕턴스

R : 측정대상의 저항+리드선 저항+접촉 저항

I : 측정전류("정확도"(p.253) 참조)V_O : 개방전압("정확도"(p.253) 참조)

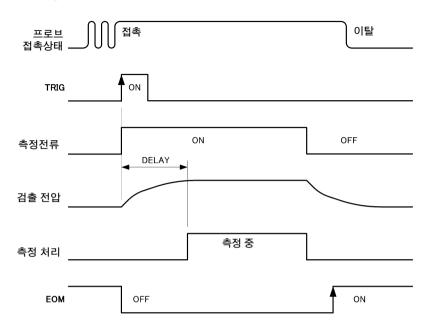
딜레이 설정은 프리셋(내부 고정치)과 임의 설정치의 2종류 중에서 선택할 수 있습니다.

(1) 프리셋 (내부 고정치)

레인지나 오프셋 전압 보정 기능에 따라 값이 다릅니다.

LP OFF(단위: ms)

LP OFF(단위: ms)						
레인지	100 MΩ 레인지	측정전류	딜레이			
내신시	고정밀도 모드	국정인규	OVC: OFF	OVC: ON		
10 mΩ	_	-	75	25		
100 mΩ	-	High	250	25		
100 11122	-	Low	20	2		
1000 mΩ	_	High	50	2		
100011122	_	Low	5	2		
10 Ω	-	High	20	2		
10 22	-	Low	5	2		
100 Ω	_	High	170	2		
100 12	-	Low	20	2		
1000 Ω	-	-	170	2		
10 kΩ	_	-	180	-		
100 kΩ	-	-	95	-		
1000 kΩ	_	_	10	-		
10 MΩ	-	-	1	-		
100 MΩ	ON	_	500	_		
100 MΩ	OFF	-	1	-		
1000 MΩ	OFF	-	1	-		


I P ON

딜레이
1

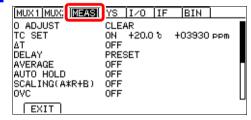
(2) 임의 설정치

설정 범위는 0 ms ~ 9999 ms입니다. 전체 레인지 설정한 값이 됩니다.

딜레이의 타이밍 차트

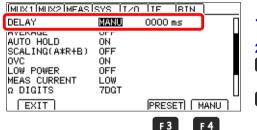
주의 사항

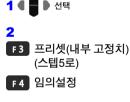
- 프리셋 값은 10 mH 정도의 인덕턴스를 상정한 설정으로 되어 있고 측정 레인지마다 다릅니다.
- 트리거 소스 EXT에서 측정 레인지가 10 k Ω 레인지 이상인 경우는 측정전류를 정지하지 않습니다(연속 인가).

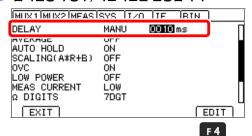

4.9 측정 개시까지의 지연시간 설정하기 (딜레이 기능)

지연시간의 설정

지연시간은 리액턴스 성분(인덕턴스, 커패시턴스)이 측정치에 영향을 주지 않도록 설정하십시오. 처음에는 지연시간을 비교적 길게 설정하고 측정치를 보면서 서서히 지연시간을 줄여 주십시오.




2 측정 설정화면을 엽니다.



3 프리셋(초기설정) 또는 임의설정을 선택합니다.

4 임의설정의 경우, 지연시간을 설정합니다.

설정범위: 0 ms (초기설정) ~ 9999 ms



설정할 항목에 커서를 이동 F4 로 수치 편집할 수 있게 한다

2 ◀ ■ ▶ 자릿수이동 ◀ ■ ▶ 수치 변경 좌우 커서 키로 설정하고 싶은 자릿수에 커서를 이동 상하 커서 키로 수치를 변경

3 ENTER 확정

MENU 측정화면으로 돌아가기

4.10 접촉불량이나 접촉상태를 확인하기 (콘택트 체크 기능)

측정대상과 프로브의 접촉불량이나 측정 케이블의 단선 상태를 검출합니다.

본 기기에서는 적분 기간 직전(응답시간)부터 측정 중에 걸쳐서 SOURCE A - SENSE A 간 및 SOURCE B - SENSE B 간의 저항을 상시 모니터링하여 저항치가 임계치를 넘은 경우, 콘택트 에러라 파다합니다.

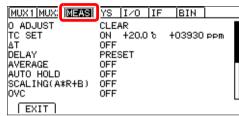
콘택트 에러 시는 CONTACT TERM.A, CONTACT TERM.B의 에러를 표시합니다. 측정치의 콤 퍼레이터 판정은 하지 않습니다.

이 에러가 표시된 경우는 프로브의 접촉, 측정 케이블의 단선 등을 확인하십시오. 측정대상이 도전성 도료, 도전성 고무 등 SENSE-SOURCE 간의 저항치가 큰 경우는 항상 에러가 되어 측정할 수 없습니다. 그 경우 콘택트 체크 기능을 OFF로 하십시오.

(단선되지 않은 측정 케이블의 선단을 단락시켜도 에러 표시가 사라지지 않는 경우는 수리가 필요합니다)

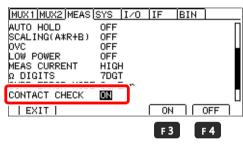
참조: "3.5 측정치 확인하기"(p.52)

참조: "부록15 측정 이상 시의 확인방법"(p.부33)


주의 사항

- 콘택트 체크의 임계치는 약 50 Ω 입니다. 임계치는 측정대상이나 접속 케이블, 측정 레인지 등에 의존하기 때문에 50 Ω이 되지 않는 경우가 있습니다. 또한 SOURCE 측만 저항치가 큰 경우는 콘택트 에러가 되지 않고 전류 이상이 되는 경우가 있습니다.(p.55)
- 100 MΩ 레인지 이상은 설정을 OFF로 해도 항상 콘택트 체크 기능이 작동합니다.
- 멀티플렉서로 2선식으로 설정한 경우, 콘택트 체크 기능은 OFF가 됩니다.
- 저저항을 측정하고 있는 경우, SOURCE A 또는 SOURCE B의 접촉불량을 오버 레인지라고 판단하는 경우가 있습니다.
- 콘택트 체크 OFF 설정인 경우, 프로브가 측정대상에 접촉하지 않아도 측정치를 표시하는 경우가 있습니다.
- 콘택트 체크 OFF 설정인 경우, 접촉저항이 커지면 측정치 오차가 커지는 경우가 있습니다.
- 트리거 소스 INT의 경우, 콘택트 에러 시(측정대상 미접속 시)에 전류를 정지합니다. 한편, 트리거 소스 INT에서 콘택트 체크 기능 OFF인 경우에는 측정대상 미접속 시에도 측정전류를 항상 인가합니다. 때문에 측정대상에 연결한 순간에는 돌입전류가 흐릅니다(예: 측정전류 1 A의 레인지에서 순저항을 측정한 경우, 최대 5 A, 수속(收束)시간 0.5 ms). 망가지기 쉬운 소자를 측정하는 경우는 콘택트 체크를 ON으로 하거나 측정전류가 작은 레인지를 사용하십시오. 단, 콘택트 체크를 ON으로 해도 채터링이 있는 경우에는 돌입전류를 완전히 막을 수는 없습니다.
- 측정 케이블을 동력선 신호선 혹은 다른 기기의 측정 케이블과 묶어서 배선한 경우, 콘택트 에러가 되는 경우가 있습니다.
- 저전력 저항측정에서는 콘택트 체크의 초기설정이 OFF로 되어 있습니다. 콘택트 체크를 ON으로 하면 개방단자 전압은 300 mV가 됩니다.

설정화면을 엽니다.



측정 설정화면을 엽니다.

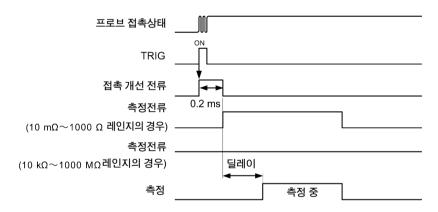
3 콘택트 체크 기능을 ON으로 합니다.

2

- F3 콘택트 체크 기능을 ON으로 한다.(저전력 OFF인 경우의 초기설정)
- F4 콘택트 체크 기능을 OFF로 한다.(저전력 ON인 경우의 초 기설정)

4 측정화면으로 돌아옵니다.

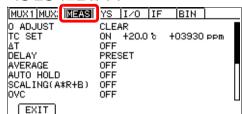
4.11 프로브의 접촉상태를 개선하기 (접촉 개선 기능)


측정 시작 전에 SENSE A단자에서부터 SENSE B단자로 전류를 흘려보냄으로써 프로브의 접촉 상태를 개선합니다.

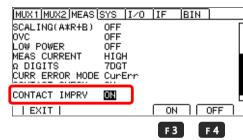
⚠ 주의 접촉 개선 기능을 사용하면 측정대상에 전압이 인가됩니다. 특성이 변화하기 쉬운 측정대상(자기 저항소자, 신호용 릴레이, EMI 필터 등)을 측정하는 경우는 주의하십시오.

접촉개선 전류는 최대 10 mA, 인가전압은 최대 5 V 입니다. 저전력 ON인 경우, 접촉 개선 기능은 OFF가 됩니다. 접촉 개선 기능을 사용하면 측정 종료까지의 시간이 0.2 ms 길어집니다.

타이밍 차트(접촉개선 전류)


측정전류는 OVC가 OFF인 경우를 나타냅니다.

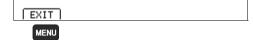
설정화면을 엽니다.



2 측정 설정화면을 엽니다.

● ●좌우 커서 키로 [MEAS]탭으로 이동

3 접촉 개선 기능을 ON으로 합니다.

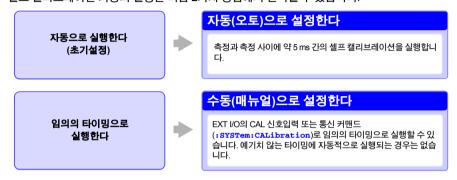

1 🜓 📕 🕨 선택

2

F3 접촉개선 기능을 ON으로 한다.

F 4 접촉 개선 기능을 OFF로 한다. (초기설정)

4 측정화면으로 돌아옵니다.



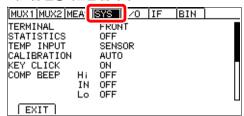
MENU 측정화면으로 돌아가기

4.12 측정 정밀도를 유지하기 (셀프 캘리브레이션 기능)

본 기기에서는 측정 정밀도를 유지하기 위해 셀프 캘리브레이션으로 회로 내부의 오프셋 전압과 게인의 드리프트를 보정합니다.

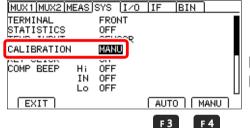
셀프 캘리브레이션 기능의 실행은 다음 2가지 방법에서 선택할 수 있습니다.

셀프 캘리브레이션의 타이밍과 시간


설정	캘리브레이션 타이밍	측정보류기간 (캘리브레이션 시간)
자동 [*]	측정 뒤	5 ms
수동	실행 시	400 ms

*자동 설정인 경우

자동 설정인 경우, TRIG 대기 중에는 1초마다 5 ms 동안 셀프 캘리브레이션을 실행합니다. 5 ms 동안의 셀프 캘리브레이션 중에 TRIG 신호를 수신하면 셀프 캘리브레이션을 중지하고, 0.5 ms 뒤에 측정을 시작합니다. 불규칙한 측정시간이 신경쓰이는 경우는 수동 설정으로 하십시오.



2 시스템 설정화면을 엽니다.

실프 캘리브레이션 동작의 설정을 합니다.

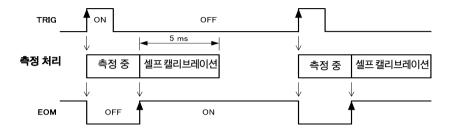
2

F3 자동으로 설정한다.(초기설정)

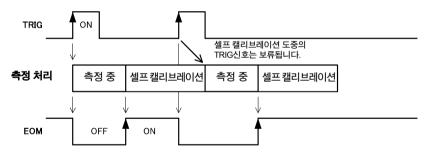
F4 수동으로 설정한다.

MENU 측정화면으로 돌아가기

주의 사항


셀프 캘리브레이션 동작을 수동으로 설정한 경우, 사용 환경의 온도가 2℃ 이상 변화되면 반드시셀프 캘리브레이션을 실행하십시오.(실행하지 않을 경우, 정확도를 보증할 수 없습니다) 사용 환경의 온도 변화가 2℃ 미만인 경우에도 30분 이내 간격으로 셀프 캘리브레이션을 실행하십시오.

4.12 측정 정밀도를 유지하기 (셀프 캘리브레이션 기능)


AUTO 설정일 때의 동작

측정 종료 후, 즉시 셀프 캘리브레이션을 시작하고 5 ms로 완료합니다. 셀프 캘리브레이션 중의 TRIG 신호는 1회분 보류되고, 셀프 캘리브레이션 완료 후에 측정을 시작합니다.

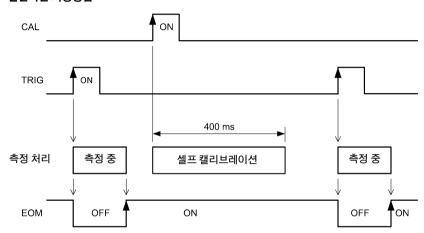
측정 간격에 5 ms 이상의 여유가 있는 경우

셀프 캘리브레이션 중에 TRIG 신호를 입력한 경우

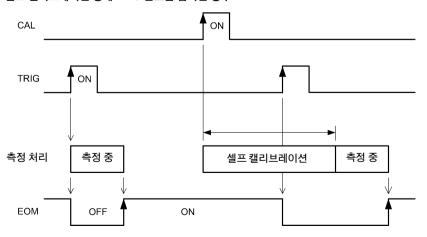
또 TRIG 대기 중에는 1초마다 셀프 캘리브레이션을 실행합니다. 셀프 캘리브레이션 중에 TRIG 신호를 수신하면, 셀프 캘리브레이션을 중지하고 약 0.5 ms 후에 측정을 시작합니다.

주의 사항

- 자동 스캔에서는 스캔 종료 후에만 셀프 캘리브레이션이 시작됩니다. 각 채널 측정마다 셀프 캘리브레이션을 실시하지는 않습니다.
- MANUAL에서 AUTO로 전환한 직후에는 400 ms 셀프 캘리브레이션을 실시합니다. 그 동안에는 TRIG 신호를 입력하지 마십시오.


MANUAL 설정일 때의 동작

CAL 신호를 입력하면 즉시 셀프 캘리브레이션을 시작합니다.


셀프 캘리브레이션 중에 TRIG 신호가 입력된 경우에도 셀프 캘리브레이션을 계속합니다. 이 경우, TRIG 신호는 수리되고 EOM 신호는 OFF가 되어 셀프 캘리브레이션 완료 후에 측정을 시작합니다.

측정 중에 CAL 신호가 입력된 경우, CAL 신호는 수리되고 측정 완료 후에 셀프 캘리브레이션을 시작합니다.

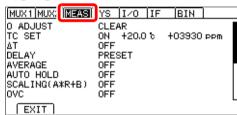
일반적인 사용방법

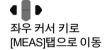
셀프 캘리브레이션 중에 TRIG 신호를 입력한 경우

4.13 100 MΩ 레인지의 정밀도를 올리기 (100 MΩ 레인지 고정밀도 모드)

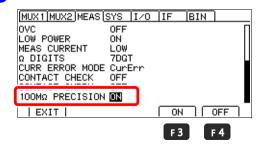
100 MΩ 레인지의 정밀도를 올릴 수 있습니다.

고정밀도 모드를 ON으로 하면 다음과 같이 됩니다.


- 1000 MΩ 레인지를 사용할 수 없게 됩니다.
- 측정치가 안정될 때까지 시간이 걸립니다. 안정될 때까지의 시간을 조정하는 경우에는 딜레이를 설정하십시오.


참조: "4.9 측정 개시까지의 지연시간 설정하기 (딜레이 기능)"(p.84)

4정화면을 연니다.



2 측정 설정화면을 엽니다.

3 100 MΩ 레인지 고정밀도 모드를 ON으로 합니다.

2

F3 고정밀도 모드를 ON으로 한다.

F4 고정밀도 모드를 OFF로 한다.

4 측정화면으로 돌아옵니다.

MENU 측정화면으로 돌아가기

판정 · 통계 · 환산 기능 제 5 장


이 장에서는 측정치의 판정과 환산 기능에 대해서 설명합니다.

- "5.1 측정치를 판정하기(콤퍼레이터 기능)"(p.98)
- "5.2 측정 결과를 분류하기(BIN 측정기능)"(p.108)
- "5.3 측정 데이터를 통계 연산하기"(p.111)
- "5.4 온도상승시험하기(온도 환산 기능(△T))"(p.116)

5.1 측정치를 판정하기(콤퍼레이터 기능)

콤퍼레이터 기능을 사용함으로써 다음 사항이 가능해집니다.

• 본 기기에서 표시한다.(COMP 램프 Hi/ IN/ Lo)

• 부저를 울린다.

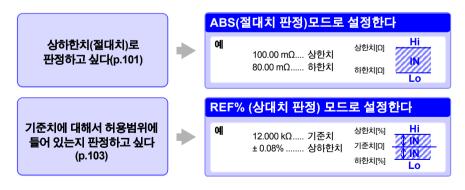
(초기설정에서는 부저가 울리지 않습니다)

참조: "판정을 소리로 확인하기(판정음 설정 기능)"(p.105)

• 전면에 표시한다.

L2105 전면 콤퍼레이터 램프는 옵션입니다.

참조: "판정을 전면에서 확인하기(L2105 전면 콤퍼레이터 램프: 옵션)"(p.107)


• 판정결과를 외부출력한다.

참조: "제10장 외부 제어(EXT I/O)"(p.177)

• 종합판정을 한다.

참조: "종합판정에 대해서"(p.157)

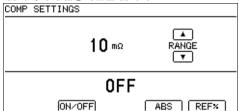
핀정 방법에는 다음 2종류가 있습니다.

콤퍼레이터 기능을 사용하기 전에

• 오버 레인지인 경우(OvrRng표시) 및 측정이상 시(CONTACT TERM 표시 또는 - - - - 표시) 콤퍼 레이터의 판정 표시는 다음과 같습니다.

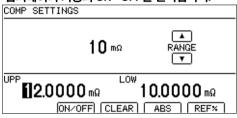
참조: "측정이상을 확인하기"(p.55)

측정치 표시	콤퍼레이터 판정 표시 (COMP램프)	
+OvrRng	Hi	
-OvrRng	Lo	
CONTACT TERM 또는	소등(무판정)	


• 설정 도중에 전원을 끄면 설정 중인 값은 무효가 되어 이전의 설정값이 됩니다. 설정을 확정하고 싶을 때는 ENTER 를 누르십시오.

5.1 측정치를 판정하기(콤퍼레이터 기능)

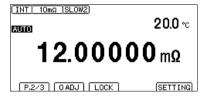
콤퍼레이터 기능을 ON / OFF 하기


초기설정에서는 콤퍼레이터 기능은 OFF로 설정되어 있습니다. 기능을 OFF로 설정한 경우, 콤퍼레이터의 임계치를 설정해도 무효가 됩니다.

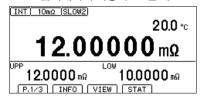
캠퍼레이터 설정화면을 엽니다.

comp 콤퍼레이터 설정화면이 표시됩니다.

2 콤퍼레이터 기능의 ON · OFF를 선택합니다.


F1 콤퍼레이터 기능의 ON / OFF를 전환

3 측정화면으로 돌아갑니다.


ENTER

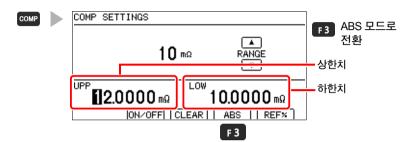
콤퍼레이터 기능이 OFF일 때

F 1

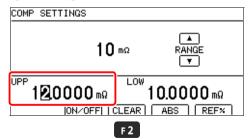
콤퍼레이터 기능이 ON일 때

콤퍼레이터 기능이 ON일 때만 화면에 콤퍼레이터 설정값이 표시됩니다.

주의 사항


- ΔT 또는 BIN 측정기능을 ON으로 하면 콤퍼레이터 기능은 자동적으로 OFF가 됩니다.
- 콤퍼레이터 기능을 사용하는 동안에는 레인지 변경을 할 수 없습니다. 레인지를 변경하고 싶은 경우는 콤퍼레이터 설정화면에서 ▲ ▼로 변경하십시오.
 자동 레인지를 사용하고 싶은 경우 콤퍼레이터 기능은 OFF로 하십시오.

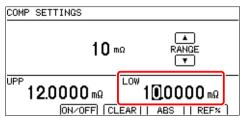
상하한치로 판정하기(ABS모드)


설정 예: 상한치 12 mΩ, 하한치 10 mΩ으로 설정

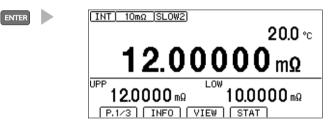
설정을 중단하고 싶을 때는 🙉 를 누릅니다. 설정을 확정하지 않고 원래 화면으로 돌아옵니다.

1 절대치 판정의 설정화면을 엽니다.

- 2 레인지를 설정합니다.
 - ▲ 사용하고 싶은 레인지를 선택합니다.
 - 누를 때마다 소수점의 위치와 단위가 바뀝니다.
- 3 상한치를 설정합니다.


● ▶자릿수이동 ● ▶수치 변경 좌우 커서 키로 설정하고 싶은 자릿수에 커서를 이동 상하 커서 키로 수치를 변경

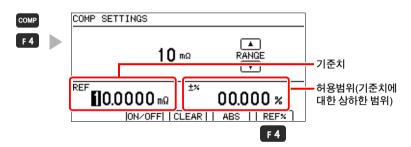
수치를 다시 설정하고 싶을 때는


F2 를 눌러 상한치를 clear 합니다. 상한치가 0이 됩니다.

5.1 측정치를 판정하기(콤퍼레이터 기능)

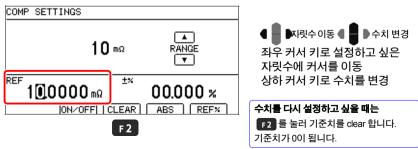
4 하한치도 마찬가지로 설정합니다.

5 설정을 확정하고 측정화면으로 돌아갑니다.

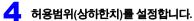

기준치와 허용범위로 판정하기(REF% 모드)

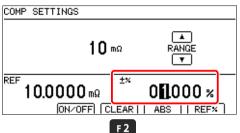
REF%모드로 하면 측정치는 상대치 표시[%]가 됩니다.

설정 예: 기준치 10 mΩ. 기준치에 대한 허용범위를 ±1%로 설정한다


설정을 중단하고 싶을 때는 ጩ 를 누릅니다. 설정을 확정하지 않고 원래 화면으로 돌아옵니다.

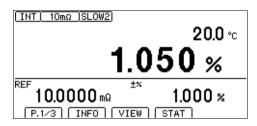
상대치 판정의 설정화면을 엽니다.


- 2 레인지를 설정합니다.
 - ▲ 사용하고 싶은 레인지를 선택합니다.
 - 누를 때마다 소수점의 위치와 단위가 바뀝니다.
- 3 기준치를 설정합니다.


설정 중 사용할 수 없는 키를 누르면 낮은 조작음으로 알립니다. (조작음의 설정을 ON으로 한 경우에만 유효합니다)

멀티플렉서를 사용하고 REF%모드인 경우는 MENU P.2/2에서 F2 를 누르면 CH 1의 측정 결과를 기준치로 할 수 있습니다.

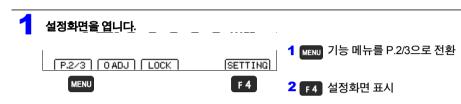
5.1 측정치를 판정하기(콤퍼레이터 기능)


● ▶자릿수이동 ● ▶ 수치 변경 좌우 커서 키로 설정하고 싶은 자릿수에 커서를 이동 상하 커서 키로 수치를 변경

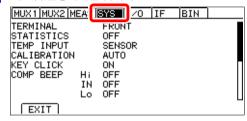
수치를 다시 설정하고 싶을 때는

F2 를 눌러 상하한치를 clear 합니다. 상하한치가 0이 됩니다.

설정을 확정하고 측정화면으로 돌아갑니다.

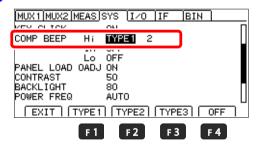


판정을 소리로 확인하기(판정음 설정 기능)


축정결과 판정음의 유무를 선택할 수 있습니다. 초기설정은 판정음 OFF(울리지 않는다)로 설정되어 있습니다.

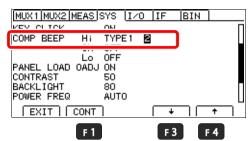
Hi/ IN/ Lo 각각에서 판정음을 설정할 수 있습니다.

멀티플렉서 사용 시, 스캔기능을 자동 또는 스텝으로 하면 PASS/ FAIL 각각에서 판정음을 설정할 수 있습니다.



2 시스템 설정화면을 엽니다.

3 Hi 판정 시의 소리를 선택합니다.



2 F1 ~ F3 원하는 소리를 선택

> 판정음을 울리지 않는다. (초기설정)(스텝5로)

5.1 측정치를 판정하기(콤퍼레이터 기능)

4 Hi 판정 시의 소리를 울리는 횟수를 선택합니다.

설정 범위: 1~5회, 연속

설정할 항목에 커서를 이동

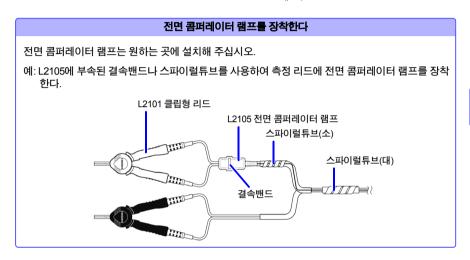
F1 연속으로 울리는 경우

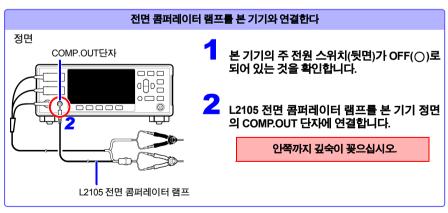
울리는 횟수를 설정하는 경우:

F3 F4 횟수를 변경

5	IN, Lo도 마찬가지로 설정합니다.
---	----------------------

주의 사항


음량은 조절할 수 없습니다.


판정을 전면에서 확인하기(L2105 전면 콤퍼레이터 램프: 옵션)

COMP.OUT 단자에 L2105 전면 콤퍼레이터 램프를 연결함으로써 전면에서 판정결과를 알 수 있습니다. IN판정의 경우 녹색. Hi 또는 Lo 판정의 경우 적색으로 빛납니다.

연결방법

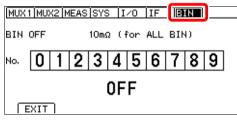
전면 콤퍼레이터 램프를 연결하기 전에 "사용 시 주의사항"(p.6)을 잘 읽어 주십시오.

5.2 측정 결과를 분류하기(BIN 측정기능)

BIN 측정은 1회 측정으로 최대 10쌍 (BIN 0 ~ BIN 9)의 상하한치와의 비교판정을 하여 측정 결과를 표시합니다. 모든 BIN에 들어가지 않는 것은 OB(아웃 오브 빈)이라고 판정합니다. 비교결과는 EXT I/O 다지에서도 출력됩니다.

李몄":"사용 커넥터와 신호 배치"(p.179)

주의 사항

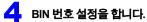

- BIN 측정기능이 ON인 경우는 콤퍼레이터를 ON으로 할 수 없습니다.
- ΔT를 ON 또는 측정단자를 멀티플렉서로 하면, BIN 측정기능은 자동적으로 OFF가 됩니다.
- BIN 측정기능을 사용하는 동안은 레인지 변경을 할 수 없습니다. 레인지를 변경하고 싶은 경우는 BIN번호 설정화면에서 ▲ ▼ 로 변경하십시오.

자동 레인지를 사용하고 싶은 경우, BIN측정기능은 OFF로 하십시오.

설정화면을 엽니다.

2 BIN 설정화면을 엽니다.

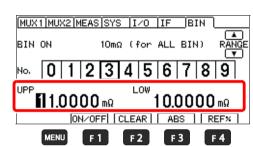
3 BIN 기능을 ON으로 합니다.



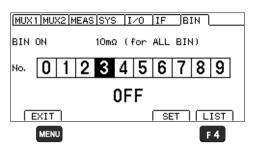

2

F3 BIN 기능을 ON으로 한다.

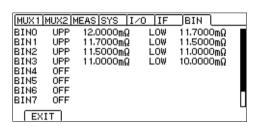
 F 4 BIN 기능을 OFF로 한다.


 (초기설정)

- **2** BIN 번호를 선택한다.
- 3 F3 각 BIN 번호 설정을 한다.



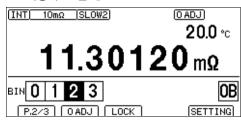
4 ◀ ■ ▶ 자릿수이동 ◀ ■ ▶ 수치 변경 좌우 커서 키로 설정하고 싶은 자릿수에 커서를 이동 상하 커서 키로 수치를 변경


- F1 ON / OFF를 전환
- F2 커서 항목의 설정값을 clear
- F3 판정 모드를 ABS(UPP, LOW)로 설정
- F4 판정 모드를 REF%로 설정
- ▲ ▼ 레인지 전환 (레인지는 모든 BIN번호에서 공통 입니다.)
- 5 ENTER 확정
 - (🐯 취소)

5.2 측정 결과를 분류하기(BIN 측정기능)

5 설정한 BIN의 일람을 표시할 수도 있습니다.

F 4 BIN 설정의 리스트 표시 MENU 측정화면으로 돌아가기



측정화면으로 돌아갑니다.

MENU 측정화면으로 돌아가기

IN 판정이 되는 BIN 번호가 반전표 시됩니다.

5.3 측정 데이터를 통계 연산하기

최대 30,000 개의 측정데이터에 대해 통계 연산하여 표시합니다. 인쇄도 가능합니다(p.247).

통계 연산: 평균치, 최대치, 최소치, 모표준편차, 샘플의 표준편차, 공정능력지수

최대치	X max = $MAX(x_1,, x_n)$
최소치	$X\min = \min(x_1,, x_n)$
평균치	$\bar{x} = \frac{\sum x}{n}$
모표준편차	$\sigma_n = \sqrt{\frac{\sum x^2 - n\bar{x}^2}{n}}$
샘플의 표 준편 차	$\sigma_{n-1} = \sqrt{\frac{\sum_{x^2 - n\bar{x}^2}}{n-1}}$
공정능력지수* (산포)	$Cp = \frac{ UPP-LOW }{6\sigma_{n-1}}$
공정능력지수* (치우침)	$Cpk = \frac{ UPP-LOW - UPP+LOW-2\overline{x} }{6\sigma_{n-1}}$

식 중의 n은 유효 데이터 수를 나타냅니다.

- * 공정능력지수에 대해서
- 공정능력지수란 공정이 만들어내는 품질 달성 능력을 말하며, "공정이 지닌 품질의 산포 및 치우침의 폭"을 말합니다. 일반적으로 *Cp*, *Cpk* 값에 의해 아래와 같 이 공정의 능력을 평가할 수 있습니다.

공정능력 *Cp, Cpk* >1.33 충분 1.33 ≧ *Cp, Cpk* >1.00 적당 1.00 ≧ *Cp, Cpk* 부족

- UPP, LOW는 콤퍼레이터의 상하한치를 가 리킵니다.
- BIN 기능이 ON일 때 공정능력지수는 연산 되지 않습니다.

주의 사항

- 내부는 부동소수로 연산하고 있으며, 표시 자릿수 이하의 끝수도 포함해서 연산합니다.
- 유효 데이터 수가 1개인 경우, 샘플의 표준편차와 공정능력지수는 표시되지 않습니다.
- σ_w10 0인 경우, Cp, Cpk는 99.99가 됩니다.
- Cp, Cpk의 하한은 99.99입니다. Cp, Cpk >99.99인 경우 99.99라고 표시합니다.
- Cpk가 마이너스인 경우는 Cpk=0 가 됩니다.
- 통계 연산 기능을 OFF에서 ON으로 하면 연산 결과를 clear하지 않고 다시 통계 연산을 시작합니다.
- 통계 연산 기능을 사용하면 측정 속도가 떨어집니다.
- ΔT를 ON 또는 측정단자를 멀티플렉서로 하면 통계 연산 기능은 자동적으로 OFF가 됩니다.

통계 연산 결과의 삭제에 대해

다음 타이밍에 데이터를 자동 삭제합니다.

- 측정조건(저전력, 측정전류, OVC, 100 MΩ 레인지 고정밀도 모드, TC, 오프셋 이외의 스케일링 설정)을 변경했을 때
- 콤퍼레이터 설정을 변경했을 때(p.98)
- BIN 측정기능을 변경했을 때(p.108)
- 통계 연산 결과를 인쇄했을 때(p.247)
 (인쇄 시에 삭제할지의 여부를 설정할 수 있습니다.(p.248))
- 시스템 리셋 했을 때(p.134)
- 전원을 껐을 때

5.3 측정 데이터를 통계 연산하기

통계 연산 기능을 사용하기

통계 연산 기능을 ON으로 하면 EXT I/O의 TRIG 신호에 의해 통계 연산합니다. 측정치를 통계 연산하는 타이밍은 트리거 소스 설정에 따라 다릅니다.

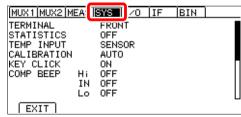
- 외부 트리거(EXT)일 때 :TRIG 신호가 입력되면 1회 측정하고 측정 결과를 통계 연산합니다.
- 내부 트리거[INT]일 때 : TRIG 신호가 입력되고나서 직후에 갱신한 측정치를 통계 연산합니다.

자동 홀드 기능을 사용하고 있는 경우는 홀드한 측정치를 통계 연산합

니다.

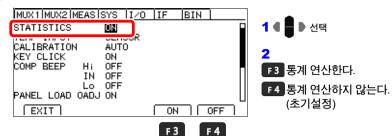
이하의 경우도 마찬가지로 동작합니다.(자동 홀드 사용 시를 제외)

- ENTER 를 눌렀을 때
- *TRG 커맨드를 송신했을 때


또 EXT I/O의 PRINT 신호를 입력했을 때, 트리거 소스에 따라 동작이 다릅니다.

- 외부 트리거(EXT) 일 때: 최신 측정결과를 인쇄합니다.
- 내부 트리거[INT] 일 때: PRINT 신호를 넣고나서 직후에 갱신한 측정치를 통계 연산하여 인쇄합니다.
- MENU P.1/3 표시상태에서 F4 [PRINT]를 눌렀을 때도 동일하게 동작합니다.

설정화면을 엽니다.



2 시스템 설정화면을 엽니다.

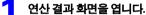
3 통계 연산 기능을 ON으로 합니다.

4 측정화면으로 돌아갑니다.

5.3 측정 데이터를 통계 연신하기

통계 연산 결과를 확인하기 • 인쇄하기 • 삭제하기

통계 연산 결과를 화면에서 확인할 수 있습니다.


또. RS-232C 프린터로 인쇄할 수 있습니다. 통계 연산 결과를 인쇄한 뒤 자동으로 데이터를 삭제 할 수 있습니다.

인쇄하는 경우는 미리 인터페이스 설정을 [PRINT]로 설정하십시오.

李몃":"제12장 인쇄 (RS-232C 프린터를 사용하기)"(p.239)

통계 연산 결과의 화면 아래에서 유효 데이터 수를 확인할 수 있습니다.

- 유효 데이터 수(Val 표시)가 0인 경우. 연산 결과는 표시하지 않습니다.
- 유효 데이터 수가 1인 경우, 색플의 표준편차와 공정능력지수는 표시하지 않습니다.

1 MENU 기능 메뉴를 P.1/3으로 전환

2 ■ 연산 결과 화면이 표시됩니 다.(통계 연산 기능을 ON으 로 한 경우만)

STATISTICS NUM 15 1.00000mΩ Sn VAL 10 Sn-1 1.00000mΩ AVG 1.00000mΩ Cp 0.50 MAX 1.20000mΩ Cpk 0.50 No = 1Ηi n MIN 0.50000mΩ ΙN 10 No = 5Lo 0 EXIT | UNDO | CLEAR BIN PRINT

NUM 총데이터수 VAL

에러를 제외한 유효 데이터 수(Valid)

AVG 평균치 MAX 최대치 MIN 최소치

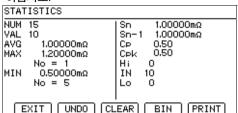
Sn 모표준편차 Sn-1 샘플의 표준 편차 공정능력지수(산포)

Ср Cpk 공정능력지수(치우침)

통계 결과 / BIN 결과의 전환 (콤퍼레이터 기능이 ON일 때)

F 3

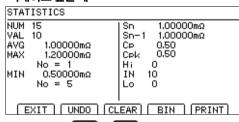
· · · · · · · · · · · · · · · · · · ·			
STATSTICS			
BINO 12.0000mΩ - 11.7000mΩ	5		
BIN1 11.7000mΩ - 11.5000mΩ	7		
BIN2 11.5000mΩ - 11.0000mΩ	0		
BIN3 11.0000mΩ - 10.0000mΩ	0		
BIN4 OFF	-		
BIN5 OFF	-		
BIN6 OFF	-		
BIN7 OFF	-		
EXIT UNDO CLEAR BIN			


Hi. 콤퍼레이터 Hi 설정의 수 콤퍼레이터 IN 설정의 수 Lo 콤퍼레이터 Lo 설정의 수

(BINOI ON일 때)

BIN BIN 설정범위 및 IN 판정의 수

🥎 인쇄하고 싶을 때


인쇄에 대한 상세한 내용은 "제12장 인쇄 (RS-232C 프린터를 사용하기)"(p.239)를 참조하십시오.

F4 프린터에 출력됩니다. "인쇄 예"(p.249)

F 4

삭제하고 싶을 때

F 2

F 1

- F1 직전의 메모리 및 연산을 삭제 (1회만 유효)
- F2 모든 메모리 및 통계 연산을 삭제

5.4 온도상승시험하기(온도 환산 기능(△T))

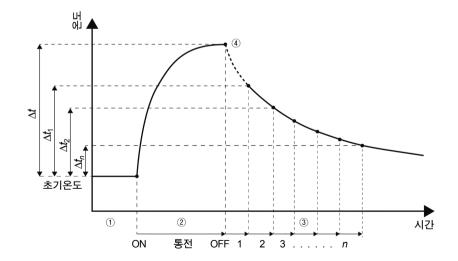
온도 환산 원리에 따라 온도 상승치를 환산합니다. 통전 정지 시의 온도 등을 추정할 수 있습니다. *** 후였**: "부록5 온도 환산 기능(ΔΤ)에 대해서"(p. 부6)

온도 환산을 하는 경우는 Z2001 온도센서를 본 기기 뒷면의 TEMP.단자에 연결하십시오. 또 연결할 때는 아래 내용을 읽어 주십시오.

李몄":"Z2001 온도센서 연결하기"(p.37)

"아날로그 출력 탑재 온도계 연결하기"(p.39)

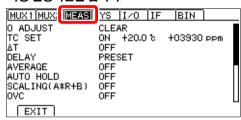
"3.1 측정대상 확인하기"(p.48)


주의 사항

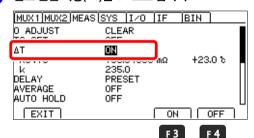
 Δ T가 ON인 경우는 콤퍼레이터를 ON으로 할 수 없습니다.

TC, BIN 측정기능, 통계 연산 기능을 ON으로 하면 ΔT는 자동으로 OFF가 됩니다.

온도상승시험의 예

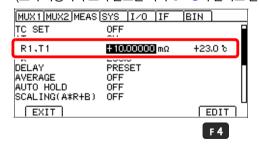

- ① 모터, 코일을 실온에 충분히 놓아두고 통전 전의 저항치(R_1), 및 주위온도(t_1)를 측정하여 그 값을 본 기기에 입력합니다.(p.117)
- ② 측정 리드를 측정대상에서 분리합니다.
- ③ 통전을 OFF한 뒤, 다시 측정대상에 측정 리드를 연결하고 일정 시간마다 온도 상승치 $(\Delta t_1 \sim \Delta t_n)$ 를 측정합니다.
- ④ 수집한 온도 데이터($\Delta t_1 \sim \Delta t_n$)를 연결해 최대 온도 상승치(Δt)를 추측하십시오.

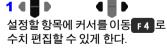
설정화면을 엽니다.

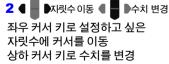


2 측정 설정화면을 엽니다.

З 온도 환산 기능(△T)을 ON으로 합니다.


2

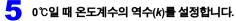

F3 온도 환산 기능을 ON으로 한다.

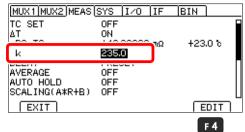

F4 온도 환산 기능을 OFF로 한다. (초기설정)(스텝6으로)

4 초기 저항치와 초기 온도를 설정합니다.

(초기 저항치와 초기 온도를 각각 1~3의 순서로 설정합니다)

3 ENTER 확정


(🕵 취소)


설정범위 초기저항 : $0.001~\mu\Omega\sim 9000.000~M\Omega(초기설정: 1.0000~\Omega)$

초기온도 :-10.0℃~99.9℃(초기설정: 23.0℃)

주의 사항 초기 저항치 범위는 스케일링 설정에 따라 바뀝니다.

5.4 온도상승시험하기(온도 환산 기능(△T))



2 ◀ ■ ▶자릿수이동◀ ■ ▶수치 변경 좌우 커서 키로 설정하고 싶은 자릿수에 커서를 이동 상하 커서 키로 수치를 변경

3 ENTER 확정

(🖾 취소)

설정 범위 : -999.9 ~ 999.9 (초기설정: 235.0)

MENU 측정화면으로 돌아가기

k의 참고값

JIS C4034-1에서는 아래와 같이 권장하고 있습니다.

- 구리: k = 235
- 알루미늄: k = 225

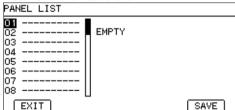
참조: "부록5 온도 환산 기능(ΔT)에 대해서"(p. 부6)

패널 저장•로드

(측정조건의 저장, 로딩)

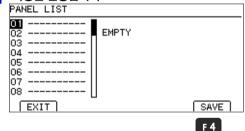
제 6 장

현재의 측정조건을 저장하고 패널 로드 기능으로 키 조작, 통신 커맨드, EXT I/O를 통해 로딩할 수 있습니다.


본 기기에서는 측정조건을 멀티플렉서 미사용시에 최대 30가지(패널번호 1~30), 멀티플렉서 사용시에 최대 8가지(패널번호 31~38) 저장하여 전원을 꺼도 유지하고 있습니다.

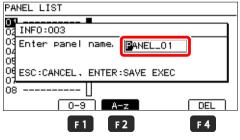
패널 저장으로 저장할 수 있는 항목

- 패널명
- 저장일시
- 저항레인지
- 100 MΩ 레인지 고정밀도 모드
- 저전력 저항 측정(LP)
- 측정전류 전환
- 측정 속도
- 영점 조정(로드하지 않는 것도 가능)(p.122)
- 에버리지
- 딜레이
- 온도보정(TC)
- 오프셋 전압보정(OVC)
- 스케일링
- 셀프 캘리브레이션 설정
- 전촉 개선
- 콘택트 체크
- 콤퍼레이터
- BIN 설정
- 판정음
- 자동 홀드
- 온도환산(△T)
- 통계 연산 설정
- 멀티플렉서 설정(각 채널 포함)


6.1 측정조건 저장하기(패널 저장 기능)

패널 리스트 화면을 엽니다.

PANEL 패널 리스트 화면을 표시

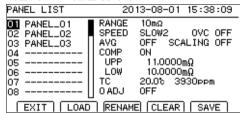

저장을 실행합니다.

1 ◀ ■ ▶ 선택

2 F4 저장을 실행

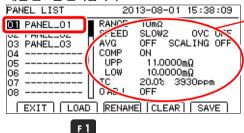
패널명을 입력합니다. (이미 저장되어 있는 패널 번호인 경우에는 경고 메시지가 나옵니다.)

1 ◀ ■ ▶문자이동 ◀ ■ ▶문자변경 좌우 커서 키로 편집하고 싶은 문자에 커서를 이동 상하 커서 키로 문자를 변경


- F1 숫자(0~9) 입력
- F2 알파벳(A~z) 및 언더바()입력
- F 4 1 문자 삭제
- 2 ENTER 확정
 - (🙉 취소)

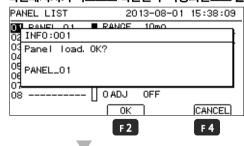
6.2 측정조건 로딩하기(패널 로드 기능)

패널 저장으로 저장한 측정조건을 로딩합니다.


초기상태에서는 패널 로드하면 영점 조정값도 로드됩니다. 영점 조정을 로딩하고 싶지 않은 경우 는 "영점 조정값을 로딩하지 않기"(p.122)를 참조하십시오.

패널 리스트 화면을 엽니다.

PANEL 패널 리스트 화면을 표시


패널 번호를 선택합니다.

선택된 패널에 저장되어있는 내용

- 1 ◀ ▮ ▶ 선택
- 2 F1 로딩을 실행 (ENTER 로도 로딩을 실행 할 수 있습니다.)

확인메시지가 나오므로 확인한 후 측정화면으로 돌아옵니다.

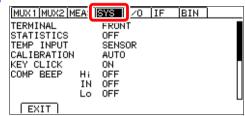
- F2 패널 로드를 실행하고 측정화면으로(ENTER 로도 실 행할 수 있습니다.)
- F 4 취소하고 원래 화면으로(☞ 로 도 취소할 수 있습니다.)

측정화면에는 로딩한 패널 명이 표시됩니다.

6.2 측정조건 로딩하기(패널 로드 기능)

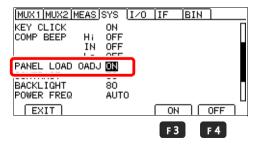
주의 사항

- EXT I/O의 LOAD0 ~ LOAD5의 제어, 통신 커맨드로도 로딩할 수 있습니다.
 - 참조: "제10장 외부 제어(EXT I/O)"; "입력 신호"(p.181)
 - 커맨드의 상세에 대해서는 부속 애플리케이션 디스크를 참조해 주십시오.
- 로딩 후 측정조건을 변경하면 패널명 표시가 사라집니다.


영점 조정값을 로딩하지 않기

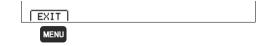
초기상태에서는 패널 로드에 의해 영점 조정값도 로딩됩니다. 영점 조정값을 로딩하지 않는 경우 는 다음 순서로 설정합니다.

설정화면을 엽니다.



2 시스템 설정화면을 엽니다.

3 영점 조정을 로딩할지 여부를 선택합니다.

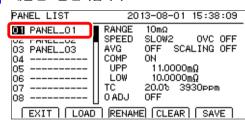


F3 패널 로드 시에 영점 조정값이 패널 저장했을 때의 값이 됩니 다. (초기설정)

F4 패널 로드해도 영점 조정값은 변경되지 않습니다.

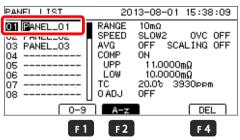

4 측정화면으로 돌아갑니다.

MENU 측정화면으로 돌아가기


6.3 패널명 변경하기

패널 리스트 화면을 엽니다.

PANEL 패널 리스트 화면을 표시


패널 번호를 선택합니다.

2 F2 패널명을 편집

F2

3 패널명을 편집합니다.

1 ◀ ■ ▶문자이동 ◀ ■ ▶문자변경 좌우 커서 키로 편집하고 싶은 문자에 커서를 이동 상하 커서 키로 문자를 변경

F1 숫자(0~9) 입력

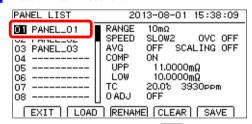
F2 알파벳(A~z) 및 언더바(_)입력

F 4 1 문자 삭제

2 ENTER 확정

(🙉 취소)

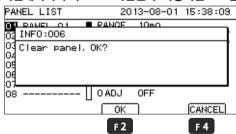
4 측정화면으로 돌아갑니다.


MENU 측정화면으로 돌아가기

6.4 패널 내용 삭제하기

패널 리스트 화면을 엽니다.

패널 번호를 선택합니다.



1 ◀ ■ ▶ 선택

2 F3 패널을 삭제

확인메시지가 나오므로 확인한 후 측정화면으로 돌아옵니다.

F 3

- F2 패널을 삭제하고 원래 화면으로(ENTER 로도 실행할 수 있습니다.)
- F4 취소하고 원래 화면으로 (® 로도 취소할 수 있습니다)

4 측정화면으로 돌아갑니다.

주의 사항

한번 삭제한 패널 내용은 원래대로 되돌릴 수 없습니다.

시스템 설정

제 7 장

이 장에서는 시스템에 관한 설정에 대해서 설명합니다.

- "7.1 키 조작을 유효, 무효화하기"(p.126)
- "7.2 키 조작음의 유무 설정하기"(p.128)
- "7.3 공급 전원의 주파수를 수동 설정하기"(p.129)
- "7.4 화면 콘트라스트를 조정하기"(p.131)
- "7.5 백라이트 조정하기"(p.132)
- "7.6 시계 맞추기"(p.133)
- "7.7 초기화하기(리셋)"(p.134)

키 조작을 유효, 무효화하기 7.1

키 조작을 무효화하기(키 록 기능)

- 키 록 기능을 실행하면 본 기기 정면 판넬의 키 조작을 무효화 할 수 있습니다.
- 키 록은 목적에 따라서 다음 3가지 레벨 중에서 선택할 수 있습니다.

조작자에게 기본설정 (레인지, 속도, 콤퍼레이터, 패널 로드)만 허기한다

콤퍼레이터 설정 이외를 무효화한다

AUTO, 레인지▲▼, SPEED, COMP, PANEL, 0ADJ, PRINT, ENTER (트리 거), MENU [UNLOCK] (키 록 해제)키 이외는 조작할 수 없습니다.

키 록 기능 선택: [MENU] 측정화면으로 되돌아가면 [M.LOCK]이 표시됩니다.

조작자에게 일체의 설정 변경을 허기하지 않는다 (키록해제는기능)

콤퍼레이터 설정을 포함한 설정변경을 무효화한다

ENTER (트리거), MENU [UNLOCK] (키 록 해제)키 이외는 조작할 수 없습니 다.

키 록 기능 선택: [FULL] 측정화면으로 되돌아가면 [F.LOCK]이 표시됩니다.

모든 키 조작을 무효화한다

패널 상에서 하는 모든 조작을 무효화한다

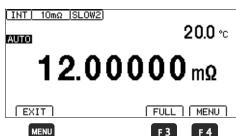
EXT I/O의 KEY LOCK 신호를 ON으로 하면, MENU [UNLOCK]키(키 록 해제). MENU[LOCAL]키 (리모트 상태 해제)를 포함한 모든 키 조작이 무효가 됩니다. 단, ENTER (트리거)키만 유효합니다.(p.177)

키 록 해제 방법: EXT I/O의 KEY LOCK 신호를 OFF로 하십시오.

INT | 10mΩ |SLOW2| AUTO

20.0 ℃

12.00000 mQ


1 MENU 기능 메뉴를 P.2/3으로 전환

[P.2/3] [O ADJ] [LOCK] SETTING 2 F2 키 록 선택 화면

MENU

F2

키 조작의 유효, 무효를 선택합니다.

- F3 키 록 해제 키 이외를 무효화하고 측정화면으로 돌아 간다.
- F4 키 록 해제 키와 기본설정 변경 이외를 무효화하고 측정화면으 로 돌아간다.
- MENU 측정화면으로 돌아가기

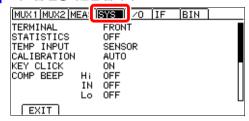
[UNLOCK]이 표시됩니다. (EXT I/O의 KEY LOCK 신호에 의한 키 록에서는 표시되지 않습니다.)

키 조작을 유효화하기(키 록 해제)

[UNLOCK]이 표시되어 있을 때만, 해제할 수 있습니다.

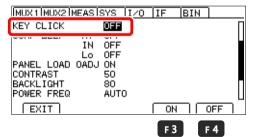
주의 사항

KEY_LOCK 신호에 의해 키 조작이 무효화되어 있는 경우는 KEY_LOCK 신호를 OFF로 해 주십시오.


7.2 키 조작음의 유무 설정하기

키 조작음의 유무를 선택할 수 있습니다. 초기설정은 키 조작음 ON(울림)으로 설정되어 있습니다.

설정화면을 엽니다.



시스템 설정화면을 엽니다.

3 키 조작음의 유무를 선택합니다.

2

F3 조작음을 울린다(초기설정)

F 4 조작음을 울리지 않는다

4 측정화면으로 돌아갑니다.

주의 사항

(버전 2.00 이후만)

조작음과 함께 에러음이나 자동 홀드음을 울리고 싶지 않은 경우는 1번 전원을 끄고 F1키와 ENTER 키를 누르면서 전원을 켜십시오. KEY CLICK 설정에 [ERR, AUTO HOLD]라고 표시되고, 에러음이나 자동 홀드음도 조작음과 동일한 설정이 됩니다.

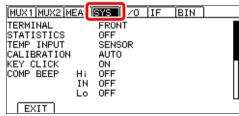
공급 전원의 주파수를 수동 설정하기 7.3

초기 상태에서는 공급 전원 주파수를 자동 인식하는 설정(AUTO)으로 되어 있지만, 수동으로도 설 정할 수 있습니다.

주의 사항

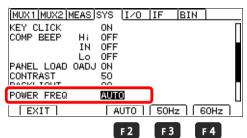
- 전원 주파수가 올바르게 설정되어 있지 않은 경우. 측정치가 안정되지 않습니다. 전원 노이즈가 크고 전원 주파수를 올바르게 검출할 수 없는 경우는 에러가 표시됩니다. (ERR:097 (p.296)) 이 경우는 공급 전원에 맞춰 수동 설정 하십시오.
- 자동 설정[AUTO]의 경우, 전원 투입 시 및 리셋 시에 공급 전원의 주파수가 50 Hz / 60 Hz 어느 쪽인가를 자동 판별합니다.

전원 투입 시나 리셋 시 이외에 공급 전원 주파수가 변동한 경우는 검출할 수 없습니다. 50 Hz / 60 Hz에서 주파수가 어긋나있는 경우에는 가까운 주파수로 설정됩니다.


예) 공급 전원 주파수 50.8 Hz → 계측기 설정 50 Hz 공급 전원 주파수 59.3 Hz → 계측기 설정 60 Hz

설정회면을 엽니다.

2 F4 설정화면 표시


시스템 설정화면을 엽니다.

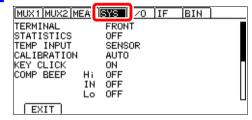
7.3 공급 전원의 주파수를 수동 설정하기

3 사용할 전원 주파수를 선택합니다.

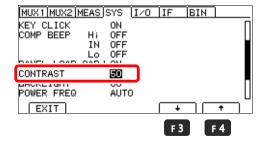
2

- F2 사용할 장소에 따라서 자동 설 정한다.(초기설정)
- F3 공급 전원 주파수가 50 Hz일 때
- F4 공급전원 주파수가 60 Hz일 때

MENU 측정화면으로 돌아가기


7.4 화면 콘트라스트를 조정하기

주위 온도가 변했을 때 화면이 잘 안보이게 되는 경우가 있습니다. 그 경우에는 콘트라스트를 조정 하십시오.



2 시스템 설정화면을 엽니다.

3 콘트라스트를 조정합니다.

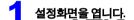
2

F3 콘트라스트를 내린다.

F4 콘트라스트를 올린다.

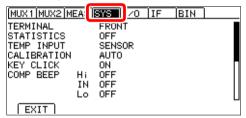
설정범위: 0% ~ 100%, 5%씩 (초기설정: 50%)

4 측정화면으로 돌아갑니다.

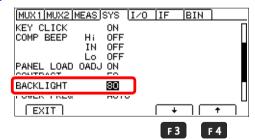


7.5 백라이트 조정하기

설치 장소의 조도에 맞춰서 백라이트의 휘도를 조정할 수 있습니다.


주의 사항

- 트리거 소스가 외부 트리거[TRG: EXT] 설정인 경우, 조작하지 않는 상태가 1분간 이어지면 자동적으로 백라이트의 휘도가 떨어집니다.
- (버전 2.00 이후만)
 조작음과 함께 에러음이나 자동 홀드음을 울리고 싶지 않은 경우는 1번 전원을 끄고 F1키와
 ENTER 키를 누르면서 전원을 켜십시오. KEY CLICK 설정에 [ERR,AUTO HOLD]라고 표시되고,
 에러음이나 자동 홀드음도 조작음과 동일한 설정이 됩니다.(p.128)
- 휘도를 0%로 설정하면 표시가 잘 보이지 않게 되므로 주의해 주십시오.



2 시스템 설정화면을 엽니다.

백라이트를 조정합니다.

2 F3 백라이트의 휘도를 내린다

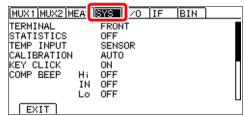
F4 백라이트의 휘도를 올린다

설정범위: 0% ~ 100%, 5%씩 (초기설정: 80%)

4 측정화면으로 돌아갑니다.

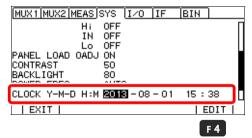
MENU 측정화면으로 돌아가기

7.6 시계 맞추기


통계 연산 기능(p.111)을 사용할 때는 올바른 시각을 기록, 인쇄하기 위해 시계를 정확하게 맞춰둘 필요가 있습니다.

또 통계 연산 결과를 인쇄할 때는 인쇄 시각도 출력합니다.

4정화면을 엽니다.



2 시스템 설정화면을 엽니다.

3 날짜, 시각을 설정합니다.

설정할 항목에 커서를 이동 F4 로 수치 편집할 수 있게 한다

2 ◀ ■ ▶ 자릿수이동◀ ■ ▶ 수치 변경 좌우 커서 키로 설정하고 싶은 자릿수에 커서를 이동 상하 커서 키로 수치를 변경

3 ENTER 확정

(🚳 취소)

년(아래 2 자리), 월, 일, 시, 분 순으로 입력합니다.

4 측정화면으로 돌아갑니다.

MENU 측정화면으로 돌아가기

7.7 초기화하기(리셋)

리셋 기능에는 아래 3가지 리셋이 있습니다.

통신 커맨드에 대해서는 부속 애플리케이션 디스크를 참조해 주십시오.

리셋: 패널 데이터를 제외한 측정조건을 공장출하상태로 초기화

리셋 방법은 3가지가 있습니다.

- 시스템 설정화면에서 리셋하기
- 🔊 와 ENTER 를 동시에 누르면서 전원을 켜기
- 통신 커맨드로 리셋하기
 - *RST 커맨드(인터페이스 설정은 초기화 되지 않습니다)

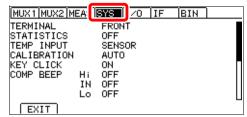
시스템 리셋: 모든 측정조건과 패널 데이터를 공장출하상태로 초기화

시스템 리셋 방법은 3가지가 있습니다.

- 시스템 설정화면에서 시스템 리셋하기
- 🙉 , ENTER , ▶를 동시에 누르면서 전원을 켜기
- 통신 커맨드로 리셋하기
 - :SYSTem: RESet 커맨드(인터페이스 설정은 초기화되지 않습니다)

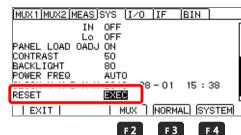
멀티플렉서 채널 리셋: 멀티플렉서의 채널 설정을 공장출하상태로 초기화

멀티플렉서 채널 리셋 방법은 2가지가 있습니다.

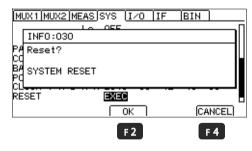

- 시스템 설정화면에서 시스템 리셋하기
- 통신 커맨드로 리셋하기

[:SENSe:1CHReset커맨드

여기에서는 시스템 설정화면에서 리셋하는 방법을 설명합니다.



시스템 설정화면을 엽니다.


● ● ● 좌우 커서 키로 [SYS]탭으로 이동

🚺 초기화를 선택합니다.

- 1 ◀ ▶ 선택
- 2 F2 멀티플렉서 채널 리셋을 한다.
 - F3 리셋을 한다.
 - F4 시스템 리셋을 한다.

초기화를 실행할지 여부를 선택합니다.

- F2 실행한다.
- F4 실행하지 않는다.

초기화 후 측정화면이 표시됩니다.

초기설정 일람

	화면	설정 및 키	초기설정	멀티플렉서 채널 리셋	참조
측정화면		COMP	OFF	0	(p.100)
		AUTO	AUTO	0	(p.49)
		▲▼(RANGE)	A010	0	
		SPEED	SLOW2	0	(p.50)
측정화면(P.1/2) (RM3545-02는 P.1/3)		VIEW (F2)	OFF	-	(p.52)
측정화면(P.2/2)		0 ADJ (F2)	OFF	0	(p.68)
(RM3545-02는 P.2/3)		LOCK (F3)	OFF	_	(p.126)
측정화면 (P.	3/3) *2	FRONT (F1)	FRONT	_	
		MUX (F2)	FRONT	-	(p.151)
		SCANSET (F3)	OFF	_	
설정화면	멀티플렉서	CH	OFF	0	
(SETTING)	채널 설정화면	TERM		0	(p.154)
	(MUX1) *2	INST	RM3545	0	
		0ALL	ON	0	(= 4C4)
		0ADJ	_	0	(p.164)
	멀티플렉서	SPD	SLOW2	0	
	기본 측정화면 (MUX2) ²	RANGE	AUTO	0	(p.158)
		UPP / REF	OFF	0	
		LOW%	OFF	0	
		PASS	IN	0	
	측정 설정화면 (MEAS)	TC SET	OFF	0	(p.75)
		ΔΤ	OFF	0	(p.116)
		DELAY	PRESET	0	(p.84)
		AVERAGE	OFF	0	(p.73)
		AUTO HOLD	OFF	_	(p.60)
		SCALING(A*R+B)	OFF	0	(p.77)
		OVC	OFF	0	(p.82)
		LOW POWER	OFF	0	(p.64)
		MEAS CURRENT	HIGH	0	(p.66)
		ΩDIGITS	7DGT	_	(p.81)
		CURR ERROR MODE	CurErr	-	(p.59)
		CONTACT CHECK	ON	0	(p.88)
		CONTACT IMPRV	OFF	0	(p.90)
		100 MΩ PRECISION	OFF	0	(p.96)

	화면	설정 및 키	초기설정	멀티플렉서 채널 리셋	참조
설정화면 (SETTING)	시스템 설정화면 (SYS)	TERMINAL *2	FRONT	-	(p.148)
		STATISTICS	OFF	_	(p.112)
		TEMP INPUT	SENSOR	-	(p.37)
		CALIBRATION	AUTO	-	(p.92)
		KEY CLICK	ON	-	(p.128)
		COMP BEEP Hi	OFF	-	
		IN	OFF	-	
		Lo	OFF	-	(p.105)
		PASS	OFF	-	-
		FAIL	OFF	-	1
		PANEL LOAD 0ADJ	ON	-	(p.122)
		CONTRAST	50	-	(p.131)
		BACK LIGHT	80	-	(p.132)
		POWER FREQ	AUTO	-	(p.129)
	EXT I/O 설정화면 (I/O)	TRIG SOURCE	INT	-	(p.209)
		TRIG EDGE	OFF→ON (ON에지)	-	(p.211)
		TRIG / PRINT FILT	OFF	-	(p.213)
		EOM MODE	HOLD	-	(p.215)
		JUDGE / BCD MODE	JUDGE	-	(p.217)
	통신 인터페이스 설정화면(IF)	INTERFACE	RS232C	-	(p.223)
		SPEED	9600bps	-	(p.226)
		DATA OUT	OFF	-	(p.236)
		CMD MONITOR	OFF	-	(p.233)
	BIN 설정화면 (BIN)	BIN	OFF	_	(p.108)

^{*1} RM3545-01만

^{*2} RM3545-02만

^{*3} 멀티플렉서 사용시는 "MEAS" 옆에 선택되어 있는 채널번호가 표시됩니다.

7.7 초기화하기(리셋)

멀티플렉서의 각 채널 초기값은 다음과 같습니다.

_ ·_ · · · · · 4선식의 경우

CH		UNIT	TERM A	TERM B
1	유효	1	TERM A1	TERM B1
2	무효	1	TERM A2	TERM B2
:	:	:	:	:
10	무효	1	TERM A10	TERM B10
11	무효	2	TERM A1	TERM B1
12	무효	2	TERM A2	TERM B2
:	:	:	:	:
20	무효	2	TERM A10	TERM B10
21	무효	1	TERM A1	TERM B1
22	무효	1	TERM A1	TERM B1
:	:	:	:	:
42	무효	1	TERM A1	TERM B1

2선식의 경우

011		LINUT	TEDLA	TERMAR
CH		UNIT	TERM A	TERM B
1	유효	1	TERM A1	TERM B1
2	무효	1	TERM A2	TERM B2
:	:	:	:	:
21	무효	1	TERM A21	TERM B21
22	무효	2	TERM A1	TERM B1
23	무효	2	TERM A2	TERM B2
:	:	:	:	:
42	무효	2	TERM A21	TERM B21

멀티플렉서

제 8 장

RM3545-02는 Z3003 멀티플렉서 유닛과 조합함으로써 4선식으로 최대 20군데, 2선식으로는 최대 42군데를 전환하여 측정할 수 있습니다.

멀티플렉서 유닛을 장착할 때는 반드시 "2.4 멀티플렉서 유닛 장착하기"(p.42)를 읽어 주십시오.

주의 사항

- Z3003 멀티플렉서 유닛의 접점에는 메커니컬 릴레이를 사용하고 있습니다. 메커니컬 릴레이는 수명이 있는 부품이므로 접점 개폐가 적어지도록 프로그램을 작성하십시오.
 특히 2선식인 경우에는 TERM An(TERM Bn)→Am(TERM Bm)로 전환하는 경우에 n과 m을 홀수번호→짝수번호 또는 짝수번호→홀수번호로 하기 보다는 홀수번호→홀수번호 또는 짝수번호→짝수번호로 하는 편이 접점 개폐가 적어집니다.
 (4W / 2W 전환 릴레이의 개폐를 줄일 수 있습니다) 참조: "8.2 내부 회로 구성"(p.146)
 - (4W / 2W 전환 릴레이의 개폐들 줄일 수 있습니나) 참소: "8.2 내무 회로 구성"(p.146₎

예

- (예1) TERM A1 / B1 \rightarrow TERM A2 / B2 \rightarrow TERM A3 / B3 \rightarrow TERM A4 / B4
- (예2) TERM A1 / B1 \rightarrow TERM A3 / B3 \rightarrow TERM A2 / B2 \rightarrow TERM A4 / B4
- (예1) 보다도 (예2) 쪽이 접점 개폐가 적어집니다.

접점 수명의 참고값

4선식인 경우: 5.000만번, 2선식인 경우: 500만번

• 유닛 테스트 기능에서는 측정단자를 단락함으로써 쇼트검사 및 오픈검사를 실행합니다. 쇼트 검사에서는 2단자 저항측정상태에서 각 핀의 왕복 배선 저항치를 측정해 1 Ω 이하인 경우에 합 격이라고 판정합니다. 측정전류가 1 A인 경우에는 유닛 테스트에서 합격해도 1 A의 측정전류를 전부 흘려보내지 못해 측정할 수 없는 경우가 있습니다. 전류 이상(------ 또는 OvrRng 표시) 이 되는 경우는 배선저항 및 측정대상과 측정 리드와의 접촉저항을 낮게 억제해 주십시오. (ρ.57)

8.1 멀티플렉서에 대해서

RM3545-02는 Z3003 멀티플렉서 유닛을 2유닛 장착할 수 있습니다.

측정할 수 있는 위치

유닛 수	2선식	4선식
1 유닛	21군데	10군데
2 유닛	42군데	20군데

멀티플렉서 유닛을 사용함으로써 할 수 있는 일

• 각 채널의 A단자 및 B단자를 각각 임의의 단자에 할당할 수 있기 때문에 여러 측정대상의 배선 을 가략화할 수 있습니다.

참조: "8.7 연결과 설정 예"(p.169) (예) ∆ 결선 혹은 Y 결선된 3상모터 네트워크 저항과 같은 시리즈 소자 독립소자

• 채널마다 다른 측정조건을 설정할 수 있습니다.

참조: "8.3 멀티플렉서에 관한 설정"(p.148)

임의 채널을 일괄적으로 영점 조정할 수 있습니다.
 참조: "8.5 영점 조정하기 (멀티플렉서 유닛 장착 시)"(p.164)

• 측정한 값을 기준으로 판정할 수 있습니다. 참조: "각 채널의 기본 측정조건 및 종합 판정조건을 설정하기"(p.157)

- 최대 42채널 등록할 수 있습니다.
- 패널 저장은 멀티플렉서를 사용하지 않는 경우(정면 측정단자 사용시)의 측정조건과는 별도로 최대 8가지(패널번호 31 ~ 38) 설정할 수 있습니다.
- 다음 3가지 스캔을 선택할 수 있습니다. 용도에 따라 나누어 사용하십시오.
 - (1) 스캔기능: OFF (2) 스캔기능: 스텝 (3) 스캔기능: 자동

4 70 -11	055	4 511	
스캔기능	OFF	스텝	자동
((개요	측정 위치를 자유롭게 전환하여 측정합니다 (사용 예) · 수동으로 멀티플렉서를 사용한 다 · 특정 채널만 촉정을 반복한다 · 외부 제어로 채널을 전환한다	(사용 예)	미리 설정한 순서로 측정 위치를 전환하여 측정합니다 1번의 TRIG로 전체 채널을 측 정합니다 (사용 예) • 3상모터 코일이나 네트워크 저 항기 등 검사 중에 측정대상을 제어할 필요가 없으며 스캔을 가장 빠르게 실행한다
측정화면	THE 10ma SLOW2 TE (CAS) CH 01 \$ 12.00000 mΩ LOW 10.0000 mΩ LOW 10.0000 mΩ P.L/2 INFO VIEW	NUX STEP SCAN 1	MUR AUTO SCAN 11 768771 nQ IN PASS 02 648771 mQ IN PASS 03 478131 mQ IN PASS 03 479131 mQ IN PASS 05 108431 0 IN PASS 05 108431 0 IN PASS 06 388571 mQ IN PASS 06 388571 mQ IN PASS 07 1.39811 mQ IN PASS
트리거 소스	내부[INT] / 외부[EXT]	외부[EXT] 만	외부[EXT] 만
재닌 시와	상하 커서 조작, 커맨드, LOAD 신호	트리거에 의한 자동 전환 (1채널마다)	트리거에 의한 자동 전환 (전체 채널)
TRIG 동작	TRIG 신호 입력 → 현재 CH 측정 → 판정, EOM 신호 ON 출력	TRIG 신호 입력	TRIG 신호 입력 → CH1 측정 → CH2 측정 → CHn 측정 → S합판정, EOM 신호 ON 출력
	표시, 통신 커맨드, EXT I/O	표시, 통신 커맨드, EXT I/O	표시, 통신 커맨드
종합판정 역	없음	있음	있음

8.1 멀티플렉서에 대해서

멀티플렉서를 사용하기까지의 흐름

사전준비

1 멀티플렉서 커넥터에 측정 케이블을 연결합니다

李몄": "사용 커넥터와 단자의 배치"(p.143)

2 멀티플렉서를 유효하게 하고 스캔기능을 설정합니다

李몄": "멀티플렉서 설정하기"(p.148)

3 채널의 핀 할당을 설정합니다.

李멌": "채널의 핀 할당을 커스터마이즈하기"(p.152)

4 각 채널의 측정조건을 설정합니다

李몄": "각 채널의 측정조건을 커스터마이즈하기"(p.161)

영점 조정

5 영점 조정 설정을 합니다

李兄": "8.5 영점 조정하기 (멀티플렉서 유닛 장착 시)"(p.164)

- 6 각 채널에 0 Ω을 연결합니다
- 7 영점 조정을 실행합니다

측정

8 측정대상을 연결하고 측정을 합니다

李<u>兄</u>": "8.4 멀티플렉서로 측정하기"(p.162)

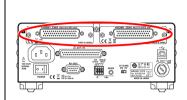
멀티플렉서의 EXT I/O 제어에 대해서는 "제10장 외부 제어(EXT I/O)"(p.177)를 참조하십시오. 멀티플렉서의 커맨드 제어에 대해서는 부속 애플리케이션 디스크의 커맨드 사용설명서를 참조하십시오.

주의 사항

멀티플렉서 유닛을 사용하는 경우의 제한사항

- 측정단자를 MUX(멀티플렉서)로 설정한 경우 정면 측정단자는 사용할 수 없습니다. 정면 측정단자에 측정 리드를 연결하지 마십시오. BIN 측정기능, 통계 연산 기능은 자동적으로 OFF가 됩니다. 데이터 메모리 기능은 사용할 수 없습니다.
- 멀티플렉서의 측정방식을 2선식으로 설정한 경우 10 Ω 레인지 이하는 사용할 수 없습니다. 콘택트 체크 기능은 사용할 수 없습니다.
- 릴레이의 핫 스위칭 방지 기능

변압기 등을 측정하면 역기전력이 남아있기 때문에 릴레이의 핫 스위칭 방지 기능이 작동합니다. 역기전력이 작아질 때까지 다음 채널로 전환할 수 없습니다.


전환을 빠르게 하고 싶은 경우는 고저항 레인지나 전류 전환 Low 설정 등 측정전류를 낮추도록 설정하십시오.

참조: "3.2 측정 레인지 설정하기"(p.49)

"4.2 측정전류 전환하기 (100 mΩ ~ 100 Ω레인지)"(p.66)

사용 커넥터와 단자의 배치

핀 배치(사용 커넥터 D-SUB 50pin 리셉터클)

사용 커넥터(본 기기측)

- D-SUB 50핀3열타입
 암 #4-40인치 나사
- 적합전선(최대)
 단선: AWG22상당
 연선: AWG24상당

참조: "부록14 측정 리드를 자체제작하기, 멀티플렉 서에 배선하기"(p.30)

멀티플렉서 커넥터(본 기기측)

적합 커넥터

DD-50P-ULR(납땜형)
 Japan Aviation Electronics Industry, Limited

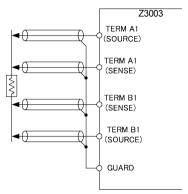
측정방식(4선식 / 2선식)에 따라 핀 배치가 다릅니다.

李몄":"멀티플렉서 설정하기"(p.148)

4선식의 경우

No.	딘	자명	No.	딘	·자명	No.	D. 단자명	
1	1	-	18	TERM B5	SOURCE	34	TERM B9	SOURCE
2	TERM B1	SOURCE	19	I LI (WI DO	SENSE	35	TERWI DO	SENSE
3	ILINIDI	SENSE	20	TERM A5	SOURCE	36	TERM A9	SOURCE
4	TERM A1	SOURCE	21	I LINII AU	SENSE	37	ILIXIVIAS	SENSE
5	ILINIMAI	SENSE	22	TERM B6	SOURCE	38	TERM B10	SOURCE
6	TERM B2	SOURCE	23	I LINIVI DO	SENSE	39	ILKWIDIO	SENSE
7	I LINIVI DZ	SENSE	24	TERM A6	SOURCE	40	TERM A10	SOURCE
8	TERM A2	SOURCE	25	I LINIVI AU	SENSE	41	IERWAIU	SENSE
9	I LINIVI AZ	SENSE	26	TERM B7	SOURCE	42	-	-
10	TERM B3	SOURCE	27	ILKIVIDI	SENSE	43	(GUARD
11	I LININ DO	SENSE	28	TERM A7	SOURCE	44	(GUARD
12	TERM A3	SOURCE	29	I ERIVI AI	SENSE	45	EX SOURC	EB (EX Cur Hi)
13	I LINII AS	SENSE	30	TERM B8	SOURCE	46	EX SENSE	B (EX Pot Hi)
14	TERM B4	SOURCE	31	TEINI DO	SENSE	47	EX SENSE	A(EX Pot Lo)
15	I LINII D4	SENSE	32	TERM A8	SOURCE	48	EX SOURC	EA(EX Cur Lo)
16	TERM A4	SOURCE	33	I LI (WI / 10	SENSE	49	EX	GUARD
17	ILINIA4	SENSE				50		EARTH

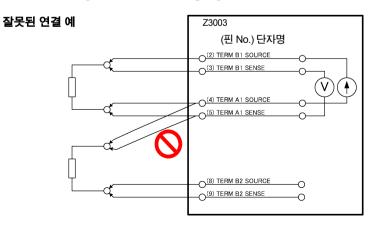
144


8.1 멀티플렉서에 대해서

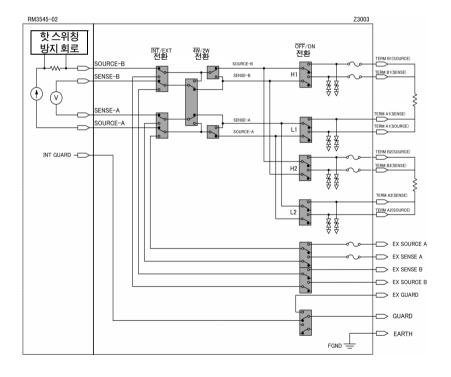
2선식의 경우

No.	단자명	No.	단자명	No.	단자명
1	TERM A1	18	TERM B9	34	TERM B17
2	TERM B1	19	TERM B10	35	TERM B18
3	TERM B2	20	TERM A10	36	TERM A18
4	TERM A2	21	TERM A11	37	TERM A19
5	TERM A3	22	TERM B11	38	TERM B19
6	TERM B3	23	TERM B12	39	TERM B20
7	TERM B4	24	TERM A12	40	TERM A20
8	TERM A4	25	TERM A13	41	TERM A21
9	TERM A5	26	TERM B13	42	TERM B21
10	TERM B5	27	TERM B14	43	GUARD
11	TERM B6	28	TERM A14	44	GUARD
12	TERM A6	29	TERM A15	45	EXB (EXHi)
13	TERM A7	30	TERM B15	46	EXB (EXHi)
14	TERM B7	31	TERM B16	47	EXA (EXLo)
15	TERM B8	32	TERM A16	48	EXA (EXLo)
16	TERM A8	33	TERM A17	49	EX GUARD
17	TERM A9			50	EARTH

멀티플렉서의 배선에 대해서


• 멀티플렉서와 측정대상은 다음 그림처럼 연결하십시오. 구체적인 배선 예는 "8.7 연결과 설정예"(p.169)를 참조하십시오.

- 멀티플렉서 커넥터에 연결하는 케이블에는 실드선을 사용하십시오. 실드선을 사용하지 않는 경우, 노이즈의 영향으로 측정치가 불안정한 경우가 있습니다.
- 케이블의 실드부는 GUARD 단자에 연결하십시오. 참조: "부록14 측정 리드를 자체제작하기, 멀티플렉서에 배선하기"(p. 부30)


주의 사항

- 멀티플렉서 유닛 간을 가로지르는 연결•측정은 할 수 없습니다.
 측정할 수 없는 예
 UNIT1의 TERM1 UNIT2의 TERM1 사이
- 2개 이상의 측정대상을 동시에 1쌍의 SOURCE, SENSE 단자에 연결하면 올바른 4단자계측을 할 수 없습니다. 1쌍의 단자에는 1개의 측정대상만 연결하십시오.

8.2 내부 회로 구성

- Z3003 멀티플렉서 유닛은 A단자 / B단자 각각에서 임의의 핀 간 저항을 측정할 수 있습니다.
- 각각의 측정단자는 코일의 역기전력에 대한 보호가 내장되어 있습니다.
- 각 단자에는 보호용으로 퓨즈(정격전류 1.6 A)가 내장되어 있습니다(고객이 교체할 수 없습니다). 과입력으로 퓨즈가 단선된 경우에는 측정할 수 없습니다. 그 경우는 본 기기의 수리를 맡겨 주십 시오.
- Z3003 멀티플렉서 유닛에서는 릴레이의 개폐횟수를 기억하고 있습니다. 키 조작에 의한 유닛 테스트 시나 커맨드를 사용해 개폐횟수를 참조할 수 있으므로 유지보수 시기의 참고로 이용하 십시오.
- 유닛 테스트 기능에서는 측정단자를 단락함으로써 쇼트검사 및 오픈검사를 실행합니다. 쇼트 검사에서는 특정한 동일 핀에 대해 왕복 저항을 측정해 1 Ω 이하를 한격으로 판정합니다.
- 멀티플렉서 커맨드 제어에 대해서는 부속 애플리케이션 디스크의 통신커맨드 사용설명서를 참 조하십시오.

전기적 사양

 李멌":"13.2 Z3003 멀티플렉서 유닛 사양"(p.279)

(1) 측정대상 (결선 순서는 임의로 선택 가능)

4선식	10군데 (Z3003 2유닛 사용시는 20군데)
2선식	21군데 (Z3003 2유닛 사용시는 42군데)

(2) 측정 가능 범위

측정전류	Z3003을 탑재한 기기: DC1 A 이하 외부연결기기: DC1 A 이하, AC100 mA 이하
측정 주파수	외부연결기기: DC, 10 Hz ~ 1 kHz

(3) 접점 사양

접점 형식	메커니컬 릴레이
최대허용 전압	실효치 30 V 및 피크치 42.4 V 또는 직류 60 V
최대허용 전력	30 W (DC)(저항부하)
접점수명	4선식인 경우: 5,000만번, 2선식인 경우: 500만번(참고치)

8.3 멀티플렉서에 관한 설정

멀티플렉서의 설정은 본 기기의 키 조작, 통신 커맨드 외에 샘플 애플리케이션 소프트웨어에서 가능합니다.

샘플 애플리케이션 소프트웨어는 당사 홈페이지에서 다운로드 하십시오.

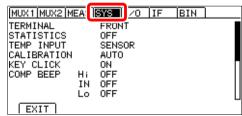
멀티플렉서 설정하기

멀티플렉서 전체의 동작을 설정합니다.

측정단자 설정이나 스캔기능은 측정화면에서도 설정할 수 있습니다. 참조: "측정 화면에서 측정단자 설정이나 스캔기능을 변경하는 경우"(p.151)

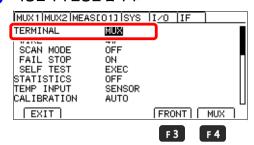
멀티플렉서의 채널 설정을 초기화하고 싶은 경우

참조: "7.7 초기화하기(리셋)"(p.134)

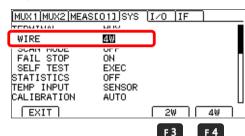

주의 사항

- 정면 측정단자에 측정 리드를 연결한 상태에서는 멀티플렉서로 전환할 수 없습니다(ERR:600l 표시됩니다). 멀티플렉서를 사용하는 경우는 반드시 측정 리드를 분리하십시오.
- 멀티플렉서에서 정면 측정단자로 전환하면 채널의 측정조건은 유지됩니다. 반대로 정면 측정 단자에서 멀티플렉서로 전환하면 채널의 측정조건으로 전환됩니다.

설정화면을 엽니다.

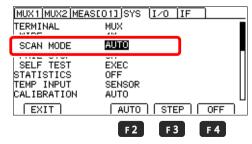


2 시스템 설정화면을 엽니다.


3 측정단자의 설정을 합니다.

- 2
- F3 정면 측정단자에서 측정한다 (멀티플렉서 미사용) (초기설정)
 - F 4 멀티플렉서를 사용한다

4 측정방식을 선택합니다.

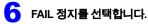


- 2
- F3 2선식(초기설정)
 - F 4 4선식

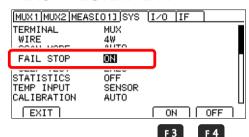
주의 사항

측정방식을 전환하면 멀티플렉서의 채널 설정이 초기화됩니다(멀티플렉서 채널 리셋이 걸립니다). 반드시 핀 할당이나 영점 조정을 하기 전에 측정방식을 확정시키십시오.

5 스캔기능의 설정을 합니다.



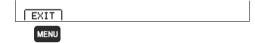
- F2 자동 스캔한다(1번의 TRIG로 전체 채널을 측정) (초기설정)
- F3 스텝 스캔한다 (TRIG마다 1채널을 측정)
- F 4 스캔하지 않는다


주의 사항

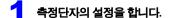
스캔기능이 자동 또는 스텝인 경우, 트리거 소스 설정에 상관없이 외부 트리거 동작이 됩니다.

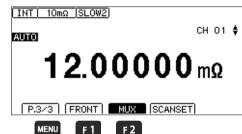
8.3 멀티플렉서에 관한 설정

스캔기능이 ON인 경우만 유효합니다.

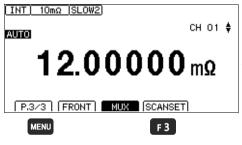


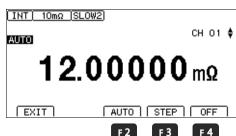
2


- F3 어느 하나의 채널이 FAIL 판정 이 되었을 때 스캔을 정지한다
- F4 어느 하나의 채널이 FAIL 판정 이 되어도 스캔을 정지하지 않 는다(초기설정)


측정화면으로 돌아갑니다.

MENU 측정화면으로 돌아가기


측정 화면에서 측정단자 설정이나 스캔기능을 변경하는 경우



- 1 MENU 기능 메뉴를 P.3/3으로 전환
- 2 F1 정면 측정단자에서 측정한다 (멀티플렉서 미사용) (초기설정)
 - F2 멀티플렉서를 사용한다

2 스캔기능의 설정을 합니다.

- 1 MENU 기능 메뉴를 P.3/3으로 전환
- **2** F3 스캔기능 선택 화면

- F2 자동 스캔한다(1번의 TRIG로 전체 채널을 측정) (초기설정)
- F3 스텝 스캔한다 (TRIG마다 1채널을 측정)
- F 4 스캔하지 않는다

채널의 핀 할당을 커스터마이즈하기

멀티플렉서 유닛은 채널의 핀 할당을 변경함으로써 임의의 핀 간 저항을 측정할 수 있습니다. 최대 42 채널까지 설정할 수 있습니다.

멀티플렉서의 채널 설정을 초기화하고 싶은 경우 참조: "7.7 초기화하기(리셋)"(p.134)

주의 사항

 Z3003 멀티플렉서 유닛의 접점에는 메커니컬 릴레이를 사용하고 있습니다. 메커니컬 릴레이는 수명이 있는 부품이므로 접점의 개폐가 적어지도록 프로그램을 작성하십시오.
 특히 2선식의 경우에는 TERM An(TERM Bn)→Am(TERM Bm)으로 전환하는 경우에 n과 m을 홀수번호→짝수번호 또는 짝수번호→홀수번호로 하기 보다는 홀수번호→홀수번호 또 는 짝수번호→짝수번호로 하는 편이 접점 개폐가 적어집니다.

(4W / 2W 전환 릴레이의 개폐를 줄일 수 있습니다) 참조: "8.2 내부 회로 구성"(p.146)

Ò

(예1)TERM A1 / B1 \rightarrow TERM A2 / B2 \rightarrow TERM A3 / B3 \rightarrow TERM A4 / B4 (예2)TERM A1 / B1 \rightarrow TERM A3 / B3 \rightarrow TERM A2 / B2 \rightarrow TERM A4 / B4 (예1)보다도 (예2) 쪽이 접점 개폐가 적어집니다.

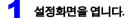
접점수명의 참고값

4선식인 경우: 5,000만번, 2선식인 경우: 500만번

채널 초기설정

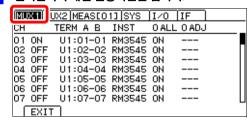
4선식의 경우

СН		UNIT	TERM A	TERM B
1	유효	1	TERM A1	TERM B1
2	무효	1	TERM A2	TERM B2
:	:	:	:	:
10	무효	1	TERM A10	TERM B10
11	무효	2	TERM A1	TERM B1
12	무효	2	TERM A2	TERM B2
:	:	:	:	:
20	무효	2	TERM A10	TERM B10
21	무효	1	TERM A1	TERM B1
22	무효	1	TERM A1	TERM B1
:	:	:	:	:
42	무효	1	TERM A1	TERM B1

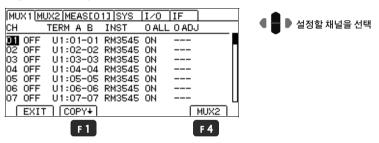

2선식의 경우

СН		UNIT	TERM A	TERM B
1	유효	1	TERM A1	TERM B1
2	무효	1	TERM A2	TERM B2
:	:	:	:	:
21	무효	1	TERM A21	TERM B21
22	무효	2	TERM A1	TERM B1
23	무효	2	TERM A2	TERM B2
:	:	:	:	:
42	무효	2	TERM A21	TERM B21

참조: "8.7 연결과 설정 예"(p.169)


8.3 멀티플렉서에 관한 설정

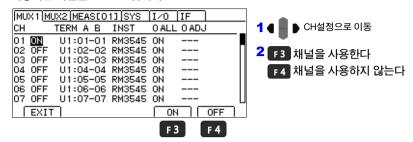
각 채널마다 연결이나 측정방법을 설정하기



2 멀티플렉서 채널 설정화면을 엽니다.

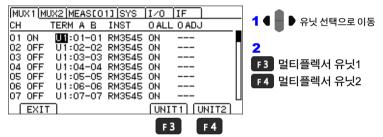
▲ ▶ 좌우 커서 키로 IMUX11탭으로 이동

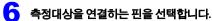
3 설정할 채널로 이동합니다.



< 편리하 사용법 >

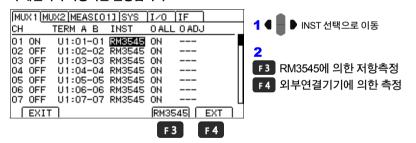
[1] 으로 선택한 채널의 설정을 다음 채널에 복사할 수 있습니다. (복사되는 설정은 화면에 표시되어 있는 항목뿐입니다. 단, 유닛 및 핀은 복사되지 않습니다)


F4 로 [MUX2]탭으로 이동할 수 있습니다.


4 사용하는 채널을 ON으로 합니다.



측정화면에서는 OFF로 설정한 채널을 선택할 수 없습니다. 또, OFF로 설정한 채널은 스 캔에서는 무시되므로 측정을 하지 않습니다.


5 측정대상을 연결하는 유닛을 선택합니다.

각 채널마다 측정기를 설정합니다.

주의 사항

스캔기능이 자동인 경우는 외부연결기기로 설정된 채널은 무시됩니다.

다른 채널의 설정에 대해서 상기 3 ~ 7의 조작을 반복합니다.

각 채널의 기본 측정조건 및 종합 판정조건을 설정하기

각 채널의 기본 측정조건을 일람으로 설정할 수 있습니다.

종합판정에 대해서

스캔측정을 실행한 뒤, 각 채널의 판정결과(콤퍼레이터 판정)로부터 종합판정을 합니다. 각 채널의 합격조건을 설정하여 전체 채널의 판정 결과가 합격조건을 충족하면 종합판정 결과는 "PASS"가 되고 EXT I/O 출력의 T_PASS 신호가 ON이 됩니다. 측정이상인 경우는 "------" (판정 불능)이 되어 EXT I/O의 T_ERR 신호가 ON이 됩니다. PASS도 ------도 아닌 경우는 "FAIL"이 되어 EXT I/O의 T_FAIL 신호가 ON이 됩니다.

합격조건	내용
OFF	무조건 PASS가 됩니다. 측정이상인 경우에도 PASS가 됩니다.
IN	채널의 판정 결과가 IN인 경우 PASS가 됩니다.(초기설정)
HI	채널의 판정 결과가 HI인 경우 PASS가 됩니다.
LO	채널의 판정 결과가 LO인 경우 PASS가 됩니다.
HI/LO	채널의 판정 결과가 HI 또는 LO인 경우 PASS가 됩니다.
ALL	채널의 판정 결과가 HI, LO 또는 IN인 경우에 PASS가 됩니다. 측정이상인 경우에는 PASS가 되지 않습니다.

종합판정 결과	판정 기준	EXT I/O출력
PASS	전체 채널의 판정 결과가 합격조건을 충족한 경우	T_PASS
FAIL	채널의 판정 결과가 1개라도 합격조건을 충족하지 않은 경우	T_FAIL
 (판정 불능)	어느 하나의 채널이 측정이상이나 에러인 경우 (FAIL보다 우선)	T_ERR

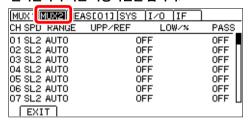
주의 사항

- 스캔 모드가 OFF인 경우는 종합판정 할 수 없습니다.
- 측정기기를 EXT(외부기기)로 설정한 채널은 종합판정에는 포함되지 않습니다.

콤퍼레이터의 판정 방법이 REF%인 경우, 기준치로써 채널1의 측정치를 사용할 수 있습니다.

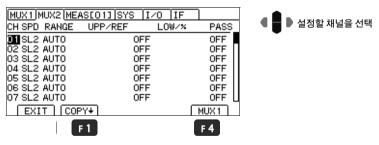
멀티플렉서의 채널 설정을 초기화하고 싶은 경우

참조: "7.7 초기화하기(리셋)"(p.134)


8.3 멀티플렉서에 관한 설정

기본 측정조건 설정하기

설정화면을 엽니다.

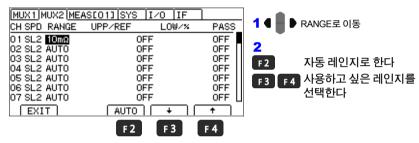


멀티플렉서 기본 측정화면을 엽니다.

● ● ● 좌우 커서 키로 [MUX2]탭으로 이동

3 설정할 채널로 이동합니다.

< 편리한 사용법 >


F1 으로 선택한 채널의 설정을 다음 채널에 복사할 수 있습니다. (복사되는 설정은 화면에 표시되어 있는 항목 및 [MEAS]탭의 전 항목입니다)

F4 로 [MUX1]탭으로 이동할 수 있습니다.

4 측정 속도를 설정합니다.

MUX1 MUX2 MEAS CH SPD RANGE I	[O1] SYS I/O IF JPP/REF LOW/%	PASS	1 ◀ ■ ▶ SPD (SPEED)로 이동
01 SL2 AUTO 02 SL2 AUTO 03 SL2 AUTO 04 SL2 AUTO 05 SL2 AUTO 06 SL2 AUTO 07 SL2 AUTO	OFF OFF OFF OFF OFF OFF	OFF OFF OFF OFF OFF	2 F1 측정 속도를 FAST로 한다 F2 측정 속도를 MEDIUM으로 한다 F3 측정 속도를 SLOW1로 한다 F4 측정 속도를 SLOW2로 한다
EXIT FAST		F 4	

5 측정 레인지를 설정합니다.

주의 사항

자동 레인지를 선택한 경우, 콤퍼레이터 설정을 ON으로 할 수 없습니다. 콤퍼레이터를 사용하는 경우에는 미리 측정 레인지를 설정하십시오.

8.3 멀티플렉서에 관한 설정

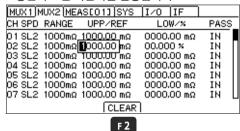
콤퍼레이터를 설정합니다.

1. 판정방법을 정합니다.

MUX1 MUX2 MEAS[01] SYS	I/0 IF		Ī
CHISPD RANGE UPP/REF	LOW/%	PASS	1
01 SL2 1000mΩ 1000.00 mΩ	0000.00 mΩ	IN	
02 SL2 1000mΩ <mark>1000.00</mark> mΩ	00,000 %	IN	2
03 SL2 1000mΩ 1000.00 mΩ	0000.00 mΩ	IN	_
04 SL2 1000mΩ 1000.00 mΩ	0000.00 mΩ	IN	
05 SL2 1000mΩ 1000.00 mΩ	0000.00 mΩ	IN	
06 SL2 1000mΩ 1000.00 mΩ	0000.00 mΩ	IN	
07 SL2 1000mΩ 1000.00 mΩ	0000.00 mΩ	IN	
P.1/2 ON/OFF ABS	REF% E	DIT	
MENU F 1 F 2	F3	4	3

【 ¶ ■ D UPP/REF로이동

2 F1 ON / OFF를 전환


F2 판정 모드를 ABS (UPP, LOW) 로 설정

F3 판정 모드를 REF%로 설정

5 F 4 수치 편집할 수 있게 한다.

MENU REF% 모드에서 CH1 이외인 경우는 MENU P.2/2에서 **F2** 를 누름으로써 CH1의 측 정결과를 기준치로 할 수 있습니다.

2. 상한치 또는 기준치를 설정합니다.

● ▶자릿수이동● ▶수치 변경 좌우 커서 키로 설정하고 싶은 자릿수에 커서를 이동 상하 커서 키로 수치를 변경

2 ENTER 확정

(🕵 취소)

수치를 다시 설정하고 싶을 때는

F2 를 눌러 clear합니다. 값이 0이 됩니다.

3. 하한치 또는 허용범위를 설정합니다. 좌우 커서 키로 LOW/±%로 이동하여, 하한치 또한 상대치도 마찬가지로 설정합니다.

합격조건을 설정합니다. (스캔기능이 자동 또는 스텝인 경우만)

14

PASS CONDITION 항목에 커서를 이동

2 F1 합격조건을 OFF로 한다

F3 F4 합격조건을 선택

응 측정화면으로 돌아갑니다.

MENU 측정화면으로 돌아가기

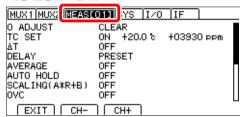
각 채널의 측정조거을 커스터마이즈하기

각 채널의 측정조건을 설정합니다.

참조: "채널의 핀 할당을 커스터마이즈하기"(p.152)

멀티플렉서의 채널 설정을 초기화하고 싶은 경우

참조: "7.7 초기화하기(리셋)"(p.134)


설정화면을 엽니다.

1 MENU 기능 메뉴를 P.2/3으로 전환

2 F4 설정화면 표시

2 측정 설정화면을 엽니다.

● ●좌우 커서 키로「MEAS]탭으로 이동

축정조건을 설정할 채널을 선택합니다.

1 F1 CH-: 채널을 변경(감소)

2 F2 CH+: 채널을 변경(증가)

- 4 측정조건을 설정합니다.
 - < 편리한 사용법 >

각 항목에서 🔼 🔽 로 채널을 변경할 수 있습니다.(참조 : p.63)

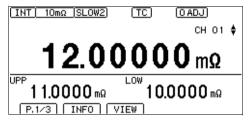
각 측정조건을 다음 채널에 복사할 수 있습니다.(참조: p.158)

MENU 측정화면으로 돌아가기

8.4 멀티플렉서로 측정하기

수동 조작으로 채널을 전환하여 측정하기

수동 조작으로 채널을 변경하면서 측정합니다.


미리 "멀티플렉서 설정하기"(p.148), "각 채널의 측정조건을 커스터마이즈하기"(p.161)를 참조하여 설정해 두십시오.

▲ 스캔기능을 OFF로 합니다.

참조: "멀티플렉서 설정하기"(p.148)

수동 조작으로 채널을 변경합니다. 변경한 채널의 측정조건이 적용되어 측정합니다.

또, 측정화면에서 직접 측정 레인지 • 속도 • 콤퍼레이터 설정을 변경할 수 있습니다.

■ ■ ▶ 채널을 선택

채널 조작이 가능한 것 외에는 정면단자의 측정과 동일합니다.

스캔 측정하기

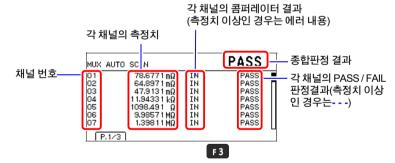
각 채널을 순서대로 연속해서 측정합니다.

미리 "멀티플렉서 설정하기"(p.148), "각 채널의 측정조건을 커스터마이즈하기"(p.161)를 참조하여 설정해 두십시오.

스캔기능을 자동 또는 스텝으로 합니다.

참조: "멀티플렉서 설정하기"(p.148)

주이 사항


스캔기능이 스텝인 경우는 채널마다 트리거를 입력할 필요가 있습니다. 스캔기능이 자동인 경우는 1번의 트리거로 전 채널을 측정합니다.

2 외부 트리거를 입력하여 측정합니다.(트리거 입력: EXT I/O의 TRIG 신호, ENTER (트리거) 키, *TRG 커맨드)

주의 사항

- 스캔기능이 자동 또는 스텝인 경우, 트리거 소스는 외부 트리거[EXT]가 됩니다.
- 스캔기능이 자동 또는 스텝인 경우, 측정화면에서 레인지, 콤퍼레이터, 속도 변경은 할 수 없습니다. 레인지, 콤퍼레이터, 속도 변경은 설정화면에서 실행하십시오.
- 스캔기능이 자동인 경우는 외부연결기기에 설정된 채널은 무시됩니다.

측정 결과가 표시됩니다.

스캔 중에 F3 [STOP]으로 스캔 정지합니다.

- 스캔기능이 자동인 경우
 스캔 도중인 경우, 스캔을 정지합니다.
- 스캔기능이 스텝인 경우
 채널 도중인 경우, 첫 채널로 돌아갑니다.

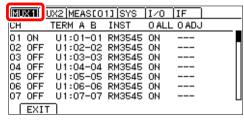
주의 사항

스캔 측정 중에는 스탠바이 키, F3 [STOP]이외는 사용할 수 없습니다.

8.5 영점 조정하기 (멀티플렉서 유닛 장착 시)

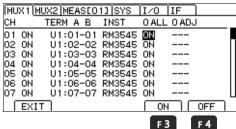
영점 조정을 실행하기

스캔 영점 조정하기 (스캔기능이 자동 또는 스텝인 경우만)


선택한 모든 채널의 영점 조정이 실행됩니다. 유효 채널이 많은 경우, 수십초 걸리지만 측정 레인 지를 수동 레인지로 함으로써 시간을 단축할 수 있습니다.

설정화면을 엽니다.

(이미 설정을 끝낸 경우에는 스텝4로)



- 1 MENU 기능 메뉴를 P.2/3으로 전환
- **2** F4 설정화면 표시
- 2 멀티플렉서 채널 설정화면을 엽니다.

● ■ ■ **●** 좌우 커서 키로 [MUX1]탭으로 이동

3 영점 조정을 실행할 채널을 설정합니다.

- 1 ◀ ▶ 설정할 채널을 선택
- 2 4 ▶ 0 ALL항목으로 이동
- **3** F3 영점 조정한다

F 4 영점 조정하지 않는다

영점 조정이 이미 실행된 채널은 0 ADJ 가 **DONE**이 됩니다. 영점 조정이 미실행된 채널은 0 ADJ가 -

영점 조정이 미실행된 채널은 0 ADJ가 --이 됩니다.

4 각 채널에 0 Ω을 연결합니다.

참조: "부록6 영점 조정에 대해서"(p. 부7)

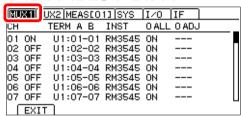
5 [4] 영점 조정을 실행합니다.

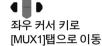
참조: "4.3 영점 조정하기"(p.68)

주의 사항

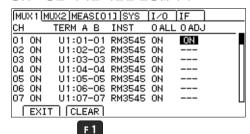
측정기가 외부기기로 설정되어 있는 채널은 영점 조정할 수 없습니다.

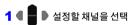
영점 조정을 해제하기

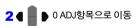

영점 조정의 해제방법은 멀티플렉서 채널 설정화면에서 실행하는 방법과 측정 설정화면에서 실 행하는 방법의 2 종류가 있습니다.


멀티플렉서 채널 설정화면에서 실행하기

설정화면을 엽니다.



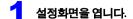

멀티플렉서 채널 설정화면을 엽니다.

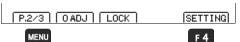


3 영점 조정을 해제할 채널을 설정합니다.

영점 조정이 이미 실행된 채널은 0 ADJ 가 DONE이 됩니다. 영점 조정이 미실행된 채널은 0 ADJ가 -

--이 됩니다.


4 F1 영점 조정의 해제를 선택합니다. 확인 메시지가 표시되므로 F2 [OK]를 선택합니다.


5 측정화면으로 돌아갑니다.

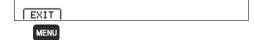
8.5 영점 조정하기 (멀티플렉서 유닛 장착 시)

측정 설정화면에서 실행하기

- 1 MENU 기능 메뉴를 P.2/3으로 전환
- 2 F4 설정화면 표시

측정 설정회면을 엽니다.

0 ADJUST를 선택합니다.

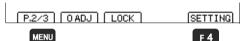


F3 모든 채널의 영점 조정 해제

F4 선택 채널의 영점 조정 해제

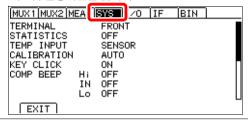
- 확인 메시지가 표시되므로 F2 [OK]를 선택합니다.
- 측정화면으로 돌아갑니다.

MENU 측정화면으로 돌아가기

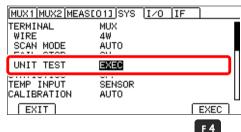

8.6 멀티플렉서 유닛의 테스트를 실행하기

멀티플렉서 유닛의 동작확인을 실행합니다.

주의 사항


정면 측정단자에 측정 리드를 연결하지 마십시오.

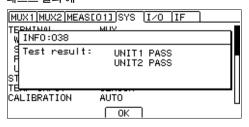
설정화면을 엽니다.


- 1 MENU 기능 메뉴를 P.2/3으로 전환
- 2 🕶 설정화면 표시

2 시스템 설정화면을 엽니다.

3 유닛 테스트를 실행합니다.

UNIT TEST를 선택 (UNIT TEST는 TERMINAL을 MUX 로 설정했을 때만 표시됩니다)

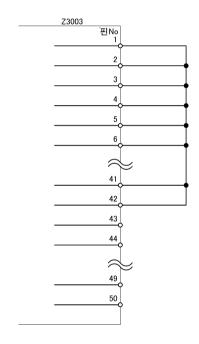

2 pin1 ~ pin42을 단락

참조: "유닛 테스트의 연결"(p.168)

3 F4 실행

확인 메시지 및 릴레이의 개폐횟수 를 표시한 뒤, 단락 저항치 체크를 실 행하여 결과를 표시합니다.

테스트 결과 예

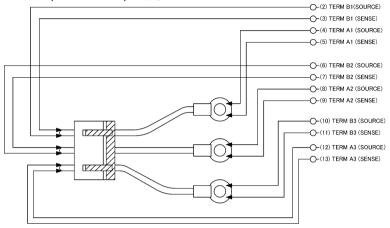

Blown FUSE. 표시가 나오는 경우 는 측정회로 보호용 퓨즈가 끊어져 있 습니다. 퓨즈를 교체하십시오.

참조: "14.2 측정회로 보호용 퓨즈의 교체 "(p.299)

4	측정화면으로 돌아갑니다.	
	EXIT	MENU 측정화면으로 돌아가기
	MENU	

유닛 테스트의 연결

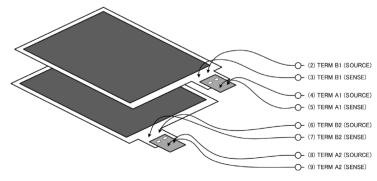
유닛 테스트를 할 때에는 다음과 같이 핀 No.1~42를 단락시켜 주십시오.



주의 사항

- 단락 배선의 저항도 테스트에 포함됩니다. 커넥터의 핀에 가까운 위치에서 단락하여 배선이 짧아지도록 하십시오.
- 핀 No.43 및 44는 단락시키지 마십시오. 가드단자이기 때문에 단락하면 올바르게 테스트할 수 없게 됩니다.

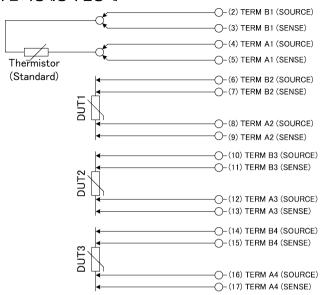
8.7 연결과 설정 예


케이블 어셈블리(와이어 하네스)의 설정 예

MUX 설정

CH	INST.	UNIT	TERM A	TERM B
1	RM3545	UNIT1	1	1
2	RM3545	UNIT1	2	2
3	RM3545	UNIT1	3	3

배터리 단자 용접부의 설정 예



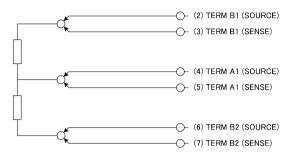
MUX 설정

СН	INST.	UNIT	TERM A	TERM B
1	RM3545	UNIT1	1	1
2	RM3545	UNIT1	2	2

8.7 연결과 설정 예

온도 의존성이 큰 측정대상의 설정 예

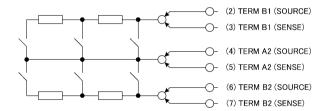
채널1(서미스터)의 측정결과를 콤퍼레이터 기준치로 하기


MUX 설정

CH	INST.	UNIT	TERM A	TERM B
1	RM3545	UNIT1	1	1
2	RM3545	UNIT1	2	2
3	RM3545	UNIT1	3	3
4	RM3545	UNIT1	4	4

MEAS 설정

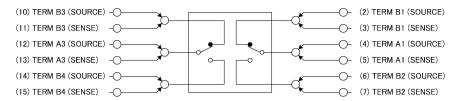
MEAS탭	COMP	REF	%
MEAS[01]	OFF		
MEAS[02]	REF%	CH01	5.0
MEAS[03]	REF%	CH01	5.0
MEAS[04]	REF%	CH01	5.0


네트워크 저항기의 설정 예

MUX 설정

CH	INST.	UNIT	TERM A	TERM B
1	RM3545	UNIT1	1	1
2	RM3545	UNIT1	1	2

스티어링 스위치의 설정 예

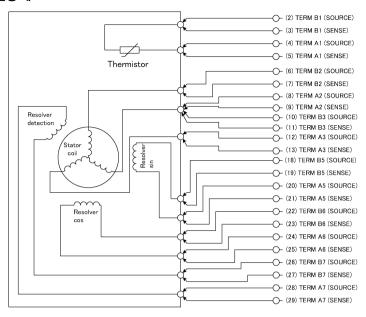

MUX 설정

CH	INST.	UNIT	TERM A	TERM B
1	RM3545	UNIT1	2	1
2	RM3545	UNIT1	2	1
3	RM3545	UNIT1	2	1
4	RM3545	UNIT1	2	2
5	RM3545	UNIT1	2	2
6	RM3545	UNIT1	2	2

(스텝스캔을 사용하고 채널 간에서 각 스위치를 ON / OFF)

8.7 연결과 설정 예

전력용 스위치의 설정 예

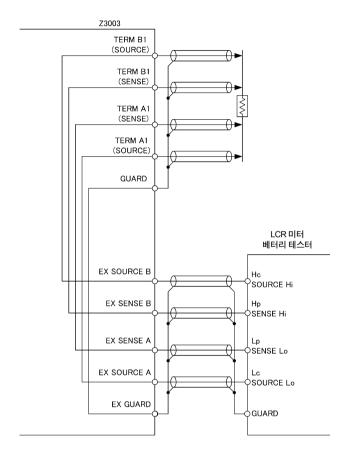


MUX 설정

CH	INST.	UNIT	TERM A	TERM B
1	RM3545	UNIT1	1	1
2	RM3545	UNIT1	1	2
3	RM3545	UNIT1	1	1
4	RM3545	UNIT1	1	2
5	RM3545	UNIT1	3	3
6	RM3545	UNIT1	3	4
7	RM3545	UNIT1	3	3
8	RM3545	UNIT1	3	4

(스텝스캔을 사용하고 채널 2/3 간, 채널 6/7 간에서 각 스위치를 전환, 채널 2/3/6/7은 1000 MΩ 레인지에 의한 개방저항측정)

모터의 설정 예



MUX 설정

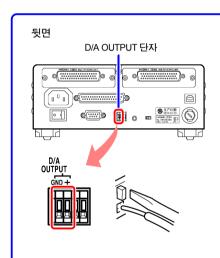
CH	INST.	UNIT	TERM A	TERM B
1	RM3545	UNIT1	1	1
2	RM3545	UNIT1	2	2
3	RM3545	UNIT1	3	3
4	RM3545	UNIT1	3	2
5	RM3545	UNIT1	5	5
6	RM3545	UNIT1	6	6
7	RM3545	UNIT1	7	7

8.7 연결과 설정 예

외부기기의 연결

외부기기 사용시에도 정면 패널 • 통신 • EXT I/O에 의해 채널 전환이 가능합니다.

D/A 출력


제 9 장

사용하시기 전에 "D/A출력을 사용하기 전에"(p.14)를 주의 깊게 읽으십시오.

본 기기에서는 저항측정치의 D/A 출력이 가능합니다. D/A 출력을 로거 등에 연결함으로써 저항치의 변화를 간단히 기록할 수 있습니다.

D/A출력을 연결하기 9.1

본 기기 뒷면의 D/A OUTPUT 단자에 케이블을 연결합니다.

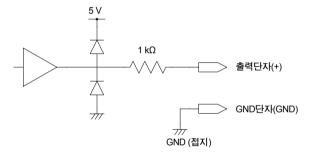
- 버튼을 십자 드라이버 등의 공구로 누릅니다.
- 버튼을 누른 상태에서 연결구멍에 도 선을 끼워넣습니다.
- 🤼 버튼에서 손을 떼면 도선이 고정됩니 다. 도선을 분리할 때도 같은 순서로 합니다.

적합 도선 : 단선 AWG22 (60.65 mm)

AWG22 (0.32 mm²) 연선

소선경 60.12 mm 이상

: 다서 AWG28(ϕ 0.32 mm) ~ AWG22 (ϕ 0.65 mm) 사용 가능 도선


 $AWG28(0.08 \text{ mm}^2) \sim AWG22 (0.32 \text{ mm}^2)$ 연선

소선경 ₀0.12 mm 이상

표준 벗긴 선 길이 : 8 mm

9.2 D/A 출력 사양

출력 내용	저항측정치 (영점 조정 및 온도보정 후, 스케일링 및 ΔT 연산 전의 표시치)					
출력 전압	DC 0 V(0dgt.에 대응) ~ 1.5 V(*) 측정치 이상인 경우는 1.5 V, 측정치가 마이너스가 되는 경우는 0 V * 1,200,000 dgt. 표시인 경우는 1.2 V(1,200,000 dgt.)에 대응 120,000 dgt. 표시인 경우는 1.2 V(120,000 dgt.)에 대응 12,000 dgt. 표시인 경우는 1.2 V(12,000 dgt.)에 대응 1.5 V를 넘는 표시인 경우는 1.5 V 고정					
최대 출력 전압	5 V					
출력 임피던스	1 kΩ					
비트수	12bit					
출력 정확도	저항측정 정확도 ± 0.2%f.s. (온도계수 ± 0.02%f.s./ ℃)					
응답시간	축정시간 + 최대 1 ms 최단 2.0 ms (허용차 ± 10% ± 0.2 ms) 최단 조건 트리거 소스 INT, LP: OFF, 1000 kΩ 레인지 이하, 측정 속도: FAST, 딜레이: 0 ms, 셀프 캘리브레이션: MANUAL					

주의 사항

- D/A출력의 GND 단자는 접지(케이스 금속부분)에 연결되어 있습니다.
- 출력 임피던스는 1 kΩ 입니다. 연결하는 기기의 입력 임피던스는 10 MΩ 이상인 것을 사용하십시오.(출력전압이 출력저항과 입력 임피던스로 분압됩니다. 예를 들면 입력 임피던스가 1 MΩ인 경우, 출력전압이 0.1 % 낮아집니다.)
- 케이블을 연결함으로써 외래 노이즈가 들어오는 경우가 있습니다. 필요에 따라 연결하는 기기 에서 대역제한필터 등을 사용하십시오.
- 저항측정의 샘플링 타이밍으로 출력전압이 갱신됩니다.
- 기록한 파형이 계단 형태가 됩니다.(갱신주기에 비해 출력회로 응답이 매우 빠르기 때문)
- 자동 레인지에서는 레인지 전환에 의해 같은 저항치라도 출력전압이 1/10(또는 10 배)이 됩니다. 수동 레인지로 사용할 것을 권장합니다.
- 설정 변경 시(레인지 전환 등), 전원 OFF 시는 출력이 0 V로 설정됩니다. 또 뒷면의 주 전원 스위 치를 ON으로 한 순간에는 최대 출력전압 내에서 불안정한 전압이 출력됩니다.
- D/A 출력의 응답시간을 가장 빠르게 하기 위해서는 측정 속도를 FAST로 하고 셀프 캘리브레이션을 수동으로 하십시오.(참조:"3.3 측정 속도 설정하기"(p.50), "4.12 측정 정밀도를 유지하기 (셀프 캘리브레이션 기능)"(p.92))

외부 제어 (EXT I/O)

제 10 장

본 기기 뒷면의 EXT I/O커넥터를 이용함으로써 EOM 신호나 판정결과 신호 등을 출력하거나 TRIG 신호와 KEY_LOCK 신호 등을 입력하여 본 기기를 제어할 수 있습니다. 모든 신호는 측정회로 및 접지(어스)로부터 절연되어 있습니다.(입출력의 코먼단자는 공통) 입력회로는 스위치를 통해서 전류싱크출력(NPN) 혹은 전류소스출력(PNP)에 대응하도록 전환할 수 있습니다.

입출력의 정격이나 내부회로 구성을 확인하고 안전에 관한 주의사항을 이해하신 후에 제어 시스 템과 연결하여 올바르게 사용하십시오.

컨트롤러의 입출력 사양을 확인한다

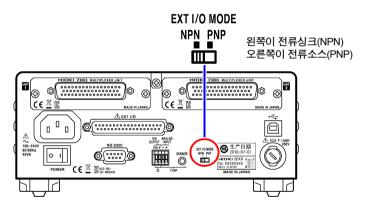
본 기기의 NPN / PNP 스위치를 설정한다(p.178)

본 기기의 EXT I/O 커넥터와 제어 기기(컨트롤러)를 연결한다(p.179)

본 기기를 설정한다(p.209)

10.1 외부 입출력단자와 신호에 대해서

전류싱크(NPN) / 전류소스(PNP)를 전환하기

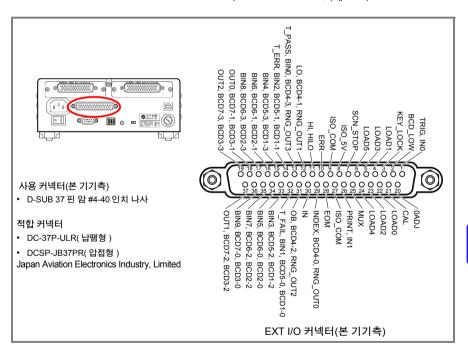

전환하기 전에 "전류싱크(NPN) / 전류소스(PNP)를 전환하기 전에"(p.12)를 잘 읽어 주십시오.

NPN / PNP 스위치를 이용해 대응할 수 있는 PLC(Programmable Controller)의 종류를 변경할 수 있습니다.

출하 시는 NPN 쪽에 설정되어 있습니다.

李멌":"10.3 내부 회로 구성"(p.204)

	NPN / PNP 스위치 설정				
	NPN	PNP			
RM3545 입력회로	싱크 출력에 대응	소스 출력에 대응			
RM3545 출력회로	무극성	무극성			
ISO_5V 출력	+5V 출력	-5V 출력			


사용 커넥터와 신호 배치

커넥터에 연결하기 전에 "EXT I/O 커넥터에 연결하기 전에"(p.13)를 잘 읽어 주십시오.

EXT I/O를 사용함으로써 다음 제어가 가능합니다.

- 측정 시작(TRIG) → 측정 종료(EOM, INDEX)
 - → 판정결과 취득(HI, IN, LO, ERR, T_ERR, T_PASS, T_FAIL) (T_PASS, T_FAIL, T_ERR는 스캔기능이 자동 또는 스텝인 경우만)
- 측정 시작(TRIG) → 측정 종료(EOM, INDEX)
 - → 측정치 취득(BCD_LOW, BCDm-n, RNG_OUTn)
- 패널 로드(LOAD0 ~ LOAD5, TRIG)
- 멀티플렉서 채널 지정(MUX, LOAD0 ~ LOAD5, TRIG)
- 범용 입출력(IN0. IN1. OUT0. OUT1. OUT2)

외부 I/O의 입출력 확인에는 "입출력 테스트하기(EXT I/O 테스트 기능)"(p.218)가 편리합니다.

10.1 외부 입출력단자와 신호에 대해서

핀	신호명	I/O	기능	논리	핀	신호명	I/O	기능	논리
1	TRIG, IN0	IN	외부 트리거 범용 입력	에지 (edge)	20	0ADJ	IN	영점 조정	에지 (edge)
2	BCD_LOW	IN	BCD 하위 바이트 출력	레벨	21	CAL	IN	셀프 캘리브레이션 실행	에지 (edge)
3	KEY_LOCK	IN	키 록	레벨	22	LOAD0	IN	패널 로드, 채널 지정	레벨
4	LOAD1	IN	패널 로드, 채널 지정	레벨	23	LOAD2	IN	패널 로드, 채널 지정	레벨
5	LOAD3	IN	패널 로드, 채널 지정	레벨	24	LOAD4	IN	패널 로드, 채널 지정	레벨
6	LOAD5	IN	패널 로드, 채널 지정	레벨	25	MUX	IN	멀티플렉서 선택	레벨
7	SCN_STOP	IN	스캔 정지	에지 (edge)	26	PRINT, IN1	IN	측정치 인쇄 범용 입력	에지 (edge)
8	ISO_5V	-	절연전원+5V (-5V) 출력	-	27	ISO_COM	-	절연전원 코먼	-
9	ISO_COM	-	절연전원 코먼	-	28	EOM	OUT	측정 종료	레벨
10	ERR	OUT	측정이상	레벨	29	INDEX, BCD4-0, RNG_OUT0	OUT	아날로그 계측 종료 BCD	레벨
11	HI, HILO	OUT	콤퍼레이터 판정	레벨	30	IN	OUT	콤퍼레이터 판정	레벨
12	LO, BCD4-1, RNG_OUT1	OUT	콤퍼레이터 판정 BCD	레벨	31	OB, BCD4-2, RNG_OUT2	OUT	BIN 판정 BCD	레벨
13	T_PASS, BIN0, BCD4-3, RNG_OUT3	OUT	종합판정 BIN 판정 BCD	레벨	32	T_FAIL, BIN1, BCD5-0, BCD1-0	OUT	종합판정 BIN 판정 BCD	레벨
14	T_ERR, BIN2, BCD5-1, BCD1-1	OUT	종합판정 BIN 판정 BCD	레벨	33	BIN3, BCD5-2, BCD1-2	OUT	BIN 판정 BCD	레벨
15	BIN4, BCD5-3, BCD1-3	OUT	BIN 판정 BCD	레벨	34	BIN5, BCD6-0, BCD2-0	OUT	BIN 판정 BCD	레벨
16	BIN6, BCD6-1, BCD2-1	OUT	BIN 판정 BCD	레벨	35	BIN7, BCD6-2, BCD2-2	OUT	BIN 판정 BCD	레벨
17	BIN8, BCD6-3, BCD2-3	OUT	BIN 판정 BCD	레벨	36	BIN9, BCD7-0, BCD3-0	OUT	BIN 판정 BCD	레벨
18	OUT0, BCD7-1, BCD3-1	OUT	범용 출력 BCD	레벨	37	OUT1, BCD7-2, BCD3-2	OUT	범용 출력 BCD	레벨
19	OUT2, BCD7-3, BCD3-3	OUT	범용 출력 BCD	레벨					

주의 사항

- 멀티플렉서에 관한 제어는 RM3545-02 만 사용할 수 있습니다.
- 0ADJ 신호는 10 ms 이상 ON으로 하지 않으면 유효화되지 않습니다.
- 커넥터 프레임은 본 기기 뒷면 패널(금속부)에 연결됨과 동시에 전원 Inlet의 보호접지단자에 연결되어 있습니다.

커맨드와 키 조작으로 패널 로드와 멀티플렉서 채널을 전환하는 경우에는 $4\sim6$ 및 $22\sim24$ 핀모두를 ON 또는 OFF로 고정하십시오.

각 신호의 기능

(1) 절연전원

퓌	신호명	NPN / PNP 스위치 설정			
긴	연포장	NPN	PNP		
8	ISO_5V	절연전원 +5 V	절연전원 -5 V		
9, 27	ISO_COM	절연전원 코먼			

(2) 입력 신호

	TRIG 신호는 ON 에지 또는 OFF 에지에서 동작합니다. 에지 방향은 EXT I/O 설정화면에서 설정할 수 있습니다.(초기설정: ON 에지) • 트리거 소스가 외부[EXT]인 경우 TRIG 신호에 의해 한 번 측정합니다. • 트리거 소스가 내부[INT]인 경우 TRIG 신호에 의한 측정은 하지 않습니다. 레인지 전환과 패널 로드 뒤에 측정치가 안정될 때까지 대기할 필요가 있습니다. 대기시간은 측정대상에 따라서 다릅니다. TRIG 신호가 입력되고나서 직후에 갱신된 측정치에 대해 통계 연산(p.111)이나 데이터 메모리(p.235)를 실행합니다. 트리거 입력은 ENTER(트리거) 키나 *TRG 커맨드로도 실행할 수 있습니다.	p.211
	0ADJ 신호를 OFF에서 ON으로 하면 그 에지에서 1회 영점 조정을 실행합니다. <u>오동작 방지를 위해 10 ms 이상 ON을 유지하십시오.</u> 영점 조정에 실패하면 ERR 신호가 ON이 됩니다.	p.68
PRINT	PRINT 신호를 OFF에서 ON으로 하면 그 에지에서 현재의 측정치를 인쇄합니다.	p.242
	셀프 캘리브레이션 수동 설정으로 CAL 신호를 OFF에서 ON으로 하면 그 에지에서 셀프 캘리브레이션을 시작합니다. 셀프 캘리브레이션 자동 설정인 경우는 무효입니 다. 셀프 캘리브레이션에 걸리는 시간은 약 400 ms 입니다. 측정 중에 입력한 경우, 측정 종료 후에 실행됩니다.	p.92
	KEY_LOCK 신호가 ON일 때, 본 기기 정면의 키 조작(스탠바이 키, ENTER(트리거)키 이외)은 모두 무효가 됩니다.(잠금해제, 리모트상태 해제의 키 조작도 무효입니다.)	p.126
MUX	MUX신호에 의해 LOAD신호(4, 5, 6, 22, 23, 24 핀)의 기능이 바뀝니다.	p.185

10.1 외부 입출력단자와 신호에 대해서

SCN_STOP	채널 리셋 신호입니다. 스캔기능이 자동 또는 스텝일 때만 유효합니다.	p.148
	스캔기능이 자동인 경우: SCN_STOP 신호가 ON이 되면 스캔 중지를 예약하고 측정 종료 후에 스캔을 중지합 니다. 다음 TRIG 신호가 ON이 되면 첫 채널부터 측정을 시작합니다. 오동작 방지를 위해 5 ms 이상 ON을 유지하십시오.	
	스캔기능이 스텝인 경우: TRIG 신호대기 상태에서 SCN_STOP 신호가 ON이 되면 다음 TRIG 신호 ON에서 첫 채널의 측정이 됩니다. 오동작 방지를 위해 5 ms 이상 ON을 유지하십시오.	
BCD_LOW	BCD 출력설정으로 사용하고 있을 때, BCD_ LOW를 OFF로 하면 상위 자릿수를 출력합니다. BCD_ LOW를 ON으로 하면 하위 자릿수 및 레인지 정보를 출력합니다.	p.184
LOAD5	패널 로드할 패널번호나 멀티플렉서 채널을 선택하여 TRIG 신호를 입력하면, 선택한 패널 및 채널번호의 로딩이나 채널 전환을 해 측정합니다. LOAD0가 LSB, LOAD5가 MSB 입니다. 자세히는 "(4) 신호대응표"(p.185)를 참조하십시오. TRIG 신호 입력 시 LOAD0 ~ LOAD5가 전회와 동일한 경우, 패널 로드나 채널 전환은 실행하지 않고, 외부 트리거의 경우는 보통의 TRIG 신호로써 1회 측정을 실시합니다. 또한 어느 한 LOAD 신호가 유효한 상태로 변화하여 그 후 10 ms 동안 변경이 없는 경우에는 TRIG 신호를 입력하지 않아도 패널 로드나 채널 전환을 실행합니다. 로드나 전환이 완료할 때까지 LOAD0 ~ LOAD5 신호는 변경하지 마십시오. 통신으로 제어하고 있는 경우(리모트 상태)에서도 LOAD 신호는 유효합니다. 유효한패널번호 및 채널번호의 LOAD 신호가 ON일 때는 키 조작이 모두 무효가 됩니다. 커맨드와 키 조작으로 패낼 로드나 채널 전환을 할 경우는 4~6 및 22~24핀 모두를 ON 또는 OFF로 고정하십시오. 스캔기능이 자동 또는 스텝인 경우, LOAD0 ~ LOAD5 신호에서 채널 변경은 할 수 없습니다. 멀티플렉서로 전환하려고 했을 때, 정면 측정단자에 측정 리드가 연결되어 있으면 ERR 신호가 ON이 되어 전환할 수 없습니다. 촉정 리드를 분리하고 다시 LOAD 신호를 전환하십시오.	p.185
INO, IN1	범용 입력단자로써 : IO: INPut? 커맨드로 입력 상태를 감시할 수 있습니다. <mark>李몄</mark> ": 부속 애플리케이션 디스크의 통신 커맨드 사용설명서	

(3) 출력 신호

EOM	측정 및 영점 조정 종료신호입니다. 이 시점에서 콤퍼레이터 판정 결과, ERR, BCD, BIN신호는 확정되어 있습니다.					
INDEX	측정회로의 A/D변환이 종료했다는 것을 나타내는 신호입니다. 이 신호가 OFF에서 ON이 되면 측정대상을 프로브에서 분리해도 됩니다.					
ERR	측정이상(오버 검출을 제외)일 때 출력됩니다. EOM 신호와 동시에 갱신됩니다. 이때 콤퍼레이터 판정 결과 출력은 모두 OFF가 됩니다.					
HI, IN, LO	콤퍼레이터의 판정결과입니다.					
HILO	BCD 출력설정을 한 경우, 11핀은 Hi판정과 Lo판정의 OR을 출력합니다.					
T_PASS, T_FAIL, T_ERR	종합판정결과입니다. 스캔기능이 자동 또는 스텝일 때만 유효합니다.	p.157				
BCDm-n	BCD 출력설정을 한 경우, m자리의 n비트를 출력합니다.(BCD1-x가 최하위 자릿수, BCDx-0이 LSB입니다) 측정치 표시가 "OvrRng", "CONTACT TARM" 혹은 ""인 경우, BCD 출력은 모든 자릿수가 "9"가 됩니다. 측정치 표시가 마이너스인 경우, BCD 출력은 모든 자릿수가 "0"이 됩니다. 하한치를 0으로 설정하고, 마이너스 측정치가 된 경우에는 표시부의 결과에 따라 LO 신호를 출 력합니다. 단, 콤퍼레이터의 REF%모드로 한 경우에는 표시된 상대치의 부호가 없는 값(절대치)을 출력합니다.	p.186				
OB, BIN0 ~ BIN9	BIN 출력 설정 시, 13 ~ 17, 31 ~ 36 핀에서 BIN 판정 결과를 출력합니다. BINO ~ BIN9에 해당하지 않는 경우, OB가 ON이 됩니다.					
OUT0 ~ OUT2	출력 모드가 "판정 모드"일 때, 18, 19, 37 핀을 범용 출력단자로써 이용할 수 있습니다. :IO:OUTPut 커맨드로 출력신호를 제어할 수 있습니다. *였":부속 애플리케이션 디스크의 통신 커맨드 사용설명서	p.217				
RNG_OUT0 ~ RNG_OUT3	BCD 출력 설정을 했을 때, BCD_ LOW를 ON으로 하면 12, 13, 29, 31핀에서 레인지 정보를 취득할 수 있습니다.	p.186				

주의 사항

- 측정화면이 아닐 때, 에러 등 메시지(설정 모니터 에러 제외) 표시 중인 상태에서는 입력신호가 무효가 됩니다.
- 본 기기 내부에서 측정조건을 변경하고 있는 동안은 EXT I/O의 입출력 신호를 이용할 수 없습니다.

10.1 외부 입출력단자와 신호에 대해서

판정 모드와 BCD 모드

출력신호에는 판정 모드와 BCD 모드가 있습니다. 판정 모드의 출력신호는 멀티플렉서 사용시와 미사용시일 때 다릅니다. BCD 모드는 더 상위 자릿수, 하위 자릿수(및 레인지 정보)에서 기능을 겸용하고 있습니다.

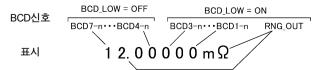
李咒":"출력 모드(판정 모드 / BCD 모드) 전환하기"(p.217)

판정 모드에서의 단자 기능

(멀티플렉서 미사용시)

핀	기능	핀	기능
9	ISO_COM	28	EOM
10	ERR	29	INDEX
11	HI	30	IN
12	LO	31	ОВ
13	BIN0	32	BIN1
14	BIN2	33	BIN3
15	BIN4	34	BIN5
16	BIN6	35	BIN7
17	BIN8	36	BIN9
18	OUT0	37	OUT1
19	OUT2		

(멀티플렉서 사용시)


	,		
핀	기능	핀	기능
9	ISO_COM	28	EOM
10	ERR	29	INDEX
11	HI	30	IN
12	LO	31	-
13	T_PASS	32	T_FAIL
14	T_ERR	33	-
15	-	34	-
16	-	35	-
17	-	36	-
18	OUT0	37	OUT1
19	OUT2		

BCD 모드에서의 단자 기능

BCD의 상위 자릿수, 하위 자릿수(및 레인지 정보)는 BCD LOW 신호로 전환합니다.

771	BCD	_LOW	771	BCD_LOW		
핀	OFF	ON	핀	OFF	ON	
9	ISO_	СОМ	28	E	OM	
10	EF	RR	29	BCD4-0	RNG_OUT0	
11	HI	LO	30	IN		
12	BCD4-1	RNG_OUT1	31	BCD4-2	RNG_OUT2	
13	BCD4-3	RNG_OUT3	32	BCD5-0	BCD1-0	
14	BCD5-1	BCD1-1	33	BCD5-2	BCD1-2	
15	BCD5-3	BCD1-3	34	BCD6-0	BCD2-0	
16	BCD6-1	BCD2-1	35	BCD6-2	BCD2-2	
17	BCD6-3	BCD2-3	36	BCD7-0	BCD3-0	
18	BCD7-1	BCD3-1	37	BCD7-2 BCD3-2		
19	BCD7-3	BCD3-3				

BCD신호와 표시의 관계

(4) 신호대응표 LOAD0~LOAD5

LOAD0 ~ I	LOAD5						
LOAD5	LOAD4	LOAD3	LOAD2	LOAD1	LOAD0	MUX 신호 OFF	MUX 신호 ON
OFF	OFF	OFF	OFF	OFF	OFF	-	-
OFF	OFF	OFF	OFF	OFF	ON	패널 1	채널 1
OFF	OFF	OFF	OFF	ON	OFF	패널 2	채널 2
OFF	OFF	OFF	OFF	ON	ON	패널 3	채널 3
OFF	OFF	OFF	ON	OFF	OFF	패널 4	채널 4
OFF	OFF	OFF	ON	OFF	ON	패널 5	채널 5
OFF	OFF	OFF	ON	ON	OFF	패널 6	채널 6
OFF	OFF	OFF	ON	ON	ON	패널 7	채널 7
OFF	OFF						
		ON	OFF	OFF	OFF	패널 8	채널 8
OFF	OFF	ON	OFF	OFF	ON	패널 9	채널 9
OFF	OFF	ON	OFF	ON	OFF	패널 10	채널 10
OFF	OFF	ON	OFF	ON	ON	패널 11	채널 11
OFF	OFF	ON	ON	OFF	OFF	패널 12	채널 12
OFF	OFF	ON	ON	OFF	ON	패널 13	채널 13
OFF	OFF	ON	ON	ON	OFF	패널 14	채널 14
OFF	OFF	ON	ON	ON	ON	패널 15	채널 15
OFF	ON	OFF	OFF	OFF	OFF	패널 16	채널 16
OFF	ON	OFF	OFF	OFF	ON	패널 17	채널 17
OFF	ON	OFF	OFF	ON	OFF	패글 17 패널 18	제글 17 채널 18
OFF	ON	OFF	OFF	ON	OFF	패널 18 패널 19	재달 18 채널 19
_	-	-	-				
OFF	ON	OFF	ON	OFF	OFF	패널 20	채널 20
OFF	ON	OFF	ON	OFF	ON	패널 21	채널 21
OFF	ON	OFF	ON	ON	OFF	패널 22	채널 22
OFF	ON	OFF	ON	ON	ON	패널 23	채널 23
OFF	ON	ON	OFF	OFF	OFF	패널 24	채널 24
OFF	ON	ON	OFF	OFF	ON	패널 25	채널 25
OFF	ON	ON	OFF	ON	OFF	패널 26	채널 26
OFF	ON	ON	OFF	ON	ON	패널 27	채널 27
OFF	ON	ON	ON	OFF	OFF	패널 28	채널 28
OFF	ON	ON	ON	OFF	ON	패널 29	채널 29
OFF	ON	ON	ON	ON	OFF	패널 30	제 글 29 채널 30
OFF	ON	ON	ON	ON	ON	패글 30	
						-	채널 31
ON	OFF	OFF	OFF	OFF	OFF	-	채널 32
ON	OFF	OFF	OFF	OFF	ON	-	채널 33
ON	OFF	OFF	OFF	ON	OFF	-	채널 34
ON	OFF	OFF	OFF	ON	ON	-	채널 35
ON	OFF	OFF	ON	OFF	OFF		채널 36
ON	OFF	OFF	ON	OFF	ON	-	채널 37
ON	OFF	OFF	ON	ON	OFF	-	채널 38
ON	OFF	OFF	ON	ON	ON	-	채널 39
ON	OFF	ON	OFF	OFF	OFF	_	채널 40
ON	OFF	ON	OFF	OFF	ON	-	채널 41
ON	OFF	ON	OFF	ON	OFF	-	채널 42
ON	OFF	ON	OFF	ON	ON	<u> </u>	세월 44
ON	OFF	ON	ON	OFF	OFF	-	-
ON	OFF	ON	ON	OFF	ON	-	-
ON	OFF	ON	ON	ON	OFF	-	-
ON	OFF	ON	ON	ON	ON	-	-
ON	ON	OFF	OFF	OFF	OFF	-	-
ON	ON	OFF	OFF	OFF	ON	-	패널 31
ON	ON	OFF	OFF	ON	OFF	-	패널 32
ON	ON	OFF	OFF	ON	ON	-	패널 33
ON	ON	OFF	ON	OFF	OFF	-	패널 33 패널 34
ON	ON	OFF	ON	OFF	ON	-	
							패널 35
ON	ON	OFF	ON	ON	OFF	-	패널 36
ON	ON	OFF	ON	ON	ON	=	패널 37
ON	ON	ON	OFF	OFF	OFF	-	패널 38
ON	ON	ON	OFF	OFF	ON	-	-
ON	ON	ON	OFF	ON	OFF	=	-
ON	ON	ON	OFF	ON	ON	-	-
ON	ON	ON	ON	OFF	OFF	-	-
ON ON	ON	ON	ON	OFF	ON	-	-
		ON					
ON	ON ON	ON ON	ON ON	ON ON	OFF ON	-	-

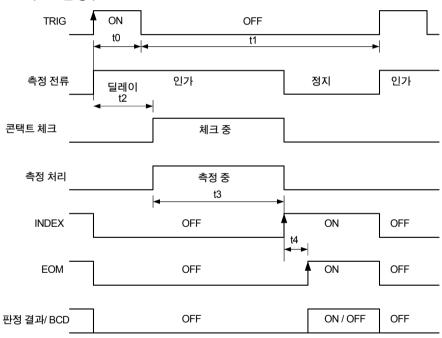
10.1 외부 입출력단자와 신호에 대해서

RNG_OUT0 ~ RNG_OUT3 (BCD_LOW신호가 ON인 경우)

RNG_OUT3	RNG_OUT2	RNG_OUT1	RNG_OUT0	레인지
OFF	OFF	OFF	ON	10 mΩ
OFF	OFF	ON	OFF	100 mΩ
OFF	OFF	ON	ON	1000 mΩ
OFF	ON	OFF	OFF	10 Ω
OFF	ON	OFF	ON	100 Ω
OFF	ON	ON	OFF	1000 Ω
OFF	ON	ON	ON	10 kΩ
ON	OFF	OFF	OFF	100 kΩ
ON	OFF	OFF	ON	1000 kΩ
ON	OFF	ON	OFF	10 ΜΩ
ON	OFF	ON	ON	100 MΩ
ON	ON	OFF	OFF	1000 MΩ

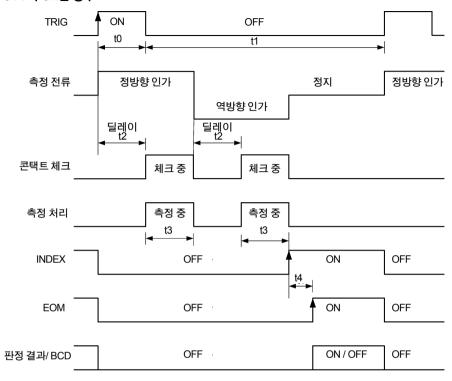
BCDm-0 ~ BCDm-3

BCDm-3	BCDm-2	BCDm-1	BCDm-0	측정치
OFF	OFF	OFF	OFF	0
OFF	OFF	OFF	ON	1
OFF	OFF	ON	OFF	2
OFF	OFF	ON	ON	3
OFF	ON	OFF	OFF	4
OFF	ON	OFF	ON	5
OFF	ON	ON	OFF	6
OFF	ON	ON	ON	7
ON	OFF	OFF	OFF	8
ON	OFF	OFF	ON	9


10.2 타이밍 차트

각 신호 레벨의 접점의 ON / OFF상태를 나타냅니다. 전류소스(PNP)설정에서는 EXT I/O단자의 전압 레벨과 같아집니다. 전류싱크(NPN)설정에서의 전압 레벨은 High와 Low가 반대가 됩니다.

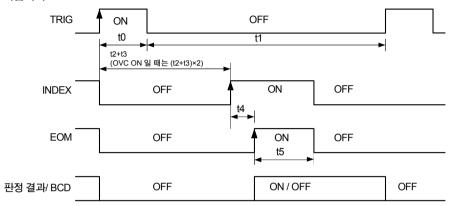
측정 시작부터 판정 결과 취득까지


(1) 외부 트리거 [EXT] 설정 (EOM 출력 HOLD)

OVC가 OFF인 경우

판정 결과/ BCD: HI, IN, LO, ERR, BCDm-n, RNG_OUT0 ~ 3

OVC가 ON인 경우

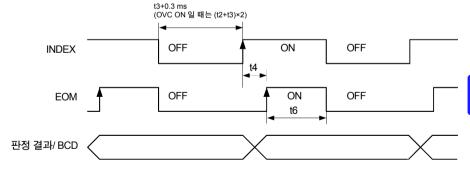

판정 결과/BCD: HI, IN, LO, ERR, BCDm-n, RNG OUT0~3

주의 사항

- 측정 레인지가 10 kΩ 레인지 이상인 경우, 측정전류는 정지하지 않습니다(연속인가).
- 측정 중(INDEX 신호가 OFF)에는 TRIG 신호를 입력하지 마십시오(1회만 보류가 됩니다).
 셀프 캘리브레이션 중에는 TRIG 신호가 보류됩니다.
 참조: "셀프 캘리브레이션의 타이밍"(p.193)
- 레인지 전환 등 설정을 변경한 경우. 처리시간 (100 ms)을 두고나서 TRIG 신호를 입력하십시오.
- 측정화면이 아닐 때, 혹은 에러 등 메시지 표시 중인 상태에서는 입력신호가 무효가 됩니다. 단. 통계 연산결과 화면에서의 PRINT 신호는 유효합니다.
- 판정 결과나 BCD 출력은 EOM 신호가 ON이 되기 전에 확정되어 있습니다. 단, 컨트롤러의 입력회로 응답이 느린 경우에는 EOM 신호의 ON을 검출하고나서 판정 결과를 로딩할 때까지 대기할 필요가 있습니다.

(2) 외부 트리거 [EXT] 설정 (EOM 출력 PULSE)

측정 종료 시에 EOM 신호가 ON이 되고 EOM 펄스 폭으로 설정한 시간(t5)이 경과하면 OFF로 돌 아옵니다.



판정 결과/BCD: HI, IN, LO, ERR, BCDm-n, RNG OUT0~3

참조: "EOM 신호 설정하기"(p.215)

EOM 신호가 ON인 기간에 TRIG 신호를 입력한 경우, TRIG 신호를 수용하여 측정처리를 시작한 시점에서 EOM 신호는 OFF가 됩니다.

(3) 내부 트리거 [INT] 설정

판정 결과/BCD: HI, IN, LO, ERR, BCDm-n, RNG_OUT0~3

내부 트리거[INT]일 때, EOM 신호는 폭 5 ms의 펄스출력이 됩니다. 단, ERR가 ON인 동안은 EOM도 ON을 유지합니다. 또 판정결과 및 ERR 신호는 측정 시작시에 OFF가 되지 않습니다.

주의 사항

셀프 캘리브레이션을 수동으로 하면 가장 빠른 측정이 됩니다. t6=0 ms이 되어 EOM은 항상 OFF 가 됩니다.

타이밍 차트 각 시간의 설명

항목	내용	시간	비고
t0	트리거 펄스 ON 시간	0.1 ms 이상	ON / OFF 에지 선택 가능
t1	트리거 펄스 OFF 시간	1 ms 이상	
t2	딜레이	0 ms ~ 9999 ms	설정에 따른다
t3	취득 처리 시간	적분시간 + 내부 대기시간 (아래 표 참조)	
t4	연산 시간	0.3 ms	통계 연산, 메모리 기능이 ON인 경우 느려집니다.
t5	EOM 펄스 폭	1 ms ~ 100 ms	설정에 따른다
t6	내부 트리거에서의 EOM 펄스 폭	5 ms	변경 불가

측정시간(트리거 입력부터 EOMOI ON되기까지)은 다음과 같이 계산할 수 있습니다.

- OVC: OFF인 경우 td+(t2+t3)×na+t4
- OVC: ON인 경우 td+(t2+t3+t2+t3)×na+t4

td: 트리거 검출 시간(ON 에지인 경우는 최대 0.1 ms, OFF에지인 경우는 최대 0.3 ms)

na: 에버리지 횟수(단, 트리거 소스 INT에서 프리런^{*} 인 경우는 1)

또한, 저전력 저항측정 ON이고, 측정 속도 SLOW2인 경우는 에버리지 기능이 OFF 설정이라도 내부에서 평균화 2회 실행합니다. 에버리지 기능이 ON 설정에서는 설정횟수로 평균화를 실행합니다.

*: INITiate: CONTinuous OFF, READ? 커맨드 미사용시

(커맨드에 대해서는 부속 애플리케이션 디스크 내의 통신커맨드 사용설명서를 참조해 주십시오) 셀프 캘리브레이션의 타이밍에 따라서 측정시간이 바뀌는 경우가 있습니다.

李몄":"셀프 캘리브레이션의 타이밍"(p.193)

적분시간의 참고값(단위: ms)

LP	레이터	FAS	ST T	MED	DIUM	SLOW1 SLOW2	SI OW2
	레인지	50 Hz	60 Hz	50 Hz	60 Hz		
OFF	1 MΩ 이하	0.3	3*	20.0	16.7	100	200
OH	10 MΩ 이상	20.0	16.7	20.0	16.7	100	200
ON	전 레인지	20.0	16.7	40.0	33.3	200	300

^{*} 측정단자가 MUX인 경우 10 mΩ 레인지만 1.0 ms

10

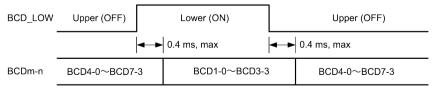
내부 대기 시간 (단위: ms) (적분 측정 전후의 처리시간)의 참고값

・ 트리거 소스 INT, OVC=OFF인 경우

시간	
0.4	

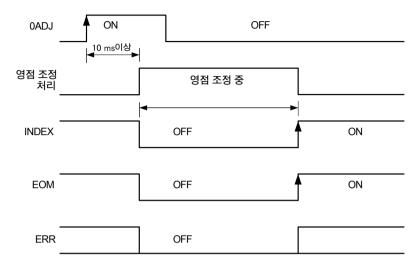
· 기타경우

LP OFF


레인지	100 MΩ 레인지 고정밀도 모드	측정 전류	시간
10 mΩ	-	-	40
100 mΩ	-	High	40
	-	Low	1.8
1000 mΩ	-	High	1.5
	-	Low	1.3
10 Ω	-	High	1.5
	-	Low	1.3
100 Ω	-	High	2.1
	-	Low	1.3
1000 Ω	-	-	2.3
10 kΩ	-	-	12
100 kΩ	-	-	20
1000 kΩ	-	-	150
10 ΜΩ	-	-	570
100 ΜΩ	ON	-	1300
	OFF	-	300
1000 MΩ	OFF	-	400

LP ON

레인지	시간
1000 mΩ	15
10 Ω	35
100 Ω	35
1000 Ω	36


BCD신호의 타이밍

BCD_LOW 신호에 의한 BCDm-n 신호의 천이 시간

컨트롤러의 입력회로 응답이 느린 경우에는 BCD_LOW 신호를 제어하고나서 0.4 ms 이상 대기가 필요한 경우가 있습니다.

영점 조정의 타이밍

- EOM 출력 PULSE의 경우, EOM 신호는 펄스 폭 시간이 경과하면 OFF가 됩니다.
- 내부 트리거[INT]일 때, EOM 신호는 폭 5 ms의 펄스출력이 됩니다. 또한, ERR 신호는 측정 시작 시에 OFF가 되지 않습니다. 다음 측정 종료시에 갱신됩니다.
- 영점 조정 시간은 멀티플렉서 미사용인 경우, 수동 레인지에서 약 600 ms, 자동 레인지에서 약 4 s 입니다. 멀티플렉서 사용시의 스캔 영점 조정에서는 채널 수만큼의 시간이 걸립니다.

셀프 캘리브레이션의 타이밍

셀프 캘리브레이션 기능에 대해서는 p.92을 참조하십시오.

본 기기에서는 측정의 정밀도를 유지하기 위해 회로 내부의 오프셋 전압과 게인의 드리프트를 보 정합니다(셀프 캘리브레이션).

셀프 캘리브레이션 기능의 실행은 다음 2가지 방법 중에서 선택할 수 있습니다.

자동(오토)으로 설정한다

측정과 측정 사이에 약 5 ms 간의 셀프 캘리브레이션을 실 행합니다.

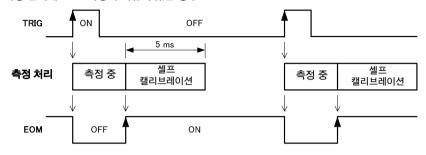
임의의 타이밍으로 실행한다

수동(매뉴얼)으로 설정한다

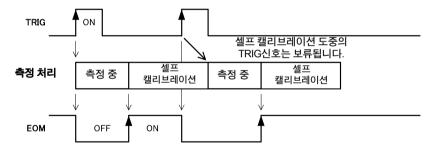
EXT I/O의 CAL 신호 입력 또는 통신 커맨드 (:SYSTem:CALibration)로 임의의 타이밍에서 실행 할 수 있습니다. 예기치 못한 타이밍에 자동으로 실행되는 경우는 없습니다.

셀프 캘리브레이션의 타이밍과 시간

설정	셀프 캘리브레이션의 타이밍	측정 보류 기간(캘리브레이션 시간)
자동*	측정 후	5 ms
수동	실행 시	400 ms


*자동 설정인 경우

자동 설정인 경우, TRIG 대기 중에는 1초마다 5 ms 간 셀프 캘리브레이션을 실행합니다. 5 ms 간 셀프 캘리브레이션 중에 TRIG 신호를 수신하면 셀프 캘리브레이션을 중지하고, 0.5 ms 뒤에 측정을 시작합니다. 불규칙한 측정시간이 신경쓰이는 경우는 수동 설정으로 하십시오.

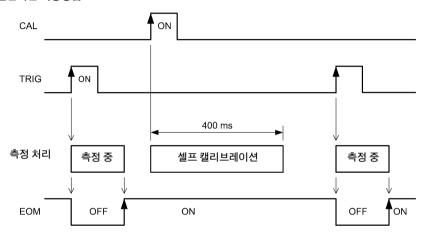

AUTO 설정일 때의 동작

측정 종료 후, 즉시 셀프 캘리브레이션을 시작하고 5 ms로 완료합니다. 셀프 캘리브레이션 중 TRIG 신호는 1회분 보류되고. 셀프 캘리브레이션 완료 후에 측정을 시작합니다.

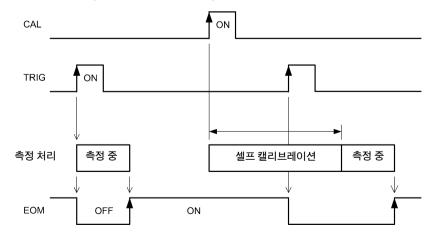
측정 간격에 5 ms 이상의 여유가 있는 경우

셀프 캘리브레이션 중에 TRIG 신호를 입력한 경우

주의 사항


- 자동스캔에서는 스캔 종료 후만 셀프 캘리브레이션이 시작됩니다. 각 채널 측정마다 셀프 캘리 브레이션을 실시하는 경우는 없습니다.
- MANUAL에서 AUTO로 전환한 직후에는 400 ms 셀프 캘리브레이션을 실시합니다. 그 동안에는 TRIG 신호를 입력하지 마십시오.

MANUAL 설정일 때의 동작


CAL 신호를 입력하면, 즉시 셀프 캘리브레이션을 시작합니다.

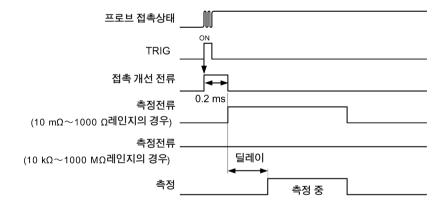
셀프 캘리브레이션 중에 TRIG 신호가 입력된 경우에도 셀프 캘리브레이션을 계속합니다. 이 경우, TRIG 신호는 수리되고 EOM 신호는 OFF가 되어 셀프 캘리브레이션 완료 후에 측정을 시작합니다. 측정 중에 CAL 신호가 입력된 경우, CAL 신호는 수리되고 측정 완료 후에 셀프 캘리브레이션을 시작합니다.

일반적인 사용방법

셀프 캘리브레이션 중에 TRIG 신호를 입력한 경우

접촉 개선의 타이밍

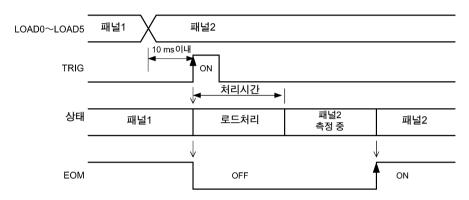
접촉 개선 기능에 대해서는 p.90를 참조하십시오.


측정 시작 전에 SENSE 단자 간에 전류를 흘려보냄으로써 프로브의 접촉상태를 개선합니다.

↑ 주의 접촉 개선 기능을 사용하면 측정대상에 전압이 인가됩니다. 특성이 변화하기 쉬운 측정대상을 측정하는 경우에는 주의하십시오.

접촉개선전류는 최대 10 mA, 인가전압은 최대 5 V 입니다. 저전력 ON인 경우 접촉 개선 기능은 OFF가 됩니다. 접촉 개선 기능을 사용하면 측정 종료까지의 시간은 0.2 ms 길어집니다.

타이밍 차트(접촉개선전류)


측정전류는 OVC가 OFF인 경우를 나타냅니다.

패널 로드의 타이밍

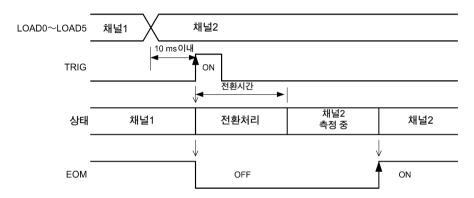
멀티플렉서를 사용하는 경우는 MUX 신호를 ON으로 하십시오.

(1) TRIG 신호를 이용하는 경우

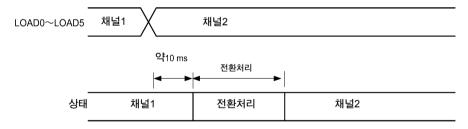
(2) TRIG 신호를 이용하지 않는 경우

처리 시간

패널 1 ~ 30	약 100 ms
패널 31 ~ 38	약 200 ms


멀티플렉서의 타이밍

참조: "8.3 멀티플렉서에 관한 설정"(p.148)

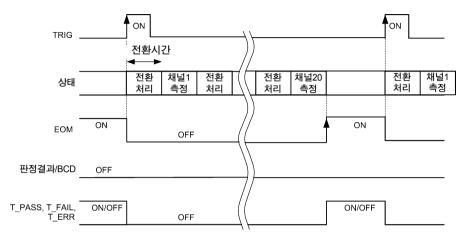

(1) 스캔기능 OFF

채널을 전환할 때에는 MUX 신호를 ON으로 하십시오.

TRIG 신호를 이용하는 경우

TRIG 신호를 이용하지 않는 경우

주의 사항

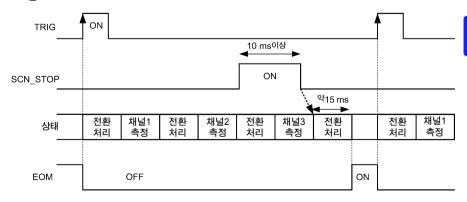

스캔기능이 OFF인 경우 채널을 변경할 수 있습니다. 스캔기능이 자동 또는 스텝으로 설정되어 있는 경우는 외부입력신호로는 채널을 변경할 수 없습니다.

멀티플렉서로 전환하려고 했을 때, 정면 측정단자에 측정 리드가 연결되어 있으면 ERR 신호가 ON이 되어 전환할 수 없습니다. 측정 리드를 분리하고 다시 LOAD 신호를 전환하십시오.

10

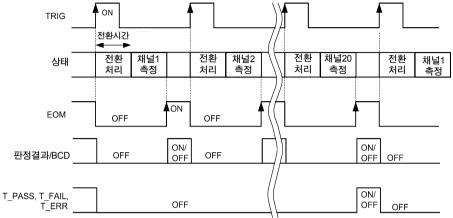
(2) 스캔기능 자동

1회의 트리거로 모든 채널을 전환하면서 측정을 실행합니다.



판정결과/ BCD: HI, IN, LO, ERR, PASS, FAIL, BCDm-n, RNG_OUT0 ~ 3이 예에서는 채널1~채널20을 ON으로 설정했습니다.

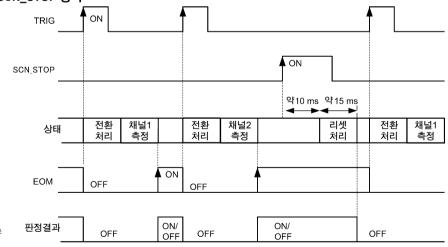
주의 사항


- 각 채널의 판정결과 (HI, IN,LO, ERR) 신호 및 BCD 신호는 출력하지 않습니다.
 종합판정결과(T_PASS, T_FAIL, T_ERR) 신호만 출력합니다.
- INDEX 신호는 채널별로는 ON이 되지는 않습니다. 스캔 종료 후 ON이 됩니다.
- 스캔 중에는 TRIG. CAL. 0ADJ 신호는 보류되지 않고 무시됩니다.

SCN STOP동작

(3) 스캔기능 스텝

트리거 후에 다음 채널로 전환되어 측정을 실행합니다. 마지막 채널 측정이 종료했을 때만 종합판정(T_PASS , T_FAIL, T_ERR) 신호가 출력됩니다.



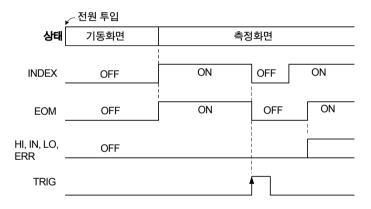
판정결과/ BCD: HI, IN, LO, ERR, PASS, FAIL, BCDm-n, RNG_OUT0 ~ 3 이 예에서는 채널1~채널20을 ON으로 설정했습니다.

주의 사항

- 모든 채널 측정이 종료한 후에 TRIG 신호를 ON으로 하면 다시 첫 채널부터 측정을 시작합니다.
- 스캔 중에는 TRIG, CAL, 0ADJ 신호는 보류되지 않고 무시됩니다.
- 외부 연결기기가 선택되어 있는 채널은 전환 처리 종료 뒤에 EOMO ONO 됩니다.

SCN STOP 동작

채널 전환 시간

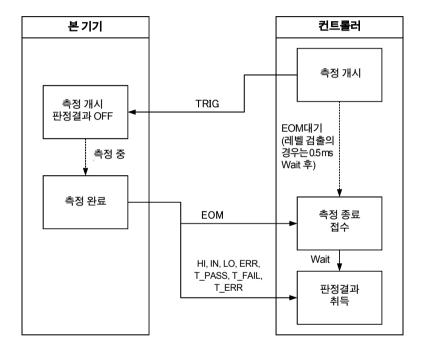

레인지와 저전력 전환이 없는 경우	약 30 ms
레인지와 저전력 전환이 있는 경우	약 50 ms

주의 사항

변압기 등의 역기전력이 있는 경우에는 릴레이의 핫 스위칭 방지 기능에 의해 전환 처리가 길어집니다. 핫 스위칭 방지 기능은 역기전력이 없어지거나, 최대 1초 + 딜레이 설정치에서 해제됩니다. 측정시간에 대해서는 "측정 시작부터 판정 결과 취득까지"(p.187)를 참조하십시오.

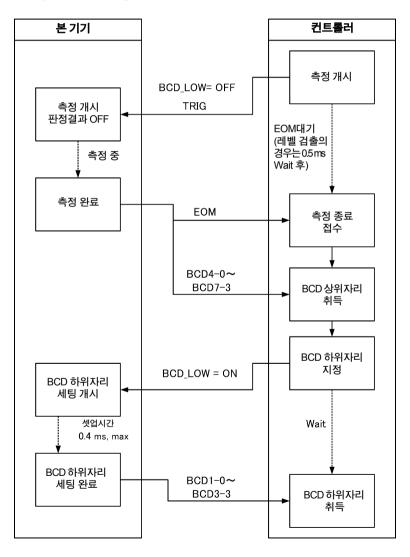
전원 투입 시 출력신호 상태

전원 투입 후 기동화면에서 측정화면으로 이동하면 EOM 신호와 INDEX 신호는 ON이 됩니다. EOM 출력 PULSE의 경우는 OFF 그대로입니다.

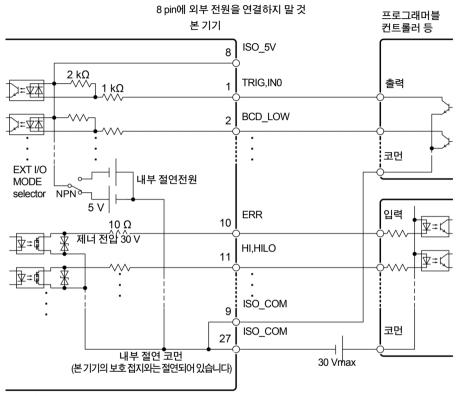


트리거 소스 EXT, EOM출력 HOLD로 설정되어 있을 때의 동작을 나타냅니다.

외부 트리거에서의 취득 흐름

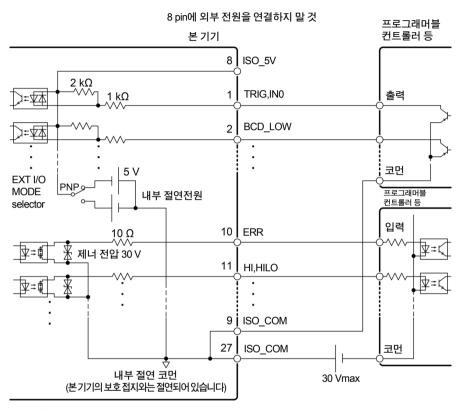

외부 트리거에서 사용할 경우의 측정 시작부터 판정결과 혹은 측정치 취득까지의 흐름을 나타냅니다.

본 기기는 판정결과(HI, IN, LO, ERR, T_PASS, T_FAIL, T_ERR)가 확정되면 즉시 EOM 신호를 출력합니다. 컨트롤러 입력회로의 응답이 느린 경우에는 EOM 신호의 ON을 검출하고나서 판정결과를 취득할 때까지 대기할 필요가 있습니다.


외부 트리거에서의 측정치(BCD) 취득 흐름

BCD 출력은 상위 자릿수와 하위 자릿수를 나눠서 취득할 필요가 있습니다. 상위 자릿수와 하위 자릿수를 취득하는 순서는 어느쪽이 먼저든 상관없습니다. 아래 예에서는 상위 자릿수를 먼저 취득한 경우입니다. 컨트롤러의 입력회로의 응답이 느린 경우에는 EOM 신호의 ON을 검출하고나서 측정치(BCD)를 취득할 때까지 대기할 필요가 있습니다. 또한, BCD_LOW 신호를 제어하고나서 0.4 ms 이상 대기가 필요한 경우가 있습니다.

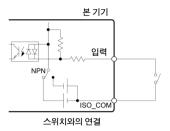
10.3 내부 회로 구성

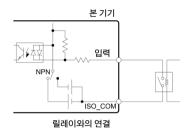

NPN 설정

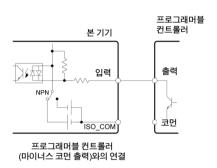
주의 사항

- 입력신호와 출력신호의 코먼단자는 모두 ISO_COM을 사용해 주십시오.
- 코먼 배선에 대전류가 흐르는 경우에는 출력신호의 코먼 배선과 입력신호의 코먼 배선을 ISO_COM 단자 부근에서 분기해 주십시오.

PNP 설정

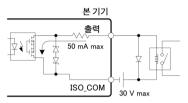

주의 사항 입력신호와 출력신호의 코먼단자는 모두 ISO COM을 사용해 주십시오.

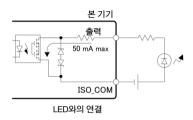

전기적 사양

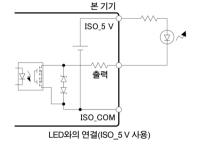

입력 신호	입력 형식	포토커플러 절연 무전압 접점 입력 (전류싱크 / 소스 출력 대응)
	입력ON	잔류 전압 1 V (입력 ON 전류 4 mA(참고값))
	입력OFF	OPEN(차단전류 100 μA이하)
출력 신호	출력 형식	포토커플러 절연 오픈 드레인 출력 (무극성)
	최대 부하 전압	DC30 V _{MAX}
	최대 출력 전류	50 mA/ch
	잔류 전압	1 V 이상(부하 전류 50 mA) / 0.5 V 이하(부하 전류 10 mA)
내장 절연 전원	출력 전압	싱크 출력 대응: 5.0 V±10%, 소스 출력 대응: - 5.0 V±10%
	최대 출력 전류	100 mA
	외부 전원 입력	없음
	절연	보호접지 전위 및 측정회로에서 플로팅
	절연정격	대지간 전압 DC50 V, AC30 Vrms, AC42.4 Vpk 이하

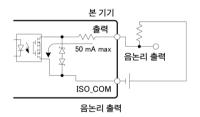

연결 예

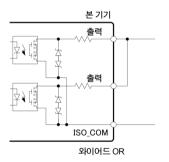
입력회로의 연결 예

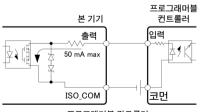


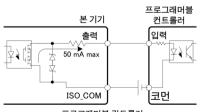





출력회로의 연결 예




릴레이와의 연결



프로그래머블 컨트롤러 (플러스 코먼 출력)와의 연결

프로그래머블 컨트롤러 (마이너스 코먼 출력)와의 연결

10

10.4 외부 입출력에 관한 설정

외부 입출력은 다음 설정을 할 수 있습니다.

입력에 과하 설정

- 측정 시작 조건을 설정하기(트리거 소스)(p.209)
- TRIG 신호의 논리 설정하기(p.211)
- TRIG / PRINT 신호의 채터링 제거하기(필터 기능)(p.213)

출력에 관하 설정

- EOM 신호 설정하기(p.215)
- 출력 모드(판정 모드 / BCD 모드) 전환하기(p.217)

측정 시작 조건을 설정하기(트리거 소스)

측정을 시작하려면 다음 2가지 방법이 있습니다.

자동 측정하고 싶다

내부 트리거[INT]로 측정한다

내부에서 자동적으로 트리거를 발생하여 연속 측정합니다.

임의의 타이밍으로 측정하고 싶다.

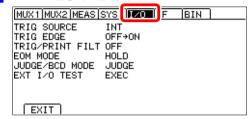
측정치를 임의의 타이밍에서 홈드하고 싶다

외부 트리거[EXT]로 측정한다

외부에서 제어하여 측정합니다. 수동으로 측정할 수도 있습니다.

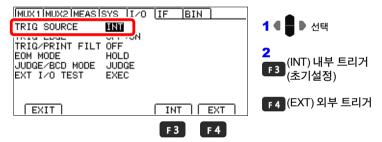
- EXT I/O 커넥터를 사용해 신호를 보낸다.(p.177)
- 인터페이스로*TRG 커맨드를 송신한다.
- ENTER 를 누른다(EXT 선택시만).

주의 사항


- 내부 트리거로 설정되어 있는 경우, 외부 I/O로부터의 TRIG 신호 입력과 ◈TRG 커맨드는 무시됩니다(메모리와 통계는 제외).
- 인덕터 등 응답에 시간이 걸리는 측정대상을 측정하는 경우에는 딜레이 시간을 조정하십시오 . 처음에는 딜레이 시간을 비교적 길게 설정하고 측정치를 봐가면서 서서히 줄여주십시오. 참조: "4.9 측정 개시까지의 지연시간 설정하기 (딜레이 기능)"(p.84)

10.4 외부 입출력에 관한 설정

트리거 소스를 전환하기



2 EXT I/O 설정화면을 엽니다.

● ● ● 좌우 커서 키로 [I/O]탭으로 이동

3 트리거 소스를 선택합니다.

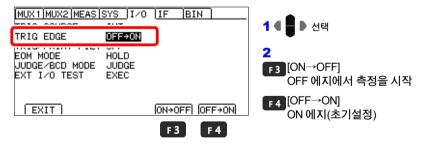
4 측정화면으로 돌아갑니다.

보통 정면패널에서 키 조작할 때는 "연속측정" 상태(:INITIATE:CONTINUOUS ON)로 되어 있습니다. 트리거 소스가 내부 트리거[INT]로 설정되어 있을 때는 연속해서 트리거가 걸리는 "프리런" 상태가 됩니다. 트리거 소스가 외부 트리거[EXT]로 설정되어 있을 때에는 외부로부터 트리거를 입력할 때마다 측정합니다.

RS-232C나 USB, GP-IB를 매개로 한 설정에서는 연속측정을 해제할 수 있습니다.

(:INITIATE:CONTINUOUS OFF). 연속측정을 해제하면 컨트롤러(컴퓨터나 PLC)로부터 지정된 타이밍에서만 트리거를 수용하게 됩니다.

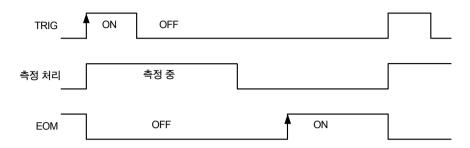
참조: 트리거 커맨드에 대해서는 부속 애플리케이션 디스크를 참조해 주십시오.

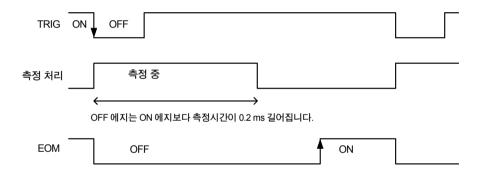

TRIG 신호의 논리 설정하기

TRIG 신호가 유효해지는 논리를 ON 에지 / OFF 에지 중에서 선택합니다. OFF 에지에서 사용할 경우 측정시간이 약 0.2 ms 길어집니다.

를 트리거 조건을 선택합니다.

EXIT

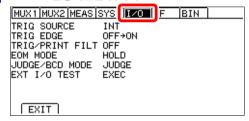

4 측정화면으로 돌아갑니다.


10.4 외부 입출력에 관한 설정

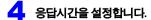
ON 에지와 OFF 에지의 동작

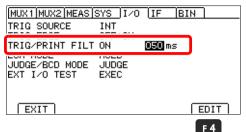
• ON 에지

OFF 에지

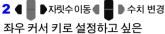

TRIG / PRINT 신호의 채터링 제거하기(필터 기능)

TRIG / PRINT 신호에 풋스위치 등을 연결할 경우 채터링을 제거하는 필터 기능이 유효합니다.


2 EXT I/O 설정화면을 엽니다.



3 필터 기능을 선택합니다.



설정범위: 50 ms ~ 500 ms (초기설정 50 ms)

설정할 항목에 커서를 이동 **F4** 로 수치 편집할 수 있게 한다.

좌우 커서 키로 설정하고 싶은 자릿수에 커서를 이동 상하 커서 키로 수치를 변경

3 ENTER 확정

MENU 측정화면으로 돌아가기

필터 기능 (TRIG신호 예)

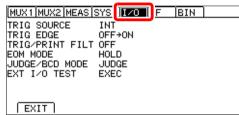
· ON에지일때

· OFF에지일 때

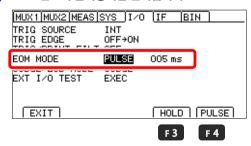
입력신호는 응답시간이 경과할 때까지 유지하십시오.

EOM 신호 설정하기

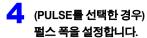
EOM 신호의 출력을 다음 트리거가 입력될 때까지 유지할지, 펄스 폭으로 설정할지를 선택합니다.

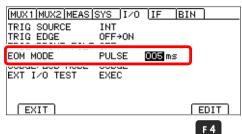

주의 사항

내부 트리거[INT]일 때, EOM 펄스 폭은 설정에 상관없이 5 ms 고정입니다.



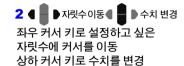
2 EXT I/O 설정화면을 엽니다.


3 EOM 신호의 출력형식을 선택합니다.

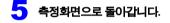


F3 측정 종료 후, EOM 신호를 유 지 합니다.(초기설정) (스텝 5로)

F4 측정 종료 후, 지정한 펄스를 출력합니다.

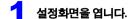


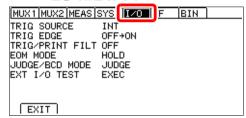
설정범위: 1 ms ~ 100 ms (초기설정 5 ms)



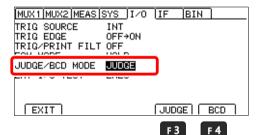
설정할 항목에 커서를 이동 F4 로 수치 편집할 수 있게 한다

3 ENTER 확정




MENU 측정화면으로 돌아가기

출력 모드(판정 모드 / BCD 모드) 전환하기



2 EXT I/O 설정화면을 엽니다.

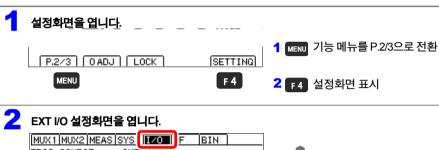
3 출력 모드를 선택합니다.

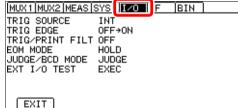
2

F3 판정 모드(초기설정)

F 4 BCD모드

4 측정화면으로 돌아갑니다.

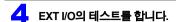


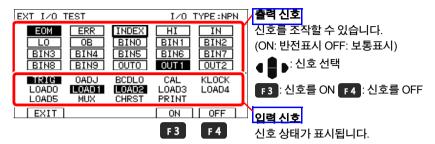

MENU 측정화면으로 돌아가기

10.5 외부 제어 확인하기

입출력 테스트하기(EXT I/O 테스트 기능)

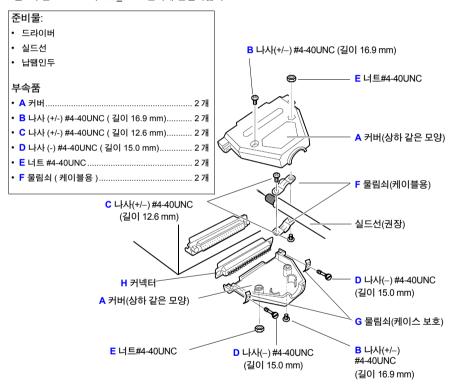
출력신호의 ON, OFF를 수동으로 전환할 수 있는 것 외에, 입력신호의 상태를 화면에서 볼 수 있습니다.




3 EXT I/O 테스트 화면을 엽니다.

2 F4 테스트 화면을 연다.

5 EXT I/O 설정화면으로 돌아옵니다.



10.6 부속 커넥터 조립 방법

본 기기에는 EXT I/O용 커넥터 및 커버 등이 부속되어 있습니다. 아래 그림을 참고로 조립하십시오.

주의 사항

- EXT I/O 커넥터에서 PLC 등으로 연결하는 케이블에는 실드선을 사용하십시오 . 실드선을 사용하지 않을 경우 . 노이즈의 영향으로 시스템이 오동작을 일으킬 가능성이 있습니다 .
- 실드부는 EXT I/O 의 ISO COM 단자에 연결하십시오.

조립의 순서

- 1. 케이블(실드선)을 부속 EXT I/O 커넥터(H)에 납땜합니다.
- 2. 물림쇠(F)를 나사(C)로 케이블에 장착합니다.
- 3. 물림쇠(F)를 커버(A)의 소정의 위치에 맞도록 조정합니다.
- 4. 물림쇠(G)에 나사(D)를 끼웁니다.
- 5. 커버(A) 한편에 커넥터(H), 물림쇠(F), 물림쇠(G), 나사(D)를 둡니다.
- 6. 커버(A)의 다른 한쪽을 위에서 덮습니다.
- 7. 나사(B)와 너트(E)로 커버(A)를 고정합니다.

통신

(USB / RS-232C / GP-IB 인터페이스)

제 11 장

통신 케이블을 연결하기 전에 "사용시 주의사항"(p.12)을 주의 깊게 읽으십시오.

11.1 인터페이스의 개요와 특장점

통신 인터페이스를 사용해서 본 기기 제어와 데이터 취득을 할 수 있습니다. 사용 목적에 따른 항목을 참조해 주십시오.

커맨드로 제어하고 싶다 제어 프로그램을 작성하 커맨드를 사용하지 않고 측정치를 취득하고 싶다 (USB 또는 RS-232C 만)*1

프로그램을 작성하지 않고 간단히 제어하고 싶다 (전용 소프트웨어 이용^{*2})

"USB 인터페이스 사용하기"(p.223) "RS-232C 인터페이스 사용하기"(p.226)

"GP-IB 인터페이스 사용하기(RM3545-01 만)"(p.230)

"11.3 커맨드로 제어 및 데 이터를 취득하기"(p.232) "11.4 측정 종료 때마다 측정치를 자동 송신하기 (데이터 출력 기능)"(p.236)

샘플 애플리케이션 소프트웨어 를 사용하기^{*2}

- *1 USB 또는 RS-232C만
- *2 샘플 애플리케이션 소프트웨어는 당사 홈페이지에서 다운로드 하십시오.

통신 시간에 대해서

- 통신 처리의 빈도, 처리 내용에 따라 표시 처리에 지연이 발생하는 경우가 있습니다.
- 컨트롤러와의 통신에서는 데이터 전송시간을 추가할 필요가 있습니다. GP-IB. USB의 전송시간은 컨트롤러에 따라 다릅니다.

RS-232C의 전송시간은 스타트 비트 1, 데이터 길이 8, 패리티 없음, 스톱 비트 1로 합계 10 비트, 전송 속도(보율) 설정을 N bps로 한 경우는 대략 다음과 같이 됩니다.

전송시간 T [1글자 / 초] = 보율 N [bos] / 10[bit]

측정치는 11글자이므로 1 데이터의 전송시간은 11 / T가 됩니다.

(예) 9600 bps의 경우 11 / (9600 / 10) =약 11 ms

• 커맨드 실행시간에 대해서는 부속 애플리케이션 디스크 내에 있는 통신 커맨드 사용설명서를 참조해 주십시오

11.1 인터페이스의 개요와 특장점

사양

주의 사항

각 통신 인터페이스는 어느 하나를 선택해서 사용합니다. 동시에 통신제어할 수는 없습니다.

USB 사양					
커넥터	시리즈 B 리셉터클				
전기적 사양	USB2.0 (Full Speed)				
클래스	CDC클래스, HID클래스				
메시지 터미네이터	수신 시: CR+LF, CR				
(구분문 자)	송신 시: CR+LF				
RS-232C 사양					
전송방식	통신 방식: 전이중				
	동기 방식: 조보동기식				
전송 속도	9,600 bps, 19,200 bps, 38,400 bps, 115,200 bps				
데이터 길이	8비트				
패리티	없음				
스톱 비트	1비트				
메시지 터미네이터	수신 시: CR+LF, CR				
(구분문 자)	송신 시: CR+LF				
플로 제어	없음				
전기적 사양	입력전압레벨 5 V ~ 15 V : ON, -15 V ~ -5 V : OFF				
	출력전압레벨 5 V ~ 9 V : ON, -9 V ~ -5 V : OFF				
커넥터	인터페이스 커넥터의 핀 배치				
	(D-sub9 핀 수컷 감합 고정대 나사 #4-40)				
	입출력 커넥터는 터미널(DTE) 사양				
	권장 케이블:				
	9637 RS-232C 케이블(컴퓨터용)				

사용 코드: ASCII 코드

GP-IB 사양(인터	페이스・기능)(RM3545-01 만)	
SH1	소스 • 핸드셰이크의 전 기능 ●	
AH1	억셉터 • 핸드셰이크의 전 기능 ●	
T6	기본적 Talker 기능 •	
	Serial • Poll 기능 •	
	Talk Only 모드 -	
	MLA(My Listen Address)에 의한 Talker 해제 기능 ●	
L4	기본적인 Listener 기능 ●	
	Listen Only 모드 -	
	MTA(My Talk Address)에 의한 Listener 해제 기능 ●	
SR1	Service • Request의 전 기능 ●	
RL1	Remote • Local의 전 기능	
PP0	Parallel • Poll 기능 –	
DC1	Device • Clear의 전 기능 ●	
DT1	Device • Trigger의 전 기능 ●	
C0	컨트롤러 기능 없음 -	

9638 RS-232C 케이블(D-sub25 핀 커넥터용)

사용 코드: ASCII 코드

11.2 사용 전 준비 (연결과 설정)

USB 인터페이스 사용하기

1. USB 인터페이스의 통신 조건 설정하기

본 기기를 설정합니다.

설정화면을 엽니다.

- 1 MENU 기능 메뉴를 P.2/3으로 전환
- 2 F4 설정화면 표시
- 통신 인터페이스 설정화면을 엽니다.

인터페이스의 종류를 선택합니다.

F3 USB 인터페이스

주의 사항

- USB 키보드 모드는 데이터 출력 전용입니다. 커맨드를 사용하는 경우는 COM 모드로 하십시오.
- USB 키보드 모드에서는 USB 드라이버를 설치할 필요가 없습니다.
- COM 모드를 처음 사용하는 경우는 USB 드라이버를 설치해 주십시오.(p.224)

2. USB 드라이버를 설치하기(COM 모드 선택 시만)

COM 클래스로 처음 측정기를 컴퓨터에 연결할 때는 전용 USB 드라이버가 필요하게 됩니다. 당사 이외의 제품을 사용하는 등, 이미 드라이버가 설치되어 경우는 이하 순서는 생략하셔도 됩 니다. USB 드라이버는 부속 애플리케이션 디스크 또는 당사 홈페이지에서 다운로드 할 수 있습니다.

USB 키보드 클래스를 사용하는 경우는 드라이버 설치가 필요없습니다.

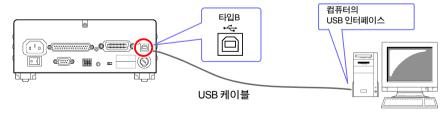
설치 순서

USB 케이블로 본 기기와 컴퓨터를 연결하기 전에 실행하십시오. 이미 연결되어 있는 경우는 일단 USB 케이블을 뽑으십시오.

- "administrator" 등의 관리자 권한으로 컴퓨터에 로그인합니다.
- <mark>2</mark> 설치를 시작하기 전에 컴퓨터에서 기동하고 있는 모든 애플리케이션을 종료시키십시오.
- 3 HiokiUsbCdcDriver.msi를 실행합니다. 실행 후는 화면의 지시에 따라 설치를 진행하십시오. 부속 애플리케이션 디스크로 실행하는 경우에는 이하를 실행합니다.

X:\driver\HiokiUsbCdcDriver.msi (X:는 CD-ROM 드라이브)

환경에 따라 다이얼로그가 나오기까지 시간이 걸리지만, 그대로 대기하십시오.


- 4 설치 완료 후 본 기기를 USB로 컴퓨터에 연결하면 자동적으로 본 기기가 인식됩니다.
- 새 하드웨어 검색 마법사 화면이 표시되는 경우, Windows Update의 연결확인에 대해서는 [아니요, 이번에는 연결하지 않습니다]를 선택하고, [소프트웨어를 자동적으로 설치하기]를 선택해 주십시오.
- 다른 제조번호의 기기를 연결한 경우에도 새 디바이스를 검출했다는 내용이 통지되는 경우가 있으므로 화면의 지시에 따라 디바이스 드라이버를 설치해 주십시오.
- 경고 메시지가 표시되지만, 그대로 진행하십시오.

제거 순서(드라이버가 필요없게 된 경우에는 제거해 주십시오)

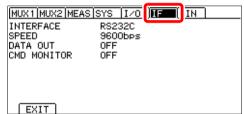
[제어판]-[프로그램의 추가와 삭제]를 이용해 HIOKI USB CDC Driver를 삭제하십시오.

3. USB 케이블을 연결하기

본 기기 USB 단자에 부속 USB 케이블을 연결합니다.

11

RS-232C 인터페이스 사용하기

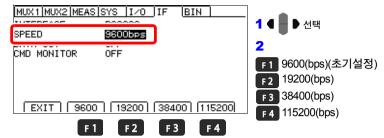

1. RS-232C 인터페이스의 통신 조건 설정하기

본 기기를 설정합니다.

설정화면을 엽니다.

통신 인터페이스 설정화면을 엽니다.

3 인터페이스의 종류를 선택합니다.



F4 RS-232C 인터페이스

F 4

측정화면으로 돌아갑니다.

주의 사항

전송속도(보율)는 컴퓨터에 따라서 오차가 크기 때문에 사용할 수 없는 경우가 있습니다. 그 경우는 좀더 느린 설정으로 변경하십시오.

컨트롤러(컴퓨터 또는 PLC 등)의 설정을 합니다.

컨트롤러는 반드시 다음과 같이 설정해 주십시오.

- 조보동기방식
- 전송속도: 9600bps / 19200bps / 38400bps / 115200bps
 (본 기기 설정에 맞춰 주십시오)
- 스톱 비트: 1
- 데이터 길이: 8
- 패리티체크: 없음
- 플로제어: 없음

2. RS-232C 케이블 연결하기

뒷면

RS-232C 케이블을 RS-232C 커넥터에 연결합니다. 케이블을 연결할 때는 반드시 나사를 조이십 시오.

컨트롤러(DTE)와 연결할 때는 본 기기 측 커넥터와 컨트롤러 측 커넥터 사양에 맞는 <u>크로스케이블</u>을 준비하십시오. 입출력 커넥터는 터미널(DTE) 사양입니다. 본 기기에서는 핀 번호 2, 3, 5를 사용하고 있습니다. 그 외의 핀은 사용하지 않습니다.

핀	핀		신호명	신호	비고	
번호	관용	EIA	JIS	건호	비끄	
1	DCD	CF	CD	캐리어 검출	미접속	
2	RxD	BB	RD	수신 데이터		
3	TxD	BA	SD	송신 데이터		
4	DTR	CD	ER	데이터 단말 레디	ON 레벨 (+5 V ~ +9 V) 고정	
5	GND	AB	SG	신호용 접지		
6	DSR	CC	DR	데이터·세트·레디	미접속	
7	RTS	CA	RS	송신 요구	ON 레벨 (+5 V ~ +9 V) 고정	
8	CTS	СВ	CS	송신 가능	미접속	
9	RI	CE	CI	피호 표시	미접속	

본 기기와 컴퓨터를 연결하는 경우

D-sub 9핀(암) - D-sub 9핀(암)의 크로스케이블을 사용합니다. 크로스 결선

	9핀 암 기측		컴퓨	9핀 암 F터 / 호환기
	핀 No.		핀 No.	
DCD	1	$\vdash \vdash \vdash$	1	DCD
RxD	2		2	RxD
TxD	3		3	TxD
DTR	4	$\vdash \lor \lor \frown$	4	DTR
GND	5	\longrightarrow	5	GND
DSR	6		6	DSR
RTS	7	├/	7	RTS
CTS	8	\vdash	8	CTS
	9]	9	

권장 케이블: Hioki 제품 9637 RS-232C 케이블(1.8 m)

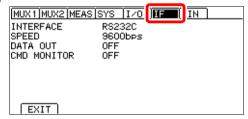
D-sub 25핀 커넥터 기기와 연결하는 경우

D-sub 9핀 (암) - D-sub 25핀 (수)의 크로스케이블을 사용합니다. 그림과 같이 RTS와 CTS가 단락되어 DCD에 연결된 크로스케이블을 사용하십시오.

크로스 결선

	9핀 암 기측		D-sub 2 컨트를	25 핀 수 롤러 측
	핀 No.		핀 No.	
DCD	1	\vdash		
RxD	2	$\overline{}$	2	TxD
TxD	3	$\overline{}$	3	RxD
DTR	4	H \-	4	RTS
GND	5	$\vdash \setminus \setminus \vdash$	5	CTS
DSR	6	\vdash	6	DSR
RTS	7	$\vdash \setminus \setminus$	7	GND
CTS	8		8	DCD
	9	<u> </u>	20	DTR
		=' '-		

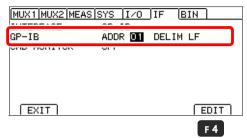
"D-sub 25핀(수) - D-sub 25핀(수)의 크로스케이블"과 "9핀 - 25핀 변환어댑터"의 조합으로는 동작하지 않습니다.


권장 케이블: Hioki 제품 9638 RS-232C 케이블

GP-IB 인터페이스 사용하기(RM3545-01 만)

- 1. GP-IB 인터페이스의 통신 조건 설정하기
 - 설정화면을 엽니다.

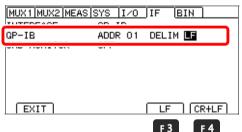
2 통신 인터페이스 설정화면을 엽니다.


3 인터페이스의 종류를 선택합니다.

F1 GP-IB 인터페이스

설정 범위: 0~30(초기설정: 1)

설정할 항목에 커서를 이동 F4 로 수치 편집할 수 있게 한다.


2 ◀ ■ ▶자릿수이동 ◀ ■ ▶수치 변경 좌우 커서 키로 설정하고 싶은 자릿수 에 커서를 이동

상하 커서 키로 수치를 변경

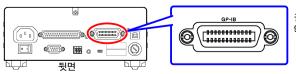
3 ENTER 확정

(🐯 취소)

2

F3 LF (초기설정) F4 CR+LF

축정화면으로 돌아갑니다.


MENU 측정화면으로 돌아가기

주의 사항

RM3545-01 (GP-IB부)이외에서는 설정화면에 "GP-IB"가 표시되지 않습니다.

2. GP-IB 케이블 연결하기

본 기기의 GP-IB 커넥터에 GP-IB 접속 케이블을 연결합니다. 케이블을 연결할 때는 반드시 나사를 조이십시오.

권장 케이블: 9151-02 GP-IB 접속 케이블 (2 m)

11.3 커맨드로 제어 및 데이터를 취득하기

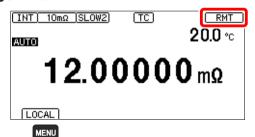
통신 커맨드 및 쿼리의 표기(통신메시지 레퍼런스)에 대해서는 부속 애플리케이션 디스크 내에 있 는 통신 커맨드 사용설명서를 참조해 주십시오.

프로그램 작성 시에는 통신 모니터 기능을 사용하면 측정화면에 커맨드와 응답이 표시되어 편리합니다.

GP-IB에서는 IEEE 488.2-1987의 공통 커맨드(필수)를 사용할 수 있습니다.

- 준거규격 IEEE 488.1-1987*1
- 참고규격 IFFF 488 2-1987*2

주의 사항


출력 큐가 가득차면, 쿼리 에러를 내고 출력 큐를 clear합니다. 따라서 IEEE 488.2에 규정되어 있는 교착상태(deadlock)^{*3}일 때의 출력 큐의 clear와 쿼리 에러 출력에는 대응하고 있지 않습니다. 인터페이스 설정을 프린터로 한 경우, 커맨드 동작은 보증하지 않습니다. 커맨드는 송신하지 미십 시오.

- *1 ANSI / IEEE Standard 488.1-1987, IEEE Standard Digital Interface for Programmable Instrumentation (ANSI / IEEE 규격 488.1-1987, IEEE 규격에 따른 프로그램 가능 계측기 디지털 인터페이스)
- *2 ANSI/IEEE Standard 488.2-1987, IEEE Standard Codes, Formats, Protocols, and Common Commands (ANSI/IEEE 규격 488.2-1987, IEEE 규격에 따른 코드, 포맷, 프로토콜, 공통 커맨드)
- *3 입력 버퍼 및 출력 큐가 가득 차서 처리를 계속할 수 없는 상태.

리모트 상태・로컬 상태

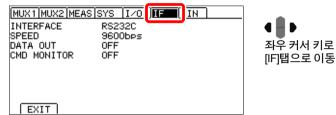
통신 중에는 리모트 상태가 되어 측정화면에 [RMT]가 표시되며, MENU키를 제외한 조작 키는 무효 가 됩니다.

MENU [LOCAL]을 누르면 리모트 상태는 해제되고 키 조작이 가능해집니다.

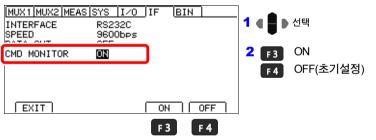
GP-IB에 의해 로컬 록 아웃 상태(GP-IB 커맨드 LLO : Local Lock Out일 때는 화면 상의 [LOCAL] 표시를 선택해도 무효가 됩니다.

이 경우, 인터페이스 기능의 GTL 커맨드를 실행하거나, 본 기기의 전원을 껐다 키면 로컬상태로 돌아옵니다.

본 기기가 설정화면일 때 리모트 상태가 된 경우는 자동적으로 측정화면으로 이동합니다.


통신 커맨드를 표시(통신 모니터 기능)

통신 모니터 기능을 이용해 통신 커맨드 및 쿼리의 응답을 화면에 표시할 수 있습니다.


설정화면을 엽니다.

통신 인터페이스 설정화면을 엽니다.

통신 모니터의 ON / OFF를 선택합니다.

4 측정화면으로 돌아갑니다.

11.3 커맨드로 제어 및 데이터를 취득하기

5

측정화면 이래에 커맨드와 쿼리 응답이 표시됩니다.

통신 모니터에 표시되는 메시지와 그 의미

커맨드 실행으로 에러가 발생한 경우, 다음과 같이 표시됩니다.

- 커맨드 에러의 경우(커맨드가 올바르지 않다. 인수의 형식이 올바르지 않다 등)
- > #CMD ERROR
- 인수 범위가 부정확한 경우
- > #PARAM ERROR
- 실행 에러의 경우
- > #EXE ERROR

또 에러가 발생한 대략의 위치도 표시됩니다.

- 인수를 틀린 경우(-1가 범위 외)
- > :RES:RANG -1
- 철자법을 틀린 경우(RANGE를 RENGE로 잘못썼다)
- > :RES:RENGE 100
- > # ^ CMD ERROR

주의 사항

- 부정확한 문자코드를 수신한 경우는 문자코드를 "<>"로 묶어 16진으로 표시합니다. 예를 들어 0xFF문자의 경우는 <FF>, 0x00의 경우는 <00>라고 표시합니다. RS-232C 인터페이스의 경우 이러한 16진문자만 표시될 때는 통신 조건을 다시 확인하시거나, 통신속도를 낮춰서 시도해 주십시오.
- RS-232C 인터페이스의 경우

RS-232C의 에러가 발생하면 다음과 같이 표시됩니다.

 오버 런 에러(수신 누락이 발생)......
 #Overrun Error

 브레이크 신호를 수신한 경우.....
 #Break Error

 패리티 에러가 발생한 경우.....
 #Parity Error

 프레이밍 에러가 발생한 경우.....
 #Framing Error

이러한 문자가 표시된 경우는 통신 조건을 다시 확인하시거나, 통신속도를 낮춰서 시도해 주십 시오.

• 커맨드를 연속송신하고 있는 경우는 에러 위치가 어긋나는 경우가 있습니다.

측정치를 한꺼번에 취득하기(데이터 메모리 기능)

측정할때마다 측정치를 취득하면 동작이 느려집니다. 이를 피하기 위해 최대 50 회분의 측정치를 메모리해두고. 나중에 한꺼번에 취득할 수 있습니다.

측정치 메모리는 이하의 타이밍으로 이루어집니다.

- 외부 트리거(EXT)에서의 트리거 측정치 모두
- 내부 트리거(INT) 측정 중에 트리거를 입력했을 때

트리거 입력에는 이하 3가지의 방법이 있습니다.

- EXT I/O의 TRIG 신호로 저장한다(p.177)
- *TRG 커맨드로 저장한다
- ENTER 를 누른다

주의 사항

- 이 기능은 통신 커맨드에서만 설정 가능합니다. 미리 통신 커맨드로 데이터 메모리 기능을 유효로 하십시오. 정면 패널의 키 조작으로는 설정할 수 없습니다.
- 저장한 메모리 데이터를 본 기기 화면 상에서는 확인할 수 없습니다. 통신 커맨드로만 취득할 수 있습니다.
- 측정치가 50개 기록되어 있는 경우, 기억 내용을 지우지 않으면 새로 측정치를 기억할 수 없습니다.
- 측정단자를 멀티플렉서로 하면 데이터 메모리 기능은 자동으로 OFF가 됩니다.

커맨드에 대해서는 부속 애플리케이션 디스크 내의 통신커맨드 사용설명서를 참조하십시오.

또한 이하의 타이밍에서 자동 삭제됩니다.

- 측정조건(레인지, 저전력, 측정전류, OVC, 100 MΩ 레인지 고정밀도 모드, TC)을 변경했을 때
- 메모리 기능의 설정을 변경했을 때
- 콤퍼레이터를 설정했을 때(p.98)
- BIN 측정기능을 변경했을 때(p.108)
- ∆T를 설정했을 때(p.116)
- 시스템 리셋 했을 때(p.134)
- 전원을 껐을 때

11.4 측정 종료 때마다 측정치를 자동 송신하기 (데이터 출력 기능)

측정 종료 후, 측정치를 자동으로 USB나 RS-232C를 중계하여 컴퓨터에 데이터를 송신할 수 있습니다.

송신 방법은 2종류가 있습니다. 전환방법은 "USB 인터페이스 사용하기"(p.223)를 참조하십시오.

(1) COM 모드

시리얼 통신(COM, RS-232C 통신) 확인 소프트웨어와 고객이 작성한 수신 프로그램에 데이 터를 춬력합니다.

(2) USB 키보드 모드 (인터페이스가 USB 인 경우만 사용 가능)

텍스트 에디터나 표계산 소프트웨어에 키보드로 입력하듯이 데이터를 써냅니다. USB 키보드 모드로 한 경우, 데이터 출력하기 전에 반드시 텍스트 에디터나 표계산 소프트웨 어를 기동하여 데이터를 기록할 위치에 커서를 맞춰 주십시오. 잘못된 곳에 커서가 있으면 그 곳에 데이터가 기록되어 버립니다. 또한 반드시 입력 모드를 반각으로 하십시오.

11

출력되는 데이터의 포맷

스케일링 OFF 일 때의 측정치 포맷 (스케일링에 의해 측정치의 포맷은 변합니다.(p.77)) 측정치의 자릿수를 변경해도 포맷은 변하지 않습니다. 표시되지 않는 자리는 0이 됩니다.

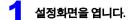
· 저항치(절대치 표시: 단위Ω)

저전력	측정치 레인지	측정치	±OvrRng 표시 때	측정이상 시
OFF	10 mΩ	±	±10.00000E+19	+10.00000E+29
	100 mΩ	±E-03	±100.0000E+18	+100.0000E+28
	1000 mΩ	±□□□□.□□E-03	±1000.000E+17	+1000.000E+27
	10 Ω	±□□.□□□□E+00	±10.00000E+19	+10.00000E+29
	100 Ω	±□□.□□□E+00	±100.0000E+18	+100.0000E+28
	1000 Ω	±□□□.□□E+00	±1000.000E+17	+1000.000E+27
	10 kΩ	±E+03	±10.00000E+19	+10.00000E+29
	100 kΩ	±□□.□□□E+03	±100.0000E+18	+100.0000E+28
	1000 kΩ	±□□□.□□E+03	±1000.000E+17	+1000.000E+27
	10 ΜΩ	±□□.□□□□E+06	±10.00000E+19	+10.00000E+29
	100 MΩ	±□□□.□□□E+06	±100.0000E+18	+100.0000E+28
	1000 MΩ	±□□□.□□E+06	±1000.000E+17	+1000.000E+27
ON	1000 mΩ	±□□□.□E-03	±1000.00E+17	+1000.00E+27
	10 Ω	±□□.□□□E+00	±10.0000E+19	+10.0000E+29
	100 Ω	±□□.□□E+00	±100.0000+18	+100.000E+28
	1000 Ω	±□□□.□E+00	±1000.00E+17	+1000.00E+27

• 저항치(상대치 표시: 단위%)

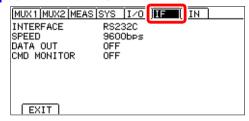
측정치	±OvrRng 표시 때	측정이상 시
±□□□.□□E+00	±100.000E+18	+100.000E+28

온도, 온도 환산 표시(단위 ℃)

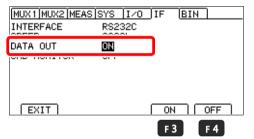

측정치	±OvrRng 표시 때	측정이상 시
±□□.□E+00	±100.0E+18	+100.0E+28

측정치의 "+" 부호는 공백(아스키 코드 20H)으로 반환합니다. ±OvrRng 표시일 때의 값은 ±1E+20, 측정치 이상일 때의 값은 +1E+30이 됩니다.

주의 사항


- GP-IB 인터페이스에서는 사용할 수 없습니다.
- 측정단자 MUX에서 스캔기능이 자동 또는 스텝일 때는 사용할 수 없습니다.
- USB 키보드 모드에서 외부 트리거 [EXT]인 경우는 사용할 수 없습니다.
- 내부 트리거 [INT]의 경우는 TRIG 신호를 입력 또는 ENTER 를 눌렀을 때만 자동 송신합니다.
- 데이터 출력을 ON으로 한 경우는 커맨드를 사용하지 마십시오. 측정치가 이중으로 송신되는 경 우가 있습니다.

11.4 측정 종료 때마다 측정치를 자동 송신하기 (데이터 출력 기능)



통신 인터페이스 설정화면을 엽니다.

3 데이터를 자동 송신할지 여부를 선택합니다.

2 F3 자동 송신한다 F4 자동 송신하지 않는다 (초기설정)

4 측정화면으로 돌아갑니다.

연결기기(컴퓨터 또는 PLC 등)의 준비

- COM 포트로 데이터를 출력하는 경우
 수신 대기상태로 해둡니다. 컴퓨터의 경우는 애플리케이션 소프트웨어를 기동하여 수신 대기 상태로 합니다.
- 키보드처럼 데이터를 출력하는 경우 애플리케이션 소프트웨어를 기동하여 커서를 텍스트 입력하고 싶은 위치에 맞춰 둡니다.

인쇄

(RS-232C 프린터를 사용하기)

제 12 장

본 기기와 프린터를 연결하기

본 기기 설정하기(p.241) 프린터 설정하기

인쇄하기(p.242)

- 측정치 및 판정결과
- 측정조건 및 설정 일람
- 통계 연산 결과

12.1 본 기기와 프린터 연결하기

연결하기 전에 "사용 시 주의사항"(p.12)을 잘 읽어 주십시오.

프린터에 대해서

본 기기와 연결해서 사용할 수 있는 프린터의 사양은 다음과 같습니다. 프린터의 사양과 설정을 확인한 후 연결해 주십시오.

참조: "본 기기 설정하기"(p.241)

• 인터페이스 RS-232C

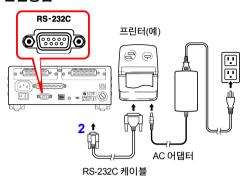
• 1행 문자수...... 반각 48문자 이상

• 통신 속도...... 9600bps(초기설정)/19,200bps/38,400bps/115,200bps

• 데이터 비트...... 8bit

• 패리티...... 없음

• 스톱 비트...... 1bit

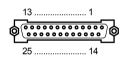

• 플로 제어...... 없음

• 제어 코드.....의한 텍스트를 직접 인쇄 가능할 것

• 메시지 터미네이터(구분문자)...... CR+LF

12.1 본 기기와 프린터 연결하기

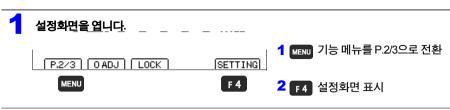
연결방법



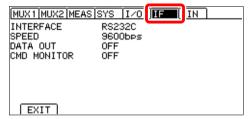
- 1 본 기기와 프린터의 전원이 OFF 임을 확인한다.
- 2 RS-232C 케이블을 본 기기와 프 린터의 RS-232C 커넥터 단자에 연결한다.
- 본기기 및 프린터의 전원을 켠다.

커넥터 핀 배열

본 기기 (9 핀) 커넥터


프린터 (25 핀) 커넥터(예)

회로 명칭	신호명	핀 번호	
수신 데이터	RxD	2	o
송신 데이터	TxD	3	о <u> —</u>
신호용 접지 또는 공통 귀선	GND	5	·
			\circ


	핀 번호	신호명	회로 명칭
0	2	TxD	송신 데이터
0	3	RxD	수신 데이터
0	7	GND	신호용 접지 또는 공통 귀선
0	4	RTS	송신 요구
0	5	CTS	송신 가능

반드시 사용하시는 프린터의 커넥터 핀 배치를 확인해 주십시오.

본 기기 설정하기

통신 인터페이스 설정화면을 엽니다.

인터페이스의 종류에서 프린터를 선택합니다.

2 F2 프린터를 사용한다

측정화면으로 돌아갑니다.

12.2 인쇄하기

인쇄하기 전에

본 기기의 설정(p.241)이 올바른지 확인해 주십시오.

측정치 • 판정결과를 인쇄한다

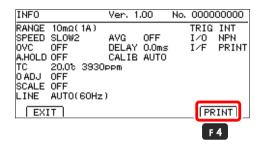
키 조작으로 인쇄한다

측정화면 P.1/3에서 F4를 누르면 현재의 측정치가 인쇄됩니다.

온도를 표시하지 않는 경우는 저항치만, 온도를 표시하는 경우는 저항치와 온도가 인쇄됩니다.

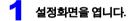
참조: "표시를 전환하기"(p.52)

외부 제어로 인쇄한다

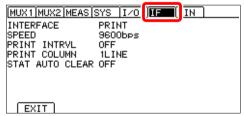

본 기기 EXT I/O 커넥터의 PRINT 신호를 ON으로 하면(EXT I/O 커넥터의 ISO_COM 단자와 단락한다). 측정치 및 판정결과를 인쇄할 수 있습니다.

- 측정 때마다 연속해서 인쇄하고 싶은 경우는 EOM 신호를 PRINT 신호에 연결하고, 내부 트리거로 설정해 주십시오.
- 외부 트리거로 트리거를 통해 측정 종료 후에 인쇄를 하고 싶은 경우는 외부 I/O의 EOM 신호를 PRINT 신호에 연결해 주십시오.
- 통계 연산 기능 ON에서 내부 트리거 설정인 경우, PRINT 신호를 ON으로 하면 직후에 갱신한 측정치를 통계 연산하고 인쇄합니다.

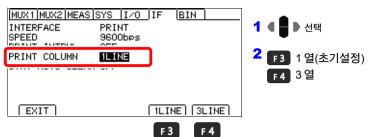
측정조건이나 설정 일람을 인쇄한다


측정화면 P.1/3에서 [1] [INFO]를 눌러 설정일람 화면을 표시한 상태에서 [14]를 누르면 측정조 건이나 설정 일람이 인쇄됩니다.

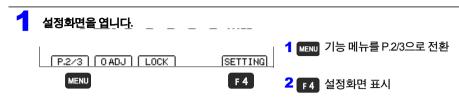
참조: "측정조건이나 설정을 일람 표시하기"(p.54)


1행에 인쇄할 열수를 변경한다

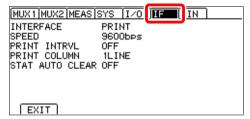
보통 1행 1열로 인쇄하지만, 1행 3열로 인쇄할 수도 있습니다. 1행 3열로 인쇄하는 경우는 온도 및 인터벌 시간은 인쇄할 수 없습니다.



통신 인터페이스 설정화면을 엽니다.

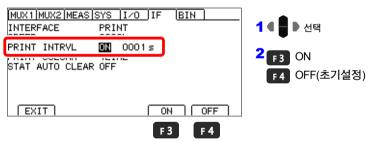


4 측정화면으로 돌아갑니다.

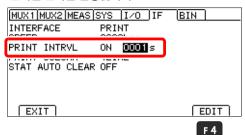


인터벌 프린트

일정한 시간간격으로 자동으로 측정치를 인쇄할 수 있습니다.



통신 인터페이스 설정화면을 엽니다.



3 인터벌 기능을 ON으로 합니다.

4 인터벌 간격을 설정합니다.

설정 범위: 0초 ~ 3600 초 (0초로 설정하면 자동인쇄는 없습니다) 1 4 **1** Þ

설정할 항목에 커서를 이동 F4 로 수치 편집할 수 있게 한다.

- 2 ◀ ▶지릿수이동 ◀ ▶수치 변경 좌우 커서 키로 설정하고 싶은 자릿수에 커서를 이동 상하 커서 키로 수치를 변경
- 3 ENTER 확정
 - (🙉 취소)

5 측정화면으로 돌아갑니다.

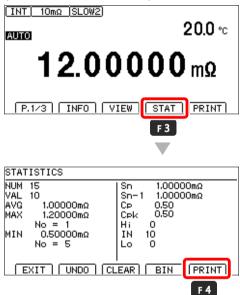
MENU 측정화면으로 돌아가기

인터벌 프린트의 인쇄 동작

- 1 F4 [PRINT] 또는 EXT I/O의 PRINT 신호로 인터벌 프린트가 START 합니다.
- 2 설정한 인터벌 시간마다, 경과시간(시분초)^{*1}과 측정치를 인쇄합니다. 또한 ENTER 또는 EXT I/O의 TRIG 신호를 입력하면 그때의 경과시간과 측정치가 표시됩니다.
- 3 다시 [제 [PRINT], PRINT 신호로 인터벌 프린트는 STOP 합니다.
- *1: 경과시간이 100 시간이 되면, 00:00:00로 리셋되어 다시 0부터 카운트됩니다.
- (예) 99시간 59분 50초 경과 99:59:50 100시간 2분 30초 경과 00:02:30

주의 사항

- 인터벌 프린트 중에 측정조건을 인쇄하면 측정조건과 측정치가 혼재하는 경우가 있으므로, 인 터벌 프린트 중에는 설정 조건은 인쇄하지 않도록 해 주십시오.
- 멀티플렉서 스캔기능이 자동 또는 스텐인 경우 인터벌 프린트는 사용할 수 없습니다.

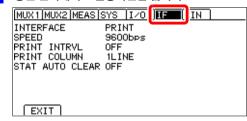

통계 연산 결과를 인쇄한다

통계 연산 기능을 ON으로 설정한 경우, 통계 연산 결과를 인쇄할 수 있습니다. 화면상에서 PRINT 를 선택하거나 본 기기의 EXT I/O 커넥터의 PRINT 신호를 ON으로 하면(ISO_COM 단자와 단락한다) 인쇄할 수 있습니다.

연산 기능을 유효로 하려면:

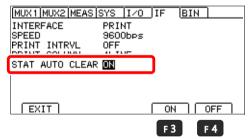
참조: "5.3 측정 데이터를 통계 연산하기"(p.111)

(통계 연산 기능이 유효한 경우)


유효한 데이터가 없는 경우, 데이터 수만 인쇄합니다. 유효한 데이터 수가 1인 경우, 샘플의 표준 편차, 공수능력지수는 인쇄하지 않습니다.

인쇄할 때마다 통계 연산 결과를 삭제한다

인쇄를 했을 때 자동적으로 통계 연산 결과를 삭제할 수 있습니다.



통신 인터페이스 설정화면을 엽니다.

3 통계 연산 clear 기능을 ON으로 합니다.

2

- F3 통계 연산 clear 기능을 ON으로 한다.
 - F4
 통계 연산 clear 기능을 OFF로 한다.(초기설정)

4 측정화면으로 돌아갑니다.

MENU 측정화면으로 돌아가기

인쇄 예

◆저항측정치, 상대치, 온도측정치 (1행 1열 인쇄)

```
• 저항 측정치, 온도 측정치
```

```
2013-07-31 14:24:02 99.9758mOhm

2013-07-31 14:25:54 9.9756mOhm

2013-07-31 14:27:02 -0.0058mOhm, ----

2013-07-31 14:28:02 99.9758MOhm, 25.0 C

2013-07-31 14:39:02 99.9758MOhm, +OvrRng

2013-07-31 14:48:40 -----
```

• 콤퍼레이터 ABS

```
2013-07-31 14:49:02 99.9758mOhm Hi , 25.0 C
2013-07-31 14:50:02 10.9008mOhm IN
2013-07-31 14:51:02 9.9758mOhm Lo
```

· 콤퍼레이터 REF%

```
2013-07-31 14:52:11 10.000 % Hi
2013-07-31 14:53:11 -0.010 % IN
2013-07-31 14:55:11 -100.000 % Lo
```

BIN ON

```
2013-07-31 14:56:31 5.0007mOhm 01
2013-07-31 14:57:25 10.0005mOhm
```

OB

AT ON

```
2013-07-31 14:58:52 175.6 C
```

◆저항측정치 (1행 3열 인쇄)

```
10.0004mOhm, 10.0006mOhm, 0.0004mOhm
```

◆인터벌 프린트

```
        00:00:00
        10.0004mOhm

        00:00:01
        10.0011mOhm

        00:00:02
        10.0001mOhm

        00:00:03
        10.0005mOhm

        00:00:04
        10.0005mOhm

        00:00:05
        10.0005mOhm
```

◆멀티플렉서 스캔 결과(RM3545-02 만)

```
2013-07-31 14:00:11 Total judge FAIL CH01 99.9758MOhm Hi FAIL CH02 9.9758MOhm IN PASS CH03 100.9758MOhm Lo PASS
```

스캔 중에 인쇄하지 마십시오.

◆ 측정조건 및 설정 일람

```
MODEL RM3545-02
NO.
      000000000
VER.
       1.00
RANGE 10mOhm (1A)
SPEED FAST
AVG
      10
OVC
      ON
DELAY 10 ms
A.HOLD OFF
CALTB AUTO
TC:
       OFF
O ADJ OFF
SCALE OFF
      AUTO (60Hz)
LINE
TRIG
      INT
I/O
      NPN
I/F
     PRINT
```

◆통계 연산 결과

```
DATE - TIME 2013-07-31 14:01:11
NUMBER 11
WALTD
        10
AVERAGE 1200.160mOhm
MAX
        1200.200mOhm (No = 9)
        1200.130 \text{mOhm} (No = 1)
MIN
Sn
         0.00020mOhm
Sn-1
        0.00028mOhm
Cp
        0.19
Cpk
        0.03
COMP Hi 4
COMP IN 6
COMP Lo 0
BIN0 10.000mOhm -
                   0.000mOhm
                                3
BIN1 20.000mOhm - 10.000mOhm
                                1
BIN2 30.000mOhm - 20.000mOhm
                                3
BIN3 40.000mOhm -
                   30.000mOhm
BIN4 50.000mOhm - 40.000mOhm
                                3
BIN5 60.000mOhm - 50.000mOhm
                              10
BIN6 70.000mOhm - 60.000mOhm
BIN7 80.000mOhm -
                   70.000mOhm
                                2
BIN8 90.000mOhm - 80.000mOhm
                                3
BIN9 100.000mOhm - 90.000mOhm
                                3
Out of BIN
                                5
```

통계 연산 결과의 "Valid"는 측정이상 등 에러를 제외한 수(유효 데이터 수)를 가리킵니다.

사양

제 13 장

13.1 본체 사양

측정범위

LP	100 MΩ 레인지 고정밀도	측정범위와 f.s.	레인지 수
OFF	OFF	0.000 00 mΩ(10 mΩ 레인지) ~ 1200.0 MΩ(1000 MΩ 레인지) 10 MΩ 레인지 이하는 f.s.=1,000,000dgt. 100 MΩ 레인지 이상은 f.s.=10,000dgt.	12
	ON	0.000 00 mΩ(10 mΩ 레인지) ~ 120.000 0 MΩ(100 MΩ 레인지) f.s.=1,000,000dgt.	11
ON	-	0.00 mΩ(1000 mΩ 레인지) ~ 1200.00 Ω(1000 Ω 레인지) f.s.=100,000dgt.	4

측정 방식

측정 신호	정전류	
측정 방식	직류 4 단자법	
측정 단자	바나나 단자 SOURCE A단자 SOURCE B단자 SENSE A단자 SENSE B단자 GUARD단자	전류검출 단자 전류발생 단자 전압검출 단자 전압검출 단자 가드 단자

측정 사양

(1) 저항 측정 정확도

정확도 보증 조건	정확도 보증 조건					
워밍업 시간	60분 이상(60분 미만인 경우 측정 정확도는 정확도표의 2배)					
정확도 보증 온습도 범위	23°C ± 5°C, 80%RH 0 ō∤					
정확도 사양 조건	셀프 캘리브레이션 기능 AUTO (셀프 캘리브레이션 기능 MANUAL인 경우는 캘리브레이션 실행 후의 온도 변동 ±2℃ 이내 그리고 간격 30분 이내)					
온도계수	0℃~18℃, 28℃~40℃에서는 ±(측정 정확도의 1/10)/℃를 가산					
정확도 보증기간	1년간					

LP	: OFF									
레인지	100 MΩ 레인지	최대 측정		측정 정확도±(%rdg.+%f.s.)+2		측경	정전류	0ADJ없는 기산정확도	최대 개방
네근지	고정밀모드	범위*1	FAST	MED	SLOW1	SLOW2	전환	*3	±(%f.s.) *2	전압
10 mΩ		12.000 00		+0.020	0.060 +0.020		1 A	0.020		
10 11122		mΩ	(0.060+0.015)	(0.060-	+0.002)	(0.060+0.001)	_	IA	(-)	
			0.060+0.010	0.060-	+0.010	0.060+0.010	Lligh	1 1	0.002	
100 0		120.000 0	(0.060+0.003)	(0.060-	+0.001)	(0.060+0.001)	High	1 A	(-)	
100 mΩ		mΩ	0.014 +0.050	0.014	+0.020	0.014 +0.020		4004	0.020	
			(0.014+0.015)	(0.014-	+0.002)	(0.014+0.001)	Low	100 mA	(-)	
			0.012 +0.010		0.012+0.008				0.002	
		1200.000	(0.012+0.003)		(0.012+0.001)		High	100 mA	(-)	
1000 mΩ		mΩ	0.008+0.050		0.008+0.020				0.020	
			(0.008+0.015)		(0.008+0.002)		Low	10 mA	(-)	5.5 V
			0.008+0.010		0.008+0.008				0.002	*4
		12.000 00	(0.008+0.003)		(0.008+0.001)		High	10 mA	(-)	
10 Ω		Ω	0.008+0.050		0.008+0.020				0.020	†
	-		(0.008+0.015)		(0.008+0.002)		Low	1 mA	(-)	
			0.007+0.005	0.007+0.002	0.007	+0.001			-	
		120.000 0 (0.007+0.005) (0.007+0.001)		(0.007-	+0.001)	High	h 10 mA	(-)	-	
100 Ω	0		0.008+0.010		0.008+0.010					0.002
			(0.008+0.003)		(0.008+0.001)		Low	1 mA	(-)	
		1200.000 0		0.006+0.002	0.006+0.001			_	1	
1000 Ω		Ω	(0.007+0.005)	(0.006+0.001)	(0.006	+0.001)		1 mA	(-)	
10 kΩ	•	12.000 00 kΩ	0.008+0.005	0.007+0.002	0.007	+0.001		1 mA		
100 kΩ	•	120.000 0 kΩ	0.008+0.005	0.007+0.002	0.007+0.001			100 µA		
1000 kΩ	•	1200.000 kΩ	0.015+0.005	0.008+0.002	0.008+0.001		_	10 μA		
10 ΜΩ	•	12.000 00 ΜΩ	0.030+0.005	0.030+0.002	0.030+0.001			1 μΑ	-	20 V
100 1/2	ON	120.000 0 MΩ	0.200+0.005	0.200+0.002	0.200+0.001			100 nA		
100 ΜΩ	OFF	120.00 MΩ			10.00 MΩ이하: 0.50 + 0.02 10.01 MΩ이상: 1.00 + 0.02			1 μΑ		
1000 ΜΩ	OFF	1200.0 MΩ		100.0 MΩ이하: 1.00 + 0.02 100.1 MΩ이상: 10.00 + 0.02				이하		

LP: ON

레인지	최대 측정 범위		측정 정확도±(측정전류∗3	최대			
내전지	*1	FAST	MED	SLOW1	SLOW2	=82π%	개방 전압	
1000 mΩ	1200.00 mΩ	0.200+0.100	0.200+0.010	0.200+0.005	0.200+0.003	1 mA		
10 Ω	12.000 0 Ω	0.200+0.050	0.200+0.005	0.200+0.003	0.200+0.002	500 μA	20 mV	
100 Ω	120.000 Ω	0.200+0.050	0.200+0.005	0.200+0.003	0.200+0.002	50 μA	*5	
1000 Ω	1200.00 Ω	0.200+0.050	0.200+0.005	0.200+0.003	0.200+0.002	5 μΑ		

*1. 마이너스 측은 -10%f.s.까지

최대 표시범위는 9,999,999dgt. 또는 9 GΩ

(최대 측정범위를 넘는 경우는 최대 표시범위 이하라도 오버 레인지 표시)

- *2. LP:OFF인 경우, 0.001%f.s.=10dgt. 단, 100 MΩ 레인지 고정밀도 OFF의 100 MΩ 레인지 이상은 0.01%f.s.=1dgt., LP:ON인 경우, 0.001%f.s.=1dgt.
 - 측정 정확도는 영점 조정 후의 정확도, 영점 조정을 하지 않는 경우는 [0ADJ 없는 가산 정확도]를 가산
 - 하단의 ()는 OVC ON인 경우, LP ON에 대해서는 OVC ON만
 - 온도 보정 시는 저항 측정 정확도의 rdg. 오차에 다음 값을 가산

$$\frac{-\alpha_{t0}\Delta t}{1+\alpha_{t0}\times(t+\Delta t-t_0)}\times 100 \,[\%]$$

t₀ : 기준온도[°C]

t : 현재의 주위온도[$^{\circ}$ C] Δt : 온도 측정 정확도

α_{t0}: t₀일 때의 온도계수[1/℃]

*3. 측정전류 정밀도는 ± 5%

트리거 소스 EXT 또는 연속측정 OFF(프리런 이외)일 때 1000 Ω 레인지 이하의 경우는 측정 개시(TRIG=ON)부터 측정 종료(INDEX=ON) 사이에만 측정전류를 인가하고 그 이외의 시간은 측정전류를 정지 트리거 소스 INT 그리고 연속측정 ON(프리런)일 때 콘택트 체크가 에러인 동안은 측정전류를 정지

- *4. 트리거 소스 EXT 또는 연속측정 OFF(프리런 이외)의 경우는
- 측정 종료(INDEX=ON) 후 1 ms부터 다음 측정 개시(TRIG=ON)까지는 개방전압을 20 mV이하로 제한
- *5. 콘택트 체크 OFF인 경우(콘택트 체크 ON인 경우 300 mV)

■ 측정 시간(단위: ms) 허용차 ±10%±0.2 ms

트리거 소스 INT 그리고 연속측정 ON(프리런) 측정대상 연결 상태일 때의 1회의 측정시가

OVC *1	측정 시간
OFF	$(D+E1)\times N+F+G$
ON	$(C+D+E2)\times 2\times N+F+G$

트리거 소스 EXT 또는 연속측정 OFF(프리런 이외): 트리거 입력부터 EOMOLONOL될 때까지

OVC *1	측정 시간
OFF	$A + B + (C + D + E2) \times N + F$
ON	$A + B + (C + D + E2) \times 2 \times N + F$

A: 트리거 검출 시간 (단위:ms)

TRIG논리 설정	시간
ON에지	0.1
OFF에지	0.3

B: 접촉 개선 시간 (단위:ms)

접촉 개선 기능	시간
OFF	0.0
ON	0.2

C: 딜레이 설정치 (단위:ms)

시간	
설정에 따름	

12 12 (21) (222 23 24 24 24 24 24 24 24 24 24 24 24 24 24							
LP	레인지	FAST		MEDIUM		SLOW1	SLOW2
LF	데인시	50 Hz	60 Hz	50 Hz	60 Hz	SLOWI	SLOWZ
OFF	1000 kΩ 이하	0.3*		20.0	16.7	100	200
	10 MΩ 이상	20.0	16.7	20.0	16.7	100	200
ON	전 레인지	20.0	16.7	40.0	33.3	200	300

^{*} 측정단자가 MUX인 경우 10 mΩ 레인지만 1.0 ms

E1: 내부 대기 시간 1 (단위: ms) (적분 측정 전후의 처리 시간)

시간
0.4

$\it E2$: 내부 대기 시간2 (단위: ms) (적분 측정 전후의 처리 시간) LP OFF

레인지	100 MΩ 레인지 고정밀도 모드	측정 전류	시간
10 mΩ	-	-	40
100 mΩ	-	High	40
100 11122	-	Low	1.8
1000 mΩ	-	High	1.5
1000 11122	-	Low	1.3
10 Ω	-	High	1.5
10 12	-	Low	1.3
100 Ω	-	High	2.1
100 12	-	Low	1.3
1000 Ω	-	-	2.3
10 kΩ	-	-	12
100 kΩ	-	-	20
1000 kΩ	-	-	150
10 ΜΩ	-	-	570
100 MΩ	ON	-	1300
100 10122	OFF	-	300
1000 MΩ	OFF	-	400

LP ON

레인지	시간
1000 mΩ	15
10 Ω	35
100 Ω	35
1000 Ω	36

F: 연산 시간 (단위: ms)

설정	시간
통계 연산: OFF 스케일링: OFF	0.3
측정치 표시 전환: 없음	

G: 셀프 캘리브레이션 시간 (단위: ms)

셀프 캘리브레이션 설정	시간
자동	5.0
수동	0.0

N: 에버리지 횟수 (단위: 회)

트리거 소스, 연속 측정	횟수
트리거 소스 INT 그리고 연속측정 ON (프리런)	1 (이동 평균)
트리거 소스 EXT 또는 연속측정 OFF (프리런 이외)	설정에 따름 ^{*2}

*1 LP ON일 때는 OVC ON 고정

*2 LP ON으로 측정 속도 SLOW2인 경우는 OFF 설정에서도 평균화 2회

트리거 소스 INT 그리고 연속측정 ON(프리런)일 때의 최단 측정 시간

LP OFF (단위: ms) 허용차 ± 10% ± 0.2 ms

310171	FAST		FAST MEDIUM		NUM	SLOW1	SLOW2
레인지	50 Hz	60 Hz	50 Hz	60 Hz	SLOWI	SLOWZ	
1000 kΩ 이하	1.0*		20.7	17.4	101	201	
10 MΩ 이상	20.7	17.4	20.7	17.4	101	201	

LP ON (단위: ms) 허용차 ± 10% ± 0.2 ms OVC ON의 경우만

레인지	FAST		MED	NUM	SLOW1	SLOW2
내신지	50 Hz	60 Hz	50 Hz	60 Hz	SLOWI	SLOWZ
1000 mΩ	71	65	111	98	431	631
10 Ω	111	105	151	138	471	671
100 Ω	111	105	151	138	471	671
1000 Ω	113	107	153	140	473	673

최단조건

딜레이: 0 ms, OVC: OFF, 에버리지: OFF

셀프 캘리브레이션: MANUAL, 접촉 개선: OFF, 스케일링: OFF

측정치 표시 전환: 없음

* 측정단자가 MUX인 경우 10 mΩ 레인지만 1.7 ms

LP OFF (단위: ms) 어용자 ± 10 % ± 0.2 ms 이단의 ()는 OVC ON인 경우								
레인지	100 MΩ 레인지	측정 전류	FA		MED		SLOW1	SLOW2
"- '	고정밀도 모드		50 Hz	60 Hz	50 Hz	60 Hz		
10 mΩ		_	4	1	61	58	141	241
10 11122			(82)		(121)	(115)	(281)	(481)
	_	High	4	1	61	58	141	241
100 mΩ		riigii	(8	2)	(121)	(115)	(281)	(481)
100 1112	_	Low	2	.5	23	19	103	203
	_	LOW	(4	.6)	(44)	(38)	(204)	(404)
		High	2	.2	22	19	102	202
1000 mΩ	_	riigii	(4.	.0)	(44)	(37)	(204)	(404)
1000 11122	_	Low	2	.0	22	19	102	202
		20	(3	.6)	(43)	(37)	(203)	(403)
	_	High	2.	.2	22	19	102	202
10 Ω	10.0	riigii	(4	.0)	(44)	(37)	(204)	(404)
10 12	_	Low	2	.0	22	19	102	202
		2011	(3	.6)	(43)	(37)	(203)	(403)
		High	2	.8	23	20	103	203
100 Ω	_	riigii	(5.2)		(45)	(38)	(205)	(405)
100 12	_	Low	2	.0	22	19	102	202
	_	LOW	•	.6)	(43)	(37)	(203)	(403)
1000 Ω	_	_	3.	.0	23	19	103	203
1000 12			(5.	.6)	(45)	(38)	(205)	(405)
10 kΩ	-	-	13		33	30	113	213
100 kΩ	-	_	21		41	38	121	221
1000 kΩ	_	-	151		171	168	251	351
10 ΜΩ	-	_	591	588	591	588	671	771
100 ΜΩ	ON	_	1321	1318	1321	1318	1401	1501
100 10122	OFF	_	321	318	321	318	401	501
1000 MΩ	OFF	-	421	418	421	418	501	601

LP ON (단위: ms) 허용차 ± 10% ± 0.2 ms OVC ON인 경우만

•	, -					
레인지	FA	ST	MEDIUM SLOW1		SLOW2	
내신지	50 Hz	60 Hz	50 Hz	60 Hz	OLOWI	010112
1000 mΩ	71	65	111	98	431	1262
10 Ω	111	105	151	138	471	1342
100 Ω	111	105	151	138	471	1342
1000 Ω	113	107	153	140	473	1346

최단조건

딜레이: 0 ms, 에버리지: OFF, TRIG논리 설정: ON,

셀프 캘리브레이션: MANUAL, 접촉 개선: OFF, 스케일링: OFF,

측정치 표시 전환: 없음

(LP: ON은 OVC: ON 고정, LP: ON으로 측정 속도: SLOW2는 에버리지: 2회 고정)

제 13 장 사양

(2) 저항 D/A 출력 정확도

출력 정확도 저항측정 정확도 ± 0.2%f.s. (온도계수 ± 0.02%f.s./℃)

응답시간 측정시간 +최대1 ms

최단 2.0 ms (허용차 ± 10% ± 0.2 ms)

최단 조건 트리거 소스 INT, LP: OFF, 1000 kΩ 레인지 이하,

측정 속도: FAST, 딜레이: 0 ms, 셀프 캘리브레이션: MANUAL

(3) 온도 측정 정확도(서미스터 센서)

측정범위 -10.0 °C ~ 99.9 °C

측정 주기(속도) 2 ± 0.2 s

정확도 보증기간 1년간

Z2001 온도센서와 조합 정확도

정확도	온도 범위
± (0.55 + 0.009 × t-10)℃	-10.0℃ ~ 9.9℃
± 0.50 °C	10.0℃ ~ 30.0℃
± (0.55 + 0.012 × t-30)℃	30.1℃ ~ 59.9℃
± (0.92 + 0.021 × t -60)℃	60.0℃ ~ 99.9℃

t : 측정 온도 (°C)

본체만의 정확도는 ± 0.2℃

(4) 온도 측정 정확도(아날로그 입력)

정확도 보증 범위 0 V ~ 2 V

최대 허용 전압 2.5 V

검출 분해능 1 mV 이하

표시 범위 -99.9 ° ~ 999.9 ° ·

측정 주기(속도) 50 ± 5 ms, 이동 평균 없음

정확도 보증기간 1년간

정확도 ± 1%rdg. ± 3 mV

온도 정확도의 환산 방법

 $1\% \times (T_R - T_{0V}) + 0.3\% \times (T_{1V} - T_{0V})$ T_{1V} : 1 V입력일 때의 온도

T_{OV} : 0 V입력일 때의 온도

T _R : 현재의 온도

본체주위온도 0℃ ~ 18℃, 28℃ ~ 40℃에서는 온도계수(± 0.1%rdg. ± 0.3 mV)/ ℃를 가

산

(5) 연산 순서

①영점 조정 ②온도보정 ③스케일링

정확도에 대해서

당사에서는 측정치의 한계오차를 다음에 나타내는 f.s.(full-scale), rdg.(reading), dgt.(digit)에 대한 값으로서 정의하고 있습니다.

f.s. (최대 표시치)

일반적으로 최대 표시치를 나타냅니다. 본 기기에서는 현재 사용중인 레인지를 나타냅니다.

rdg. (측정치, 표시치, 지시치)

현재 측정하고 있는 값, 측정기가 현재 지시하고 있는 값을 나타냅니다.

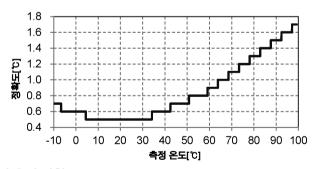
dgt. (분해능)

디지털 측정기의 최소 표시단위, 즉 최소 자릿수인 "1"을 나타냅니다.

정확도 계산 예

(표시 자릿수 이하는 버림)

• 저항 측정 정확도


측정조건 100 mΩ 레인지, 전류 Low, OVC OFF, 0ADJ 없음, SLOW1, 측정대상 30 mΩ 저항 측정 정확도 ± (0.014%rdg. + 0.020%f.s), 0ADJ 없음일 때의 가산 정확도 ± 0.020%f.s.

$$\pm (0.014\% \times 30 \text{ m}\Omega + (0.02\% + 0.02\%) \times 100 \text{ m}\Omega) = \pm 0.0442 \text{ m}\Omega$$

• 온도 측정 정확도

측정조건 서미스터 온도센서, 측정온도 35℃ 온도 측정 정확도 ± (0.55 + 0.012 × |t-30|)

± (0.55 + 0.012 × |35-30|) = **± 0.610** ℃(표시 자릿수 이하를 버려 0.6 ℃)

• 온도 보정 추가 정확도

측정조건 온도계수 3930 ppm/℃, 기준 온도 20℃, 측정 온도 35℃

추가 오차
$$\frac{-\alpha_{r0}\Delta t}{1+\alpha_{r0}\times(t+\Delta t-t_0)}\times 100 [\%]$$

$$\frac{-0.393\% \times (\pm 0.6)}{1 + 0.393\% \times (35 \pm 0.6 - 20)} = +0.222\% \text{rdg.}, -0.223\% \text{rdg.}$$

기능

(1) 저항 레인지 전환 기능

모드 AUTO/ MANUAL

(콤퍼레이터 기능 ON, BIN 기능 ON에서 자동 MANUAL)

측정 레인지 LP OFF:

 $10 \text{ m}\Omega / 100 \text{ m}\Omega / 1000 \text{ m}\Omega / 10 \Omega / 100 \Omega / 1000 \Omega / 10 \text{ k}\Omega /$

100 k Ω / 1000 k Ω / 10 M Ω / 100 M Ω / 1000 M Ω

LP ON: 1000 mΩ/ 10 Ω / 100 Ω / 1000 Ω

(100 MΩ 레인지 고정밀도 ON인 경우는 1000 MΩ 레인지 사용 불가

측정 단자 설정 MUX에서 측정방식 2선식인 경우는 10 Ω 레인지 이하 사용 불가)

초기설정 모드: AUTO, 측정 레인지: 1000 MΩ

(2) 100 MΩ 레인지 고정밀도 기능

설정	ON / OFF
초기설정	OFF

(3) 측정 자릿수 선택 기능

측정 자릿수 선택	7자리/ 6자리/ 5자리(설정보다 f.s.의 자릿수가 작은 경우는 f.s.의 자릿수가 됨)
초기설정	7자리

(4) 저전력 저항측정기능(LP)

동작내용	측정전류 및 개방전압을 억제한 저전력 측정을 실행한다 (1000 m Ω ~ 1000 Ω 레인지)
설정	ON / OFF(LP ON에서 OVC ON, 접촉 개선 기능 OFF 고정)
초기설정	OFF

(5) 측정전류 전환 기능

동작내용	측정전류를 억제한 측정을 실행한다(100 m Ω ~ 100 Ω 레인지)	
------	---	--

측정전류 High/ Low

레인지	측정 전류							
내진지	High	Low						
100 mΩ	1 A	100 mA						
1000 mΩ	100 mA	10 mA						
10 Ω	10 mA	1 mA						
100 Ω	10 mA	1 mA						

초기설정	High
------	------

(6) 측정 속도

설정	FAST/ MED/ SLOW1/ SLOW2
초기설정	SLOW2

(7) 전원 주파수 설정

동작내용	전원 전압의 주파수를 설정한다
설정	AUTO (50 Hz 또는 60 Hz 자동검출) / 50 Hz / 60 Hz
초기설정	AUTO (전원 투입 시 및 리셋 시에 자동검출)

(8) 영점 조정 기능

동작내용	내부 오프셋 전압과 잉여저항을 취소한다.
설정	ON / OFF (clear) : 레인지마다 스캔 영점 조정 ON / OFF: 채널마다(RM3545-02만)
영점 조정 범위	각 레인지 ± 50%f.s. 이내(각 레인지 ± 1%f.s. 이상은 경고 메시지 표시) 100 MΩ 이상은 영점 조정 불가(강제 OFF)
초기설정	영점 조정: OFF, 스캔 영점 조정: ON

(9) 에버리지 기능

반내용 트리거 소스 INT 그리고 연속 측정 ON(프리런)은 이동 평균, 트리거 소스 EXT 또는 연속 측정 OFF(프리런 이외)는 단순 평균											
이동 평균 단순 평균											
$R_{\text{avg}(n)} = \frac{1}{A} \sum_{k=n}^{n+A-1} R_k$	$R_{\text{avg}(n)} = \frac{1}{A} \sum_{k=(n-1)A+1}^{nA} R_k$										
$R_{ ext{avg}}$: 평균치, A : 평균횟수, n	: 측정횟수, R_{k} : k 번째 측정치										

설정 ON / OFF (LP ON에서 측정 속도 SLOW2인 경우는 OFF 설정이리도 내부에서 평균 화 2회 실행)

 평균 횟수
 2 ~ 100회

 초기설정
 OFF, 평균 횟수 2회

(10)딜레이 설정기능

동작내용 OVC 및 자동 레인지에서 측정전류를 변화시킨 후나 TRIG 신호 뒤에 대기시간을 두

어 측정이 안정되는 시간을 조정한다

프리셋: 내부고정 시간 후부터 적분 시작(각 레인지 다른 값) 임의 설정: 설정한 시간 후부터 적분 시작(전체 레인지 공통)

설정 프리셋 (내부 고정치)/ 임의 설정 (설정치)

딜레이 설정범위 0 ms ~ 9999 ms

초기설정 프리셋/ 0 ms

프리셋의 딜레이 값 (내부 고정) (단위: ms)

LP OFF								
레인지	100 MΩ 레인지	측정 전류	딜레이					
네신지	고정밀도 모드	7027	OVC: OFF	OVC: ON				
10 mΩ	-	-	75	25				
100 mΩ	-	High	250	25				
100 11122	_	Low	20	2				
1000 mΩ	-	High	50	2				
1000 11122	-	Low	5	2				
10 Ω	_	High	20	2				
10 12	_	Low	5	2				
100 Ω	_	High	170	2				
100 12	_	Low	20	2				
1000 Ω	_	-	170	2				
10 kΩ	_	-	180	-				
100 kΩ	-	-	95	-				
1000 kΩ	-	-	10	-				
10 ΜΩ	_	-	1	-				
100 MΩ	ON	-	500	-				
100 MΩ	OFF	-	1	-				
1000 MΩ	MΩ OFF		1	-				

LP ON

딜레이	
1	

(11)온도 측정 설정

온도센서 종류 서미스터 센서 / 아날로그 입력

아날로그 입력 연산식

 $t = \frac{T_2 - T_1}{V_2 - V_1} v + \frac{T_1 V_2 - T_2 V_1}{V_2 - V_1}$

t : 표시치(°C)

v : 입력 전압(V) V₁: 기준전압 1 (V)

설정범위: 0.00 V ~ 2.00 V *T*₁ : 기준온도 1 (℃) 설정범위: -99.9℃ ~ 999.9℃ V₂: 기준전압 2 (V) 설정범위: 0.00 V ~ 2.00 V 설정범위: -99.9℃ ~ 999.9℃

*T*₂ : 기준온도 2 (℃)

센서 종류: 서미스터 센서 , V₁: 0 V, T₁: 0°C, V₂: 1 V, T₂: 100°C

(12)온도보정기능(TC)

저항치를 기준온도일 때의 저항치로 환산하여 표시한다

(ΔT ON에서 TC 자동 OFF)

연산식

초기설정

동작내용

 $R_{t0} = \frac{R_t}{1 + \alpha_{t0}(t - t_0)}$

R, : 실측한 저항치(Ω) R_{t0} : 보정 저항치(Ω) t₀ : 기준온도(°C)

설정범위: -10.0℃ ~ 99.9℃

t : 현재의 주위온도(°C) α_{t0} : t_0 시의 온도계수(1/ $^{\circ}$ C)

설정범위: - 99,999 ppm/℃ ~ 99,999 ppm/℃

설정 ON / OFF(AT ON에서 TC 자동 OFF) 초기설정 OFF, t_0 : 20°C, α_{t0} : 3,930 ppm/°C

(13)오프셋 전압 보정 기능 (OVC: Offset Voltage Compensation)

동작내용 전류 극성을 반전하여 오프셋 전압의 영향을 없앤다

유효 레인지 LP OFF : 100 mΩ레인지 ~ 1000 Ω레인지

LP ON : 전 레인지

설정 ON / OFF (LP ON일 때는 OVC ON 고정)

OFF 초기설정

제 13 장 사양

(14)스케일링 기능

동작내용 측정치를 일차함수 $R_S = A \times R + B$ 로 보정한다.

R_S: 스케일링 후의 값

A : 게인계수 설정범위: 0.200 0×10⁻³ ~ 1.999 9×10³

R : 영점 조정, 온도 보정 후의 측정치

B : 오프셋 설정범위: $0 \sim \pm 9 \times 10^9$ (최소 분해능 1 nΩ)

설정 ON / OFF

표시 포맷

아래 표에 따름(9 G를 넘는 경우는 오버 레인지 표시)

LP: OFF

	게인계수													
레인지	(0.2000~1.99 ×10 ⁻³	999)	(0.2000~1.99 ×10 ⁻²	999)	(0.2000~1.99 ×10 ⁻¹	999)	(0.2000~1.99 ×1(10 ⁰)	999)	(0.2000~1.99 ×10(10 ¹)		(0.2000~1.99 ×10 ²	999)	(0.2000~1.99 ×10 ³	999)
10 mΩ	00.000	μ	000.000	μ	0000.000	μ	00.000 00	m	000.000	m	0000.000	m	00.000 00	
100 mΩ	000.000	μ	0000.000	μ	00.000 00	m	000.000	m	0000.000	m	00.000 00		000.000	
1000 mΩ	0000.000	μ	00.000 00	m	000.000	m	0000.000	m	00.000 00		000.000		0000.000	
10 Ω	00.000 00	m	000.000	m	0000.000	m	00.000 00		000.000		0000.000		00.000 00	k
100 Ω	000.000	m	0000.000	m	00.000 00		000.000		0000.000		00.000 00	k	000.000	k
1000 Ω	0000.000	m	00.000 00		000.000		0000.000		00.000 00	k	000.000	k	0000.000	k
10 kΩ	00.000 00		000.000		0000.000		00.000 00	k	000.000	k	0000.000	k	00.000 00	М
100 kΩ	000.000		0000.000		00.000 00	k	000.000	k	0000.000	k	00.000 00	M	000.000	М
1000 kΩ	0000.000		00.000 00	k	000.000	k	0000.000	k	00.000 00	М	000.000	M	0000.000	М
10 MΩ	00.000 00	k	000.000	k	0000.000	k	00.000 00	М	000.000	М	0000.000	M	00.000 00	G
100 MΩ *	000.000	k	0000.000	k	00.000 00	М	000.000	М	0000.000	М	00.000 00	G	000.000	G
1000 MΩ	0.000	k	00.000	M	000.00	М	0.000	M	00.000	G	000.00	G	0.000	G

* 100 MΩ 레인지 고정밀도 모드가 OFF일 때는 5자리 표시

LP: ON

	21.1011													
	게인계수													
레인지	(0.2000~1.99 ×10 ⁻³	999)	(0.2000~1.9 ×10 ⁻²	999)	(0.2000~1.9 ×10 ⁻¹	999)	(0.2000~1.99 ×1(10 ⁰)	999)	(0.2000~1.999 ×10(10 ¹)	9)	(0.2000~1.99 ×10 ²	999)	(0.2000~1.99 ×10 ³	999)
1000 mΩ	0000.00	μ	00.000	m	000.000	m	00.000	m	00.000		000.000		0000.00	
10 Ω	00.000	m	000.000	m	00.000	m	00.000		000.000		00.000		0 000.00	k
100 Ω	000.000	m	00.000	m	00.000		000.000		00.000		0 000.00	k	000.000	k
1000 Ω	00.000	m	00.000		000.000		00.000		00.000 O	:	000.000	k	00.000	k

단위 Ω / 없음 / 임의 3글자(SI접두사 미포함)

초기설정 OFF, A: 1.0000×1, B: 0, 단위:Ω

(15)셀프 캘리브레이션 기능

동작내용	계측회로의 오프셋 전압과 게인을 보정한다		
설정	AUTO / MANUAL		
보정 타이밍	AUTO : 전원 투입 시, 측정 직후, TRIG 대기 중(1 s마다) MANUAL : EXT I/O CAL 신호 입력 시, 캘리브레이션 커맨드 실행 시		
셀프 캘리브레이션 시간	전원 투입 시, AUTO 전환 시, 및 MANUAL 실행의 경우: 400 ms AUTO의 경우: 5 ms(이동 평균)		
초기설정	AUTO		

(16)접촉 개선 기능 (Contact Improver)

동작내용	TRIG 신호 입력 후, SENSE A - SENSE B 단자 간에 전압을 인가하여 접촉 개선 전 류를 0.2 ms 간 흘려보낸다
설정	OFF/ ON(LP ON일 때는 접촉 개선 기능 OFF 고정)
초기설정	OFF
인가 전압	최대 5 V
접촉 개선 전류	최대 10 mA(측정대상에 흐른다)

(17)측정 이상 검출 기능

■ 오버 검출기능

동작내용	아래 조건에서 오버 레인지를 표시
	측정범위를 넘었다 측정 중 A/D 컨버터의 입력이 범위를 넘었다
	• 연산 결과가 표시 자릿수를 넘었다

■ 콘택트 체크 기능

동작내용	SOURCE A - SENSE A단자 간 및 SOURCE B - SENSE B 단자 간의 연결을 체크한 다	
설정	ON/ OFF (측정단자 설정 MUX에서 측정방식 2선식인 경우는 OFF 고정, 100 MΩ 레인지 이상은 ON 고정)	
임계치	50 Ω (참고값)	
초기설정	ON (LP: OFF인 경우), OFF (LP: ON인 경우)	

■ 전류 이상 검출 기능

동작내용 규정된 측정전류를 인가할 수 없는 이상을 검출한다. 해제기능 없음

전류 이상 모드 설정 전류 이상(ERR 신호 출력)/ 오버 레인지(HI 신호 출력)

전류 이상 검출 시의 표시 및 출력

		전류 이상 모드 설정		
		전류 이상	오버 레인지	
콘택트 체크	정상 (에러 없음)	전류 이상 표시 ERR 신호 출력	오버 레인지 표시 HI 신호 출력	
는릭으세그	이상 (에러)	콘택트 에러 표시 ERR신호 출력		

초기설정 전류 이상(ERR신호 출력)

전류 이상이 되는 배선저항 및 접촉저항의 참고치 : LP OFF

레인지	100 MΩ 레인지	전류 전환	측정 전류	SOURCE B - SOURCE A
	고정밀도 모드			(측정대상 이외)
10 mΩ	-	-	1 A	1.5 Ω
100 mΩ	-	High	1 A	1.5 Ω
100 mΩ	-	Low	100 mA	15 Ω
1000 mΩ	-	High	100 mA	15 Ω
1000 mΩ	-	Low	10 mA	150 Ω
10 Ω	-	High	10 mA	150 Ω
10 Ω	-	Low	1 mA	1 kΩ
100 Ω	-	High	10 mA	100 Ω
100 Ω	-	Low	1 mA	1 kΩ
1000 Ω	-	-	1 mA	1 kΩ
10 kΩ	-	-	1 mA	1 kΩ
100 kΩ	-	-	100 μΑ	1 kΩ
1000 kΩ	-	-	10 μΑ	1 kΩ
10 ΜΩ	-	-	1 μΑ	1 kΩ
100 ΜΩ	ON	-	100 nA	1 kΩ
100 ΜΩ	OFF	-	1 µA이하	1 kΩ
1000 ΜΩ	OFF	-	1 µA이하	1 kΩ

LP ON

	레인지	측정 전류	SOURCE B - SOURCE A (측정대상 이외)
	1000 mΩ	1 mA	2 Ω
Ì	10 Ω	500 μΑ	5 Ω
	100 Ω	50 μA	50 Ω
	1000 Ω	5 μΑ	500 Ω

(18)콤퍼레이터 기능

동작내용	설정치와 측정치의 비교 판정		
설정	ON / OFF(콤퍼레이터 기능 ON일 때는 레인지 고정, ΔT 및 BIN 기능 ON에서 콤퍼레이터 기능 자동 OFF)		
판정 방법	ABS모드/ REF%모드		
초기상태	OFF, ABS모드		
판정	Hi 측정치>상한치 IN 상한치≧측정치≧하한치 Lo 하한치>측정치		

종합판정 기능(RM3545-02만)

CDI	0 H L O 1 10 (1 miles 10 4 L L)			
동	등작	측정 단자 설정 MUX, 스캔기능 자동 또는 스텝인 경우는 각 채널을 PASS/ FAIL 판 정하여 종합판정을 한다		
	ASS/ FAIL 판정 스캔 채널마다)	PASS FAIL	콤퍼레이터 판정이 PASS 조건에 부합하는 경우 콤퍼레이터 판정이 PASS 조건에 부합하지 않는 경우	
종	등합판정 -	PASS FAIL	전 채널이 PASS 또는 PASS조건 OFF인 경우 어느 하나의 채널이 FAIL인 경우	
P	ASS 조건	OFF/ Hi/	IN/ Lo/ Hi 또는 Lo/ ALL (스캔채널마다)	
초	기설정	IN		

ABS모드

상하한치 범위	$0.000~0~\text{m}\Omega \sim 9000.00~\text{M}\Omega^*$
초기설정	$0.000~0~\text{m}\Omega$

■ REF%모드

五시	절대치 표시 및 상대치 표시 상대치= (축정치 기준치 -1) ×100 [%]
상대치 표시범위	-999.999% ~ 999.999%
기준치 범위	0.000 1 mΩ ~ 9000.00 MΩ [*] 측정단자 설정 MUX인 경우는 스캔 채널1의 측정결과를 기준치로 할 수 있다 (RM3545-02 만)
상하한치 범위	0.000% ~ ± 99.999%
초기설정	기준치: 0.000 1 mΩ, 상하한치 범위: 0.000%

^{*}키 조작에 의한 설정에서는 레인지 및 스케일링 계수에 맞춘 입력범위가 된다, 최소 분해능 1 nΩ, 최대치 9 GΩ

(19)BIN기능

동작내용	설정치와 측정치와의 비교 판정을 하여 결과를 표시한다	
설정	ON / OFF(BIN 기능 ON일 때는 레인지 및 콤퍼레이터 기능 OFF 고정, ΔT 및 측정단자 설정 MUX에서 BIN기능 자동 OFF)	
판정 방법	ABS모드/REF%모드	
표시	절대치(저항치) 표시만	
BIN 번호	0~9	
초기상태	OFF	
판정	Hi 측정치>상한치 IN 상한치≥측정치≥하한치 Lo 하한치>측정치	

ABS모드

상하한치 범위	$0.000~0~\text{m}\Omega \sim 9000.00~\text{M}\Omega^*$
초기설정	$0.000~0~\text{m}\Omega$

■ REF%모드

기준치 범위	$0.000 \ 1 \ m\Omega \sim 9000.00 \ M\Omega^*$
상하한치 범위	0.000% ~ ± 99.999%
초기설정	기준치: 0.000 1 mΩ, 상하한치 범위: 0.000%

^{*}키 조작에 의한 설정에서는 레인지 및 스케일링 계수에 맞춘 입력범위가 된다, 최소 분해능 $1\,\mathrm{n}\Omega$, 최대치 $9\,\mathrm{G}\Omega$

(20)판정음 설정 기능

동작내용	콤퍼레이터 판정결과 또는 종합판정에 따라 부저를 울린다 (Hi/IN/Lo마다, 측정단자가 MUX인 경우는 PASS/FAIL 마다 설정)
동작 설정, 음색	타입1/타입2/타입3/OFF
울리는 횟수	1~5회/연속
초기설정	OFF, 2회

(21)자동 홀드 기능

동작내용	측정치를 자동 홀드한다(측정단자 설정이 정면단자, 트리거 소스 INT 그리고 연속측 정 ON(프리런)인 경우만) 이하의 조건에서 해제됨 한번 측정 리드를 개방하여 다음에 측정한 경우 또는 ☞ 를 눌렀을 때
동작 설정	ON / OFF
초기설정	OFF

(22)온도 환산 기능(ΔT)

동작내용 저항치가 온도에 의존하는 것을 이용하여 측정한 저항치를 온도로 환산하여 온도 상

승치를 표시한다

연신식

 $\Delta t = \frac{R_2}{R_1} (k + t_1) - (k + t_2)$

 Δt : 온도상승($^{\circ}$ C)

 t_1 : 초기저항 R_1 를 측정했을 때의 코일(냉 상태) 온도($^{\circ}$ C) 설정범위: -10.0 $^{\circ}$ C ~ 99.9 $^{\circ}$ C

 t_2 : 온도상승시험 종료 시의 냉매 온도($^{\circ}$ C) 설정범위: $0.001 \, \mu\Omega \sim 9000.000 \, M\Omega^{^{\circ}}$

 R_2 : 온도상승시험 종료시의 코일저항(Ω)

 k^{-} : 도선재료의 0 $^{\circ}$ 일 때의 온도계수의 역수($^{\circ}$) 설정범위: -999.9 $^{\sim}$ 999.9

* 키 조작에 의한 설정에서는 레인지 및 스케일링 계수에 맞춘 입력범위가 된다.

최소 분해능 1 nΩ. 최대치 9 GΩ

ΔΤ 표시범위 -9999.9 °C ~ 9999.9 °C

설정 ON / OFF

(ΔT기능 ON일 때는 콤퍼레이터 기능 OFF 고정, TC ON, 통계 연산 기능 ON, BIN 기

능 ON에서 ΔT 자동 OFF)

초기설정 OFF, t₁: 23.0°C, R₁: 1.000 0 Ω, k: 235.0

(23)통계 연산 기능

동작내용	측정치에 대해 통계 연산을 실행한다
설정	ON / OFF (Δ T ON, 측정단자 설정 MUX에서 통계 연산 기능 자동 OFF)
최대 데이터 수	30,0007∦
연산내용	총 데이터 수, 유효 데이터 수, 평균치, 최소치(인덱스 번호), 최대치(인덱스 번호), 샘플의 표준편차, 모표준편차 • 콤퍼레이터 기능이 ON일 때 콤퍼레이터 판정마다의 수, 공정능력지수(산포, 치우침) • BIN기능 ON인 경우 BIN 번호마다의 수, 전 BIN 번호의 OUT(Hi 또는 Lo) 수, BIN 무효 수
연산 Clear	전 데이터 clear / 1 데이터 clear(측정 직전의 데이터로 되돌린다)
초기설정	OFF

(24)패널 저장, 패널 로드

동작내용	측정조건을 패널번호를 지정하여 저장, 로딩
패널 수	측정단자 설정이 정면단자인 경우: 30, 측정단자 설정이 MUX인 경우: 8
패널 명칭	10문자 (알파벳 또는 수치)
저장 내용	저장 일시, 저항 레인지, 100 MΩ 레인지 고정밀도 모드, 저전력 저항촉정(LP), 촉정 전류 전환, 촉정 속도, 영점 조정, 에버리지, 딜레이, 온도 보정(TC), 오프셋 전압보정 (OVC), 스케일링, 셀프 캘리브레이션 설정, 접촉 개선, 콘택트체크, 콤퍼레이터, BIN 설정, 판정음, 자동 홀드, 온도 환산(ΔT), 통계 연산 설정, 멀티플렉서 설정(각 채널 포함)
영점 조정 로드	ON / OFF
초기설정	ON

(25)시계기능

자동 달력, 윤년 자동 판별, 24시간계	
시계 정밀도	± 약 4분/월
초기상태	2013년1월1일, 0시0분
백업 전지 수명	약 10년(23℃참고치)

(26)리셋 기능

■ 리셋

동작내용	패널 데이터 이외의 설정을 공장출하상태로 되돌린다	
------	-----------------------------	--

■ 시스템 리셋

동작내용	패널 데이터를 포함한 모든 설정을 공장출하상태로 되돌린다	
------	---------------------------------	--

■ 멀티플렉서 채널 리셋 (RM3545-02만)

동작내용	멀티플렉서 채널 설정을 공장출하상태로 되돌린다
5741 5	크니크리지 세크 크랑크 이랑크이랑네도 되고만나

(27)셀프테스트 기능

■ 기동 시 셀프테스트

동작내용	ROM / RAM 체크, 측정회로 보호용 퓨즈에 대한 단선 체크를 실시	
------	---	--

■ Z3003 유닛 테스트 (RM3545-02만)

동작내용	A단자 및 B단자 모두를 단락시킨 상태에서 2단자 저항측정 상태에서 각 핀의 왕복 배선저항치를 측정, 또 접점횟수를 표시한다
판정 기준	쇼트 검사: 단락상태에서 저항측정 1 Ω 이상인 경우 불합격 오픈 검사: 개방상태에서 측정이상을 검출하지 않는 경우 불합격

인터페이스

(1) 표시

LCD타입	흑백그래픽 LCD 240×110
백라이트	백색 LED 휘도 조정 범위: 0% ~ 100% (5%씩), 초기설정: 80% 트리거 소스 EXT의 경우, 비조작 상태가 이어지면 휘도를 낮춘다 정면 패널의 키 조작으로 휘도 복귀
콘트라스트	조정 범위: 0% ~ 100% (5%씩), 초기설정: 50%
측정치 표시 전환	보통의 측정치에다가 다음 표시를 한다. 표시 없음 / 온도 / 역사 저 저한치/TC. 스케잌링. RFF%. AT)

(2) 키

COMP, PANEL, \blacktriangledown , \blacktriangle , \blacktriangleright , \blacktriangleleft , MENU, F1, F2, F3, F4, ESC, ENTER, AUTO, \blacktriangledown , \blacktriangle (레인지), SPEED, (스탠바이)

■ 키 록 기능

동작내용	불필요한 키를 조작 금지시킨다. 통신 커맨드로도 해제 가능	
설정	OFF / 메뉴 록 / 전체 록 메뉴 록 : 다이렉트키 (하기) 및 해제 키 이외 금지 COMP, PANEL, AUTO, ▼ , ▲ (레인지), SPEED, 0ADJ, PRINT, STAT, STOP 전체 록 : 해제 키 이외 금지 KEY_LOCK 신호가 입력된 경우는 정면패널에서 하는 키 조작을 일체 금지	
초기설정	OFF	
- 기 ㅈ자은 서저 기느		

■ 키 조작음 설정 기능

설정	ON / OFF
초기설정	ON

(3) 통신 인터페이스

인터페이스 종류	GP-IB/ RS-232C/ PRINTER/ USB
초기설정	RS-232C

■ RS-232C, 프린터 통신 설정

통신 내용	리모트 제어, 측정치 출력
전송방식	조보동기식 전이중
전송 속도	9,600bps (초기설정) / 19,200bps / 38,400bps / 115,200bps
데이터 비트 길이	8비트
스롭비트	1
패리티 비트	없음
구분문 자	송신: CR+LF, 수신: CR, CR+LF
핸드쉐이크	X플로 없음, 하드웨어 플로 없음
프로토콜	무순서 방식
커넥터	D-sub9 핀(수) 감합 고정대 나사 #4-40 나사

USB

통신 내용	리모트 제어, 측정치 출력
커넥터	시리즈 B 리셉터클
전기적 사양	USB2.0 (Full Speed)
클래스(모드)	CDC클래스(COM모드), HID클래스(USB키보드 모드)
초기설정	COM 모드

■ 프린터

동작내용	PRINT신호입력, 프린트 키를 눌렀을 때 인쇄
사용 가능 프린터	인터페이스 RS-232C, 1행 문자 수 반각 48문자 이상 통신속도 9,600bps / 19,200bps / 38,400bps / 115,200bps 데이터 비트 8 bit, 패리티 없음, 스톱 비트 1 bit, 플로 제어 없음, 메시지 터미네이터(구분문자) CR+LF 제어코드 일반 텍스트를 직접 인쇄 가능할 것
인쇄 내용	저항 측정치, 온도 측정치, 판정결과, 측정조건, 통계결과
인터벌	ON / OFF
인터벌 시간	0 s ~ 3,600 s
통계 연산 clear	ON / OFF
1행 인쇄 열 수	19 / 39
초기설정	인터벌: OFF, 인터벌 시간: 1 s, 통계 연산 clear: OFF , 1행 인쇄 열 수: 1열

■ GP-IB인터페이스(RM3545-01만)

통신 내용	리모트 제어	
디바이스 어드레스	0~31	
구분문 자	LF / CR+LF	
초기설정	디바이스 어드레스: 1, 구분문자: LF	
기타	IEEE488.2에 준거	
인터페이스 기능	SH1 소스・핸드셰이크의 전 기능 있음 AH1 억센터・핸드셰이크의 전 기능 있음 T6 기본적 Talker 기능 있음 Serial・Poll 기능 있음 Talk Only 모드 기능 없음 MLA (My Listen Address) 에 의한 talker 해제 기능 있음 Listen Only 모드 기능 없음 MTA (My Talk Address) 에 의한 Listener 해제 기능 있음 Listen Only 모드 기능 없음 MTA (My Talk Address) 에 의한 Listener 해제 기능 있음 SR1 Service・Request의 전 기능 있음 RL1 Remote・Local의 전 기능 있음 PPO Parallel・Poll 기능 없음 DC1 Device・Clear의 전 기능 있음 DT1 Device・Trigger의 전 기능 있음 C0 컨트롤러 기능 없음	

■ 통신 기능

리모트 기능	USB, RS-232C 혹은 GP-IB로 통신한 경우, 리모트 상태로써 정면 패널에서 하는 키 조작을 금지한다. 이하로 해제한다. • LOCAL 키, 리셋, 전원 투입 시 • USB, RS-232C, GP-IB에 의한 : SYSTem: LOCal 커맨드 • GP-IB에 의한 GTL 커맨드
통신 모니터 기능	커맨드나 쿼리 송수신 상황을 표시 설정: ON / OFF
데이터 출력 기능	트리거 소스 INT 시는 TRIG 신호 및 ENTER 키로 측정치를 출력한다. 트리거 소스 EXT 시는 측정종료마다 측정치를 자동출력한다. (USB 키보드 모드는 트리거 소스 INT 시만) ON / OFF
메모리 기능	메모리된 측정치를 일괄하여 송신 (측정단자 설정 MUX일 때는 메모리 기능 자동 OFF) 메모리 개수: 50개(휘발성 메모리, 백업 없음) ON / OFF
초기설정	통신 모니터 기능: OFF, 데이터 출력: OFF, 메모리 기능: OFF

(4) EXT I/O

입력 신호	LOAD5 출력이 BCD 모드일	EY_LOCK, 0ADJ, PRINT (IN1), MUX, SCN_STOP, LOAD0 ~ 때만 유효: BCD_LOW 무전압 접점 입력(전류 싱크 / 소스 출력 대응) 잔류전압 1 V이하(입력 ON 전류 4 mA(참고값)) OPEN (차단전류 100 µA 이하) ON 에지: 최대 0.1 ms, OFF 에지: 최대 1.0 ms
출력 신호	BI 2. BCD 모드: EC BCD_LOW가 ON BCD_LOW가 OF	OM, ERR, INDEX, HI, IN, LO, T_ERR, T_PASS, T_FAIL, NO ~ BIN9, OB, OUTO ~ OUT2

■ 트리거 소스 설정 기능

설정	INT (내부) / EXT (외부) (측정단자 MUX에서 스캔기능이 자동 또는 스텝일 때는 EXT고정)
초기설정	INT (내부)

■ TRIG/ PRINT 필터 기능

설정	ON / OFF
동작	응답 시간 중, 입력신호 ON이 유지되어 있는 경우만 신호처리한다
응답시간	50 ms ~ 500 ms
초기설정	OFF, 50 ms

■ TRIG 논리 설정

설정	OFF 에지 / ON 에지					
초기설정	ON 에지					

■ EOM 출력 타이밍 설정

설정	HOLD / PULSE
동작	트리거 소스 EXT, HOLD 설정의 경우, 다음 TRIG신호나 0ADJ 신호 입력까지 ON을 유지 트리거 소스 EXT, PULSE의 경우, 펄스폭 설정 경과 후 OFF를 유지 트리거 소스 INT인 경우, EOM출력 타이밍 설정에 상관없이 셀프 캘리브레이션 자동 시는 EOM 5 ms 폭의 펄스출력 고정, 셀프 캘리브레이션 수동 시는 EOM출력 없음
펄스폭	1 ms ~ 100 ms
초기설정	HOLD, 5 ms

■ EXT I/O테스트 기능

■ 서비스 전원 출력

출력 전압	싱크출력 시: 5.0 V ± 10%, 소스출력 시: -5.0 V ± 10%, 100 mA _{MAX}						
절연	보호접지 전위 및 측정회로에서 플로팅						
절연정격	대지간 전압 DC 50 V, AC 30 Vrms, AC 42.4 Vpk 이하						

설정 가능 채널 수

전환 시간

42

(5) 멀티플렉서(RM3545-02 만)

(Z3003 멀티플렉서 유닛에 대해서는 139페이지 참조)

(Z3003 멀티플렉서 유 <u>년</u>	(Z3003 멀티플렉서 유닛에 대해서는 139페이지 참조)					
탑재 유닛 수	최대 2유닛					
측정단자 설정	정면단자/ MUX(멀티플렉서) (촉정단자 MUX일 때는 메모리기능 OFF 고정, 통계 연산기능 ON, BIN기능 ON으로 측정단자 설정은 자동 정면단자) MUX 설정 시는 정면 측정단자에 측정 리드 연결 불가					
대응 유닛	Z3003					
Z3003 제어 사양						
측정방법	2선식/ 4선식 (2선식인 경우, 최소 측정 레인지는 100 Ω 레인지, 2선식인 경우는 콘택트 체크 OFF 고정)					
스캔기능	OFF/ 자동(1번의 TRIG로 전 채널을 측정)/ 스텝(TRIG마다 1채널을 측정) (스캔기능 자동 및 스텝인 경우는 트리거 소스 EXT 고정) FAIL 정지 ON / OFF					
채널 설정	채널의 A단자 및 B단자 각각을 임의의 단자에 할당 가능. 축정전류는 B단자에서 A단자로 흐름. 채널 : 유효/ 무효 A단자 : 1유닛마다 10단자 (4선식인 경우) 또는 21단자(2선식인 경우)의 임의의 인단자 B단자 : 1유닛마다 10단자 (4선식인 경우) 또는 21단자(2선식인 경우)의 임의의 인단자 축정기기 선택: 본체 측정/ 외부기기 측정이하의 촉정조건을 채널마다 설정 가능 저항레인지, 100 MΩ 레인지 고정밀도 모드, 저전력(LP), 측정전류 전환, 측정 속도, 영점 조정, 에버리지, 딜레이, 온도보정(TC), 오프셋 전압 보정(OVC), 스케일링, 접촉개선, 콘택트 체크, 콤퍼레이터, 온도 환산(ΔT)					
릴레이의 핫 스위칭 방지 기능	전류 발생 단자 간(SOURCE 간)의 전류를 모니터링해 전류가 일정 이하가 될 때까 지 릴레이의 전환 제어를 실행하지 않는다					
접점 개폐 횟수 기록 기능	기록 접점 각 접점 최대 기록 횟수 999,999,999 회					

30 ms (참고치, 측정 시간 및 레인지 전환 시간은 미포함)

초기설정

측정 방식: 4선식, 스캔기능: 자동, FAIL정지: OFF, 각 채널의 초기설정은 이하와 같다(측정조건에 대해서는 각 측정조건의 초기값)

4선식의 경우

_						
ĺ	채널 번호	채널	유닛	A 단자	B 단자 TERM B1	
ı	1	유효	1	TERM A1		
ĺ	2~10	무효	1	TERM A2~TERM A10	TERM B2~TERM B10	
ĺ	11~20	무효	2	TERM A1~TERM A10	TERM B1~TERM B10	
ĺ	21~42	무효	1	TERM A1	TERM B1	

2선식의 경우

채널 번호	채널	유닛	A 단자	B 단자		
1	유효	1	TERM A1	TERM B1		
2~21	무효	1	TERM A2~TERM A21	TERM B2~TERM B21		
22~42	무효	2	TERM A1~TERM A21	TERM B1~TERM B21		

(6) D/A 출력

출력 내용 저항측정치

(영점 조정 및 온도보정 후, 스케일링 및 ΔT 연산 전의 표시치)

출력 전압 DC0 V (0dgt.에 대응) ~ 1.5 V *

측정치 이상인 경우는 1.5 V, 측정치가 마이너스가 되는 경우는 0 V

* 1,200,000 dgt. 표시인 경우는 1.2 V(1,200,000 dgt.) 에 대응 120,000 dgt. 표시인 경우는 1.2 V(120,000 dgt.) 에 대응 12,000 dgt. 표시인 경우는 1.2 V(12,000 dgt.) 에 대응

1.5 V를 넘는 표시인 경우는 1.5 V 고정

최대 출력 전압 5 V

출력 임피던스 1 kΩ

비트수 12bit

(7) L2105 전면 콤퍼레이터 램프용 출력

출력 내용	콤퍼레이터 결과출력(Hi, Lo/ IN의 2출력)					
출력단자	3극 이어폰잭 (φ2.5 mm)					
출력 전압	DC5 V ± 0.2 V, 20 mA					

환경·안전 사양

사용 장소	실내사용, 오염도2, 고도 2,000 m까지
보 관 온습 도 범위	-10℃ ~ 50℃, 80%RH이하(결로 없을 것)
시용 온습 도 범위	0℃ ~ 40℃, 80%RH이하(결로 없을 것)
내전압	AC 1.62 kV, 1 min. 컷오프 전류 10 mA [전원 단자 일괄] - [보호접지, 인터페이스, 측정단자] 간
적합 규격 안전성 EMC	EN61010 EN61326 Class A 방사성 무선주파 전자계의 영향 10 V/m에서 3% f.s. 도전성 무선주파 전자계의 영향 3 V에서 2%f.s.
전원	정격 전원 전압: AC100 V ~ 240 V (±10%의 변동을 고려) 정격 전원 주파수: 50 Hz / 60 Hz 예상되는 과도 과전압: 2,500 V
최대 정격 전력	40 VA
외형 치수	약 215W × 80H × 306.5D mm
질량	약 2.5 kg (RM3545, RM3545-01) 약 3.2 kg (RM3545-02)
제품 보증기간	3년간

부속품

•	전원 코드	1개	
•	L2101 클립형 리드	1개	
•	Z2001 온도센서	1개	
•	EXT I/O용 수컷 커넥터	1개	
•	사용설명서	1부	
•	애플리케이션 디스크	1개	
•	USB케이블 (A - B타입)	1개	
•	예비퓨즈 (F1.6AH / 250V)	1개	

옵션

• L2101 클립형 리드	• Z2001 온도센서
• L2102 핀형 리드	• Z3003 멀티플렉서 유닛
• L2103 핀형 리드	• 9637 RS-232C케이블(9pin - 9pin/ 1.8 m/ 크로스)
• L2104 4단자 리드	• 9638 RS-232C케이블(9pin - 25pin/ 1.8 m/ 크로스)
• L2105 전면 콤퍼레이터 램프	• 9151-02 GP-IB 접속 케이블(2 m)

13.2 Z3003 멀티플렉서 유닛 사양

일반 사양

(1) 측정대상(결선 순서는 임의로 선택 가능)

4선식 10군데(Z3003 2유닛 사용 시는 20군데) **2선식** 21군데(Z3003 2유닛 사용 시는 42군데)

(2) 멀티플렉서 입출력(전류인가 방향은 고정)

축정 단자(4선식) TERM A1단자 ~ TERM A10단자, TERM B1단자 ~ TERM B10단자

(TERM 단자는 다음 단자의 조합

SOURCE 단자: 전류 발생 단자, SENSE 단자: 전압 검출 단자) EX SOURCE A, EX SOURCE B : 외부기기 연결단자(전류 측) EX SENSE A, EX SENSE B : 외부기기 연결단자(전압 측)

축정단자(2선식) TERM A1단자 ~ TERM A21단자, TERM B1단자 ~ TERM B21단자

EX A, EX B: 외부기기 연결단자

실드단자 GUARD단자 가드 단자

EARTH단자기능 접지 단자EX GUARD외부기기 가드단자

사용 커넥터 D-SUB 50pin 리셉터클

(3) 핀 배치

4선식

No.	단	자명	No.	딘	자명	No.	No. 단자명	
1	-	-	18	TERM B5	SOURCE	34	TERM B9	SOURCE
2	TERM B1	SOURCE	19	I LININ DO	SENSE	35		SENSE
3	ILINIDI	SENSE	20	TERM A5	SOURCE	36	TERM A9	SOURCE
4	TERM A1	SOURCE	21	I LININ AS	SENSE	37	ILINIAS	SENSE
5	ILINIAI	SENSE	22	TERM B6	SOURCE	38	TERM B10	SOURCE
6	TERM B2	SOURCE	23	I LINII DO	SENSE	39	TEINIDIO	SENSE
7	ILINI DZ	SENSE	24	TERM A6	SOURCE	40	TERM A10	SOURCE
8	TERM A2	SOURCE	25	5 TERWI AG	SENSE	41		SENSE
9	ILINIAL	SENSE	26	TERM B7	SOURCE	42	-	-
10	TERM B3	SOURCE	27		SENSE	43	GUARD	
11	TEI (WI DO	SENSE	28	TERM A7	SOURCE	44	GUARD	
12	TERM A3	SOURCE	29	TERM A	SENSE	45	EX SOURCE B (EX Cur Hi)	
13	I LINIVI AS	SENSE	30	TERM B8	SOURCE	46	EX SENSE	B(EX Pot Hi)
14	4 TERM B4 SOURCE 31 SENSE 32	I LINIVI DO			A(EX Pot Lo)			
15		SENSE	32	TERM A8	SOURCE	48	EX SOURCE A (EX Cur Lo)	
16	TERM A4	SOURCE	33	I LINNI AO	SENSE	49	EX	GUARD
17	ILIXIVI A4	SENSE				50	E	EARTH

제 13 장 사양

2선식						
No.	단자명	No.	단자명	No.	단자명	
1	TERM A1	18	TERM B9	34	TERM B17	
2	TERM B1	19	TERM B10	35	TERM B18	
3	TERM B2	20	TERM A10	36	TERM A18	
4	TERM A2	21	TERM A11	37	TERM A19	
5	TERM A3	22	TERM B11	38	TERM B19	
6	TERM B3	23	TERM B12	39	TERM B20	
7	TERM B4	24	TERM A12	40	TERM A20	
8	TERM A4	25	TERM A13	41	TERM A21	
9	TERM A5	26	TERM B13	42	TERM B21	
10	TERM B5	27	TERM B14	43	GUARD	
11	TERM B6	28	TERM A14	44	GUARD	
12	TERM A6	29	TERM A15	45	EXB (EXHi)	
13	TERM A7	30	TERM B15	46	EXB (EXHi)	
14	TERM B7	31	TERM B16	47	EXA (EXLo)	
15	TERM B8	32	TERM A16	48	EXA(EXLo)	
16	TERM A8	33	TERM A17	49	EX GUARD	
17	TERM A9			50	EARTH	

(4) 측정 가능 범위

측정전류	Z3003을 탑재하는 기기: DC1 A 이하 외부 연결기기: DC1 A 이하, AC100 mA이하
측정 주파수	외부 연결기기: DC, 10 Hz ~ 1 kHz

(5) 접점 사양

접점 형식	메커니컬 릴레이
최대 허용 전압	실효치 30 V 및 피크치 42.4 V 또는 직류 60 V
최대 허용 전력	30 W (DC)(저항부하)
접점 수명	4선식의 경우: 5,000만번, 2선식의 경우: 500만번(참고치)

측정 사양

(1) 정확도 보증 조건

워밍업 시간	Z3003을 탑재하는 기기와 동일
정확도 보증 온습도 범위	23℃ ±5℃, 80%RH 0 ōŀ
정확도 보증기간	1년간
정확도 사양 조건	2선식의 경우, 영점 조정 실시 후에만 정확도 보증됨
온도계수	0℃ ~ 18℃, 28℃ ~ 40℃에서는 온도계수 ± (추가 정확도의 1/10)/ ℃를 가산

(2) 추가 정확도(본체의 측정 정확도에 하기 오차를 추가한다)

누설전류의 영향	측정전류에 따라 하기 rdg. 오차를 가산(가드 있을 때) (습도 70% RH 미만. 70% RH 이상인 경우는 하기 rdg. 오차 × 5를 가산) $\frac{1\times 10^{-9}[A]}{I_{\text{MEAS}}[A]}\times 100[\%\text{rdg.}]$ $I_{\text{MEAS}}: 측정전류$
측정 속도의 영향	적분시간이 전원 주기의 정수배가 아닌 경우, 하기 f.s. 오차를 가산 A_{fs} × 0.5 [%f.s.] A_{fs} : Z 3003을 탑재하는 기기의 f.s.오차
오프셋 전압의 영향	OVC OFF인 경우에 하기 저항을 오차에 가산 $\frac{10\times 10^{-6}[\mathrm{V}]}{I_{\mathrm{MEAS}}[\mathrm{A}]} [\Omega]$ I_{MEAS} : 측정전류
오프셋 저항 변동의 영향	2선식의 경우, 하기 저항을 오차에 가산 0.1 [Ω]

(3) 내부 오프셋 저항

내부 측정 경로의 저항치 0.5 Ω(초기값)

정확도에 대해서

당사에서는 측정치의 한계오차를 다음에 나타내는 f.s.(full-scale), rdg.(reading), dgt.(digit)에 대한 값으로서 정의하고 있습니다.

f.s. (최대 표시치)

일반적으로는 최대 표시치를 나타냅니다. 본 기기에서는 현재 사용 중인 레인지를 나타냅니

rdg. (측정치, 표시치, 지시치)

현재 측정하고 있는 값, 측정기가 현재 지시하고 있는 값을 나타냅니다.

dgt. (분해능)

디지털 측정기의 최소 표시단위, 즉 최소 자릿수인 "1"을 나타냅니다.

정확도의 계산 예

(표시 자릿수 이하는 버림)

• Z3003 사용 시의 저항측정 정확도

RM3545의 측정조건 100 k Ω 레인지, 측정전류 100 μ A, OVC OFF, 0ADJ 있음, FAST, 측정대상 30 k Ω 저항측정 정확도 \pm (0.008%rdq. + 0.005%f.s.)

먼저 정확도 오차를 계산하고, 다음에 종합오차를 산출합니다.

(1)정확도 오차의 계산

• 누설전류의 영향

누설전류의 영향은 측정전류와의 비율로 정해지고, 리딩오차(rdg.)에 가산됩니다.

추가 오차: A =(1 × 10⁻⁹) / (100 × 10⁻⁶) × 100 = 0.001% rdg.

측정 속도의 영향 (FAST는 적분시간이 전원주기의 정수배가 아님)
 적분시간이 전원주기의 정수배가 아닌 경우는 상용전원 노이즈의 영향이 커집니다.

추가 오차: B = 0.005 × 0.5 = 0.0025 [%f.s.]

• 오프셋 전압의 영향

릴레이와 커넥터의 열기전력은 측정치의 오프셋으로 관측됩니다. OVC ON으로 사용하는 경우, 가산할 필요가 없습니다.

추가 오차: C = (10×10⁻⁶) / (100×10⁻⁶) = 0.1 Ω

• 오프셋 저항 변동의 영향

2선식의 경우는 내부 오프셋 저항 변동의 영향을 받습니다.

추가 오차: D = + 0.1 Ω

(2)종합 오차의 산출

4선식의 경우 : E = \pm ((0.008 + A)% × 30 k Ω +(0.005 + B)% × 100 k Ω + C) = \pm 10.3

2선식의 경우 : E + D = + 10.4 Ω, - 10.3 Ω

기능

(1) 접점 개폐 횟수 기록 기능

Z3003을 탑재하는 기기로부터의 제어에 의해 각 접점의 개폐 횟수를 최대 999,999,999회까지 기록 가능

(2) 유닛 테스트 기능

핀 No.1부터 No.42까지를 모두 단락시킴으로써 Z3003을 탑재하는 기기로부터의 제어에 의해 2단자 저항측정 상 태에서 각 측정단자의 왕복 배선 저항치를 확인 가능

(3) 릴레이의 핫 스위칭 방지 기능

Z3003을 탑재하는 기기로부터의 제어에 의해 전류발생단자 간(SOURCE 간) 전류를 모니터링 가능

환경·안전 사양

사용 장소	실내사용, 오염도2, 고도 2,000 m까지
보 관 온습 도 범위	-10℃ ~ 50℃, 80%RH이하(결로 없을 것)
시 용 온습 도 범위	0℃ ~ 40℃, 80%RH이하(결로 없을 것)
적합 규격 안전성 EMC	EN61010 EN61326 Class A 방사성 무선주파 전자계의 영향 10 V/m에서 5%f.s.(Z3003을 탑재하는 기기의 영향량에 가산) 도전성 무선주파 전자계의 영향 3 V에서 5%f.s.(Z3003을 탑재하는 기기의 영향량에 가산)
외형 치수	약 92W × 24.5H × 182D mm (돌출부 불포함)
질량	약 180 g
제품 보증기간	3년간 릴레이: 보증 대상 외

부속품

시 용 설명서	1부
D-sub 50 핀 커넥터	1개(핀 헤더, 솔더컵)

보수 · 서비스

제 14 장

교정에 대해서

중요

측정기가 규정된 정확도 내에서 정확한 측정 결과를 얻기 위해서는 정기적인 교정이 필요 합니다.

교정 주기는 사용자의 사용 상황이나 환경 등에 따라 다릅니다. 사용자의 사용 상황이나 환경에 맞게 교정 주기를 정해주시고 당사에 정기적으로 교정을 의뢰하실 것을 권장합니다.

주의 사항

고장이라고 생각될 때는 "Q&A(자주 하는 질문)"(p.286)을 확인하신 후, 당사 또는 대리점으로 문의해 주십시오.

본 기기를 수송할 때

- 본 기기를 수송할 경우, 수령했을 당시의 포장 재료를 사용하십시오.
- 수송 중에는 파손되지 않도록 포장하고, 고장 내용도 첨부해 주십시오. 수송 중의 파손에 대해서는 보증할 수 없습니다.

클리닝

본 기기 및 옵션 종류의 더러워진 부분을 제거할 때에는 부드러운 천에 물이나 중성 세제를 소량 묻혀 가볍게 닦아 주십시오.

표시부는 부드러운 마른 천으로 가볍게 닦으십시오.

중요

벤진, 알코올, 아세톤, 에테르, 케톤, 시너, 가솔린계가 포함된 세제는 절대로 사용하지 마십시오. 변형, 변색될 수 있습니다.

14.1 문제 해결

Q&A(자주 하는 질문)

일반적인 문의사항에 대해 정리했습니다. 측정치에 대해서, 멀티플렉서에 대해서, 외부 인터페이스에 대해서는 다음 페이지 이후를 참조하 십시오.

해당하는 항목이 없는 경우는 당사 또는 대리점으로 문의하시기 바랍니다.

1. 일반적인 항목

No	문의사항	확인바랍	니다.	생각할 수 있는 원인→대책	참조							
1-1	전원이 켜지지 않는다. (아무 표시도 없음)	스탠바이 키의 색은	녹색	표시 설정이 올바르지 않다. →백라이트의 휘도와 콘트라스트를 조정하 십시오.	p.132 p.131							
			적색	스탠바이 상태가 되어 있다. →스탠바이 키를 누르십시오.	p.43							
			색이 켜지지 않는다. (소등)	전원이 공급되고 있지 않다. →전원 코드의 도통을 확인해 주십시오. →설비의 차단기가 켜져있는지 확인해 주십 시오. →주 전원 스위치(뒷면)를 켜 주십시오.	p.43							
				전원전압, 주파수가 상이하다. →전원의 정격을 확인바랍니다. (100 V - 240 V, 50 Hz / 60 Hz)								
1-2	1-2 키조작을할수없다. 표시	표시는	LOCK 표시가 있다.	키 록 되어 있다. →키 록 상태를 해제해 주십시오. → EXT I/O의 KEY_LOCK신호를 OFF로 하 십시오.	p.127							
			RMT 표시가 있다.	리모트 상태가 되어 있다. →리모트 상태를 해제해 주십시오.	p.232							
			패널명 표시가 있다.	EXT I/O로 패널 로드하고 있다. →EXT I/O의 LOAD신호를 OFF로 하십시오.	p.89							
									LOCK과 RMT 및 피 널명이 비표시	LOCK과 RMT 및 패 널명이 비표시	각 기능마다 동시에 사용할 수 없는 기능이 있다 → 기능 제한 일람을 참조하십시오	p.294
1-3	본 기기의 콤퍼레이터 램프가 켜지지 않는다.	측정치는	표시되어 있다.	콤퍼레이터 기능이 OFF가 되어 있다. →기능을 ON으로 해 주십시오.	p.100							
			표시되지 않았다 (값 이외의 표시)	측정치가 표시되지 않은 경우는 판정하지 않고 램프가 점등되지 않습니다.								
1-4	전면 콤퍼레이터 램프 가 켜지지 않는다.	본 기기의 콤퍼레이터 램프 는	점등	연결이 올바르지 않다. →전면 콤퍼레이터 램프를 COMP.OUT에 올바르게 연결해 주십시오.	p.107							
				단선되어 있다. →전면 콤퍼레이터 램프를 교체해 주십시오.	-							
			소등	Q&A의 No.1-3 "본체의 콤퍼레이터 램프가 켜지지 않는다"를 참조하십시오.	p.286							
1-5	부저음이 들리지 않는 다.	키 조작음 설정은	OFF	기능이 OFF로 되어 있다. →기능을 ON으로 해 주십시오.	p.128							
		판정음 설정은	OFF	기능이 OFF로 되어 있다. →기능을 ON으로 해 주십시오.	p.105							
1-6	부저 음량을 바꾸고 싶 다.	본 기기에서는 부저의 음량 ·	을 변경할 수 없습니다	-	-							

2. 측정에 관한 항목

No	문의사항	확인바립	납니다.	생각할 수 있는 원인→대책	참조
2-1	측정치가 안정되지 않는다.	노이즈의 영향을	받고 있을 가능성이 있다,	부록9(1)(2)를 참조해 주십시오.	p. 부20 p. 부22
		측정 리드는	클립형 리드	부록7(3)을 참조해 주십시오.	p. 부13
			도중부터 2단자 배선	부록7(12)을 참조해 주십시오.	p. 부18
		측정대상은	폭과 두께가 있다.	부록7(4)을 참조해 주십시오.	p. 부14
			온도가 안정되어 있 지 않다(갓 만듦, 갓 개봉함,손으로 잡는 등)	부록7(5)을 참조해 주십시오.	p. 부14
			열용량이 작다.	부록7(6)을 참조해 주십시오.	p. 부15
			변압기, 모터, 초크 코일, 솔레노이드	부록7(9)(10), 부록9(1)을 참조하십시오.	p. 부16 p. 부16 p. 부20
		TC는	ON	온도센서의 배치가 적절하지 않다. →온도센서를 측정대상에 가까이 두십시 오. →온도센서에 바람이 닿지 않도록 해 주 십시오. →측정대상의 온도변화에 대한 응답이 온 도센서의 응답보다도 느린 경우는 온도 센서를 무엇인가로 덮어서 응답시간을 늦추십시오. 온도센서의 응답시간은 약 10분입니다(참고치).	p.17
			OFF	실내 온도가 안정되지 않는 등 온도에 따라 측정대상의 저항치가 변화하고 있다. →온도보정(TC)을 ON으로 해 주십시오.	p.75
		OVC는	OFF	기전력의 영향을 받고 있다 →OVC를 ON으로 하십시오.	p.82
2-2	측정치가 예상되는 값에서 어긋난다.	영점 조정은	ON	영점 조정이 올바르지 않다. →한번 더 영점 조정을 해 주십시오.	p.68 p.52
(마이너스 표시가 나온다.)	(마이너스 표시가 나온다.)		OFF	2단자 측정일 때의 배선저항이나 열기전 력의 영향을 받고 있다. →영점 조정을 해 주십시오.	p.68
		스케일링 기능은	ON	오프셋 설정을 잘못했다. →스케일링을 OFF로 하거나 올바르게 다 시 설정해 주십시오.	p.77 p.52
				측정 리드가 올바르게 연결되어 있지 않다. →연결을 확인해 주십시오.	p.51 p.52
		기타, Q&A의 No.2-1도 혹	학인바랍니다.		p.287

14.1 문제 해결

No	문의사항	확인바립	니다.	생각할 수 있는 원인→대책	참조
2-3	측정치가 표시되지 않는다.	측정치는		측정 리드가 단선되었다. →측정 리드를 교체해 주십시오.	p.36
	(측정치의 이상 표시 에 대해서는 p.55도 참조해 주십시오.)			(자체제작 측정 리드의 경우) 접촉저항이 너무 크다. →접촉압을 올려 주십시오. →프로브 선단을 청소, 교체해 주십시오. →측정전류가 작은 레인지로 하거나 측정전류를 Low로 하십시오.	p.57 p.66
				(자체제작 측정 리드의 경우) 배선저항이 너무 크다. →배선을 굵고 짧게 해 주십시오. →측정전류가 작은 레인지로 하거나 측정전류를 Low로 하십시오.	p.57 p.66
			CONTACT TERM.A, CONTACT TERM.B	프로브가 마모되었다. 측정 리드가 단선되었다. →측정 리드를 교체해 주십시오.	p.36
			TERWI.D	측정대상에 프로브가 접촉되지 않았다 →올바르게 접촉시키십시오.	-
				측정대상이 도전성 도료, 도전성 고무 등 SENSE-SOURCE 간의 저항치가 크다 →콘택트 체크 기능을 OFF로 하십시오.	p.88
			OvrRng	측정 레인지가 낮다. →고저항레인지로 하거나 자동 레인지로 해 주십시오.	p.49
			SW.ERR ERR:061	멀티플렉서 릴레이의 핫 스위칭 방지 기능 이상입니다. →축정대상에서 나오는 전류가 작아지지 않기 때문에 릴레이를 전환할 수 없습니다. 변압기 등은 역기전력의 영향을 받고 있을 가능성이 있으므로 달레이를 길게 설정하십시오. 또, 측정단자에는 전류나 전압을 가하지 마십시오.	p.55
			NO UNIT	멀티플렉서 유닛이 삽입되어 있지 않다 →올바르게 삽입하십시오. 삽입되지 않는 유닛은 채널에 할당하지 마십시오.	p.42
			아무 표시도 나오지 않는다.	자동 레인지가 확정되지 않는다. →Q&A의 No.2-4를 참조해 주십시오.	p.289
			촉정 리드를 단락해 도 촉정치가 표시되 지 않는다.	퓨즈 단선의 기능성이 있다. →전원을 껐다가다시 켜서셀프테스트를 실시하여 퓨즈가 단선되지 않았는지 확 인해 주십시오. →멀티플렉서 사용시 측정용 퓨즈를 전환 해도 측정치가 표시되지 않는 경우는 멀티플렉서 유닛의 퓨즈가 끊어졌을 가 능성이 있습니다. 수리를 맡겨 주십시 오. 측정단자와 가드단자가 단락되었을 가능 성이 있다. →측정 리드가 고장 나지 않았는지 확인 해 주십시오.	p.44

No	문의사항	확인바립	니다.	생각할 수 있는 원인→대책	참조
2-4	자동 레인지가 확정 되지 않는다.(적절한 레인지가 되지 않는	측정대상은	변압기, 모터	인덕턴스가큰 측정대상은 자동 레인지가 확정되지 않는다. →고정 레인지로 사용하십시오.	p.49
	다)	노이즈의 영향을 받고 있	을 가능성이 있다.	부록9(1)(2)을 참조해 주십시오.	p. 부20
2-5	영점 조정을 할 수 없 다.	영점 조정하기 전의 측정 케일의 -1% ~ 50%를 넘이 상 상태이다.		결선에 문제가 있다. →다시 한번 올바른 결선으로 영점 조정 하십시오. 자체제작 케이블 등으로 저 항치가 큰 경우, 영점 조정할 수 없으므 로 배선지항을 낮게 억제해 주십시오.	p. 부7
2-6	자동 홀드 되지 않는 다. (홀드가 해제되지	측정치가	안정되지 않는다.	Q&A No.2-1 "측정치가 안정되지 않는다" 를 확인바랍니다.	p.287
	않는다.)		변화하지 않는다.	레인지가 맞지 않다. →적절한 레인지 또는 자동 레인지로 해 주십시오.	p.49
2-7	온도가 올바르게 표 시되지 않는다.			센서나 온도계 연결에 문제가 있다. →온도센서는 인쪽까지 깊숙이 꽂으십시오. 설정이 잘못되었다. →설정을 확인바랍니다. 표준 온도센서 이외를 사용하고 있다. →9451 온도 프로브는 사용할 수 없습니다.	p.37 p.39

3. EXT I/O에 관한 항목

【EXT I/O 테스트】 (p.218)를 사용하면 순조롭게 동작을 확인할 수 있습니다.

No	문의사항	확인바랍니다.	생각할 수 있는 원인→대책	참조
3-1	전혀 동작하지 않는 다.	본 기기의 EXT I/O테스트에서 표시되는 IN, OUT이 컨트롤러와 맞지 않는다.	배선 등이 잘못되었다. →EXT I/O(p.177)에 대해서 다시 확인바 랍니다. • 커넥터 빠짐 • 핀 번호 확인 • ISO_COM단자의 배선 • NPN / PNP 설정 • 접점(혹은 오픈 컬렉터)제어(전압으로 제어는 아닙니다.) • 컨트롤러에 대한 전원공급 (본 기기에는 전원공급이 필요없습니다.)	p.177
3-2	TRIG 걸리지 않는다.	트리거 소스는 내부 트리거(INT)	내부 트리거 설정으로는 TRIG 신호로 트 리거가 걸리지 않습니다. →외부 트리거 설정으로 해 주십시오.	p.209
		TRIG의 ON시간이 0.1 ms보다 짧다.	TRIG의 ON시간이 짧다. →ON시간을 0.1 ms 이상 확보하십시오.	
		TRIG의 OFF시간이 1 ms보다 짧다.	TRIG의 OFF시간이 짧다. →OFF시간을 1 ms 이상 확보해 주십시오.	
		TRIG/ PRINT 신호의 필터기능이 ON	보다 긴 신호 제어시간이 필요하다. →신호의 ON시간을 길게 해 주십시오. →필터기능을 OFF로 해 주십시오.	p.213
		:INIT:CONT(커맨드)가OFF	트리거 대기로 되어 있지 않습니다. →": INIT" 혹은 ": READ?"를 보내주 십시오.	

14.1 문제 해결

No	문의사항	확인바랍	니다.	생각할 수 있는 원인→대책	참조
3-3	PRINT되지 않는다.	인터페이스 설정 프린터 이	의	설정이 필요 →인터페이스를 프린터로 해 주십시오.	p.241
		TRIG/ PRINT 신호의 필터	기능 ON	보다 긴 신호 제어시간이 필요하다. →기능을 OFF로 해 주십시오.	p.213
3-4	LOAD되지 않는다.	로딩할 패널 번호에 패널이	l 저장되어 있지 않다.	저장되지 않은 패널은 로딩할 수 없다. →LOAD 신호를 변경하거나 LOAD 신호 에 맞춰서 다시 패널 저장해 주십시오.	
3-5	LOAD 신호에서 채널이 전환되지 않는다.	채널번호에 채널 설정이 되 채널이 무효로 설정되어 있 스캔기능을 OFF로 했다.		스캔 설정이 잘못되었다. →스캔 설정을 확인하십시오.	p.148
3-6	EOM이 나오지 않는	측정치가 갱신되지 않는다		Q&A3-2를 참조하십시오.	p.289
	다.	EOM 신호의 논리		(EOM 신호는 측정 종료하면 ON이 됩니다.)	1
		EOM 신호 설정이	펄스	펄스 폭이 짧고, EOM 신호가 ON인 동안에 읽지 못했다. →EOM 신호의 펄스 폭 설정을 늘리거나 EOM 신호 설정을 홀드로 해 주십시오.	p.215
			<u>\$</u>	계측시간이 짧고, EOM 신호가 OFF가 되는 기간을 인식할 수 없다. →EOM 신호 설정을 펄스로 해 주십시오.	p.215
3-7	Hi, IN, Lo 신호가 나	본 기기의 콤퍼레이터 램프	는 소등	Q&A의 No.1-3을 참조해 주십시오.	p.286
	오지 않는다.	출력 모드가 BCD 모드		판정 모드로 변경해 주십시오(BCD 모드 에서는 Hi와 Lo의 OR이 하나의 신호선에 서 출력됩니다.)	p.217
3-8	T_PASS, T_FAIL, T_ERR 신호가 나오 지 않는다.	스캔기능이 OFF 모든 채널의 측정이 종료되	지 않았다.	스캔 설정이 잘못되었다. →스캔 설정을 확인하십시오.	p.148
3-9	BCD 신호가 나오지	출력 모드가 판정 모드		BCD모드로 변경해 주십시오.	p.217
	않는다.			BCD_LOW 신호를 제어해 주십시오. (제 어하지 않으면 상위의 자릿수밖에 출력되 지 않습니다.)	p.182
3-10	RANGE_OUT 신호 가 나오지 않는다.	BCD_LOW 신호를 제어하고 있지 않다.		BCD_LOW 신호를 제어해 주십시오. (제 어하지 않으면 RANGE_OUT 신호는 출 력되지 않습니다.)	p.182
3-11	LOAD 신호로 멀티플 렉서 채널이 전환되 지 않는다.	MUX 신호가 ON이 되어 있	지 않다.	MUX 신호를 ON으로 하십시오.	p.181

4. 통신에 관한 항목

【통신 모니터】 (p.233)를 사용하면 순조롭게 동작을 확인할 수 있습니다.

No	문의사항		h랍니다.	i글 획인할 ㅜ 있습니다. 생각할 수 있는 원인→대책	참조
4-1	전혀 반응이 없다.	표시는	RMT 표시가 없다.	연결이 확립되지 않았습니다. →커넥터 삽입을 확인해 주십시오. →인터페이스의 설정이 올바른지 확인해 주십시오. →(USB)제어 기기에 드라이버를 설치하십시오. →(RS-232C)크로스 케이블을 사용해 주십시오. (USB, RS-232C)제어 기기의 COM포트 번호를 확인해 주십시오. →(RS-232C)본 기기와 제어 기기의 통신속도를 맞춰 주십시오.	p.223
			RMT 표시되어 있 다	커맨드를 수용하지 않습니다. →소프트웨어의 구분문자를 확인해 주십시오. →(GP-IB) 메시지 터미네이터 설정을 확인하십시오. →(GP-IB) 어드레스 설정이 올바른지 확인하십시오.	p.231
4-2	에러가 뜬다.	표시는	커맨드 에러	커맨드가 일치하지 않는다. →커맨드의 철자를 체크해 주십시오. (스페이스는 x20H입니다.) →쿼리가 없는 커맨드에 ?을 붙이지 마십시오. →(RS-232C)본 기기와 제어 기기의 통신속도를 맞춰 주십시오.	
				입력버퍼(256byte)가 넘치고 있다. →커맨드를 몇 행 송신할 때마다 더미 쿼리를 삽입한다. 예 "*OPC?"송신 → "1"수신	
			실행 에러	커맨드 문자열은 올바르지만 실행할 수 있는 상태가 아니다. 예 • 스캔 중에 설정한다 • 데이터부의 맞춤법 실수 ": SAMP: RATE SLOW3" →각 커맨드의 사양을 확인바랍니다.	
				입력버퍼(256byte)가 넘치고 있다. →커맨드를 몇 행 송신할 때마다 더미 쿼리를 삽입해 주십시오. 예 "*OPC?"송신 → "1"수신	
4-3	쿼리 응답이 돌아오 지 않는다.	통신 모니터에서	응답 없음	:TRIG: SOUR EXT 에서 :READ? 를 송신하고, 트리거 대기 중이다. →커맨드의 사양을 확인바랍니다.	
			응답 있음	프로그램이 잘못되었다. →프로그램 수신부분을 확인바랍니다.	
4-4	멀티플렉서 채널을 전환할 수 없다, 멀 티플렉서 로드를 할 수 없다.	정면측정단자는	측정 리드 연결	정면의 측정단자에 측정 리드가 연결되어 있다. →멀티플렉서 사용시에는 정면의 측정단자에 측정 리드를 연결하지 마십시오.	

14.1 문제 해결

5. 프린터에 관한 항목

No	문의사항	확인바랍니다.	생각할 수 있는 원인→대책	참조
5-1	인쇄가 안 된다.		연결이 되어 있지 않다. →커넥터 삽입을 확인해 주십시오 →인터페이스의 설정이 올바른지 확인해 주십시오. PRINT 신호를 사용하는 경우는 Q&A No.3-3도 참조해 주십시오.	p.239 p.290
5-2	문자가 깨진다.		프린터와 본 기기의 설정이 맞지 않다. →프린터 설정을 다시 확인바랍니다.	

6. 멀티플렉서에 관한 항목

No	문의사항	확인바랍니	니다.	생각할 수 있는 원인→대책	참조
6-1	멀티플렉서로 전환 할 수 없다.	표시는	ERR:60	정면의 촉정단자에 촉정 리드가 연결되어 있다. →정면 촉정단자에 촉정 리드를 연결하지 마십시오. 또한 촉정 리드를 연결하지 않은 상태에서도 ERR:60이 표시되는 경우는 전원을 끊고 Z3003을 분리하십시오. 지 않는다면 Z3003이 고장났을 가능성이 있습니다. 수리를 요청하십시오	p.148
6-2	키 조작으로 채널을 전환할 수 없다.		CH 표시가 없다	측정단자가 정면단자로 되어 있다. →측정단자를 MUX로 하십시오	p.148
			스캔표시(리스트 표시로 되어 있다)	스캔이 자동 또는 스텝으로 되어 있다. →키 조작으로 채널을 전환하기 위해서 는 스캔을 OFF로 하십시오.	p.148
				설정된 UNIT번호와 Z3003이 삽입된 UNIT번호가 다르다. →설정이나 뒷면의 UNIT을 확인바랍니 다.	p.148 p.42
			RMT 표시되어 있다.	통신에 의한 리모트 상태가 되어 있다. →리모트 상태를 해제한 후에 조작하십 시오.	p.232
6-3	EXT I/O로 채널을 전 환할 수 없다.			MUX 신호가 ON이 되어 있지 않다. →MUX 신호를 ON으로 하십시오	p.181
6-4	측정치가 안정되지 않는다.			Q&A No.2-1을 참조하십시오.	p.287
6-5	측정치가 예상되는 저항치에서 어긋난 다.			채널이 다르다. →현재의 채널과 채널 설정을 확인바랍 니다.	p.152
				배선이 단락되었다. →배선을 확인바랍니다.	
				배선저항이 크다. →2선식의 경우, 배선저항이 그대로 측정 치에 영향을 줍니다. 영점 조정을 실행 하십시오.	p.164
				정면의 측정단자에 측정 리드가 연결되 어 있다. →멀티플렉서 사용시에는 정면의 측정단 자에 측정 리드를 연결하지 마십시오.	p.142

No	문의사항	확인바랍니	니다.	생각할 수 있는 원인→대책	참조
6-6	측정치가 표시되지 않는다.			채널이 다르다. →현재의 채널과 채널설정을 확인바랍니 다.	p.152
		표시는	NO UNIT	설정된 UNIT번호와 Z3003이 삽입된 UNIT번호가 다르다. →설정이나 뒷면을 확인바랍니다.	p.148 p.42
				연결기기가 외부기기로 되어 있다. →연결기기를 RM3545로 하십시오.	p.156
				릴레이가 마모되었다. →멀티플렉서 유닛의 테스트를 하십시오 . FAIL이 되는 경우는 Z3003의 수리를 맡겨 주십시오.	p.167 p.300
				배선이 단락되었다. →배선을 확인바랍니다.	
				→Q&A No.2-3을 참조하십시오.	p.288
				퓨즈 단선 →배선을 확인하십시오. 그래도 측정할 수 없는 경우는 내부 보호용 퓨즈가 단 선되었을 가능성이 있습니다. Z3003의 수리를 맡겨 주십시오.	p.146
6-7	영점 조정값이 반영 되지 않는다.	멀티플렉서 기본 측정화면에서 각 채널의 영점 조정이 실행되었는지 확인하십시오.		→영점 조정은 정면단자 및 각 채널에서 독립되어 있으므로 각 채널마다 영점 조정을 실행하십시오.(스캔 영점 조정 도 할 수 있습니다)	p.164
6-8	영점 조정을 할 수 없 다.	영점 조정하기 전의 측정치 케일의 -1% ~ 50%를 넘어? 상 상태이다.		배선저항이 크다. →배선저항이 크면 영점 조정할 수 없습 니다. 배선저항이 측정대상의 50%이하 가 되도록 하십시오.	p. 부7
		연결기기가 외부기기로 되	어 있다.	연결기기가 외부인 채널은 영점 조정할 수 없습니다. →연결기기를 RM3545로 하십시오.	
6-9	유닛 테스트에서 FAIL이 된다.			릴레이가 마모되었다. 유닛 내부의 퓨즈 가 끊어졌다. →Z3003의 수리를 맡겨 주십시오.	p.300
6-10	전환이 느리다.			변압기를 측정해 역기전력이 남아있어, 릴레이의 핫 스위칭 방지 기능이 작동하 고 있다. →고저항 레인지나 전류 전환 Low 설정 등 측정전류를 낮추십시오.	p.142

기능 제한 일람 () : 동시 사용 가능. - : 동시 사용 불가

	COMP	TC	ΔΤ	BIN	MUX	STAT	AUTO RANGE, RANGE 변경
COMP		0	-	-	0	0	-
TC	0		-	0	0	0	0
ΔΤ	-	-		-	0	-	0
BIN	-	0	-		-	0	-
MUX	0	0	0	-		-	0
STAT	0	0	-	0	-		0
AUTO RANGE, RANGE 변경	-	0	0	-	0	0	

- 저전력 저항측정이 ON인 경우, OVC는 ON, 접촉개선은 OFF 고정이 됩니다. 또한 SLOW2일 때는 에버리지 기능이 OFF라도 2회 평균이 됩니다.
- 멀티플렉서 스캔기능이 자동 또는 스텝인 경우는 트리거 소스 EXT가 됩니다. 또한 통신기능의 메모리 기능도 사용할 수 없습니다.
- 멀티플렉서를 2선식으로 사용하는 경우는 콘택트 체크 기능은 사용할 수 없습니다. 또한 1000 mΩ 이하의 레인지도 사용할 수 없습니다.

외부제어(EXT I/O)에 관한 Q&A

자주 하는 질문	방법
트리거를 넣으려면 어떻게 연결	TRIG 신호와 ISO_COM 단자를 스위치나 오픈 컬렉터 출력에서 단락(ON)해
하면 좋은가	주십시오.
입력신호, 출력신호의 코먼은 어느 것인가	ISO_COM단자입니다.
코먼단자는 입출력 모두 공통인가	입력신호와 출력신호의 코먼단자로는 모두 ISO_COM을 사용해 주십시오. 공통 코먼단자로 되어 있습니다.
출력 신호가 나왔는지	오실로스코프로 전압 파형을 확인하십시오. 이때, EOM 신호와 콤퍼레이터 판
확인하고 싶다	정결과 등의 출력신호는 전원에 풀업(몇 kΩ)하여 전압 레벨을 확정하십시오.
입력(제어)을 잘 못하겠는데 어떻게 확인하면 좋은가	예를 들어 TRIG신호가 유효하게 동작하지 않는 경우, PLC에 의한 제어 대신에 TRIG단자를 직접 ISO_COM단자에 단락해 보십시오. 전원의 단락에는 충분히 조심하시기 바랍니다.
콤퍼레이터 판정 신호(HI, IN, LO)는	외부 트리거 [EXT] 설정 시 측정 종료 시에 확정하고, 측정시작 시에 일단 OFF
측정 중에도 유지되는가	가 됩니다.
(또는 OFF가 되는 일이 있는가)	내부 트리거 [INT] 설정에서는 측정 중에도 판정결과를 유지합니다.
측정이상 신호는 어떨 때 나오는가	다음 경우 등에 에러가 표시됩니다. 프로브가 접촉되지 않았다 접촉이 불안정 프로브나 측정대상의 오염, 산화피막이 있다. 측정대상의 저항치가 측정 레인지보다 지나치게 크다.
연결용 커넥터와 플랫 케이블은 부	납땜 타입의 커넥터가 표준으로 부속되어 있습니다. 케이블은 고객께서 준비
속품인가	해 주십시오.
PLC와 직접 연결할 수 있는가	PLC의 촐력이 릴레이 또는 오픈 컬렉터, PLC의 입력 회로가 접점 입력에 대응하고 있으면 직접 연결할 수 있습니다.(연결하기 전에 전압 레벨이나 흐르는 전류가 정격을 넘지 않는 것을 확인하십시오)
RS-232C 등의 통신과 외부 I/O제어	통신으로 측정조건을 설정한 뒤, TRIG 신호로 측정하여 그것과 동기하여 측정
를 동시에 사용할 수 있는지	치를 통신으로 들여올 수 있습니다.
외부 전원은 어떻게 연결하면	본 기기 외부 I/O의 입력 및 출력신호는 모두 본 기기 내부의 절연전원으로 구
좋은가	동됩니다. 따라서 PLC측에서 전원공급할 필요(ISO_5V단자는 입력금지)가 없습니다.
프리런일 때 풋 스위치로 측정치를	샘플 애플리케이션 소프트웨어로 측정치를 취득할 수 있습니다. 샘플 애플리
취득하고 싶다	케이션 소프트웨어는 당사 홈페이지에서 다운로드 하십시오.

에러 표시와 대처방법

본 기기와 측정상태가 정상이 아닌 경우에는 이하의 메시지가 화면에 표시됩니다. 수리가 필요할 경우는 당사 또는 대리점으로 연락 주십시오.

- 고장이라고 생각될 때는 "Q&A(자주 하는 질문)"(p.286)을 확인하신 후, 당사 또는 대리점으로 문의해 주십시오.
- LCD 표시부에 에러가 표시되어, 수리가 필요한 경우는 당사 또는 대리점으로 연락 주십시오.

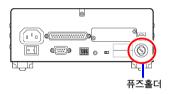
표시		의미	대처 방법	
+OvrRng / -O	vrRng	오버 레인지(p.55)	올바른 레인지로 설정해 주십시오.	
CONTACT TE	ERM.A (CONTACT A, CA)	측정단자 A측 배선 콘택트 에러 (p.55)	케이블이 단선되지 않았는지, 프로브 가 마모되지 않았는지 확인하십시오.	
CONTACT TERM.B(CONTACT B, CB)		측정단자 B측 배선 콘택트 에러 (p.55)	케이블이 단선되지 않았는지, 프로브 가 마모되지 않았는지 확인하십시오.	
SW.ERR		ERR:061를 참조하십시오.(p.297)		
NO UNIT		멀티플렉서 유닛이 삽입되어 있지 않다	올바르게 삽입하십시오. 삽입되지 않 는 유닛은 채널에 할당하지 마십시오.	
ERR:001	LOW limit is higher than UPP limit.	상한치보다 하한치 쪽이 크기 때문 에 설정할 수 없습니다.	상한치를 하한치보다 큰 값으로 설정 해 주십시오.(p.101)	
ERR:002	REF setting is zero.	기준치 설정이 0(영)이기 때문에 설 정할 수 없습니다.	기준치는 0(영)보다 큰 값으로 설정해 주십시오.(p.103)	
ERR:003	Cannot enable while comparator or bin is ON.	콤퍼레이터=ON일 때는 레인지를 변경할 수 없습니다.	콤퍼레이터를 OFF로 하여 레인지를 설정하거나콤퍼레이터 설정화면에서 사용 레인지를 선택해 주십시오. (p.98)	
ERR:004	Cannot enable while comparator or bin is ON.	콤퍼레이터=ON일 때는 자동 레인 지는 ON으로 할 수 없습니다.	콤퍼레이터=OFF로 사용하십시오. (p.100)	
ERR:010	0 ADJ error. Must not exceed 50% or -1% f.s.	영점 조정 범위 외. 레인지의 풀 스 케일의 50%이내가 아니면 안 됩니 다.	영점 조정 방법을 확인해 주십시오. (p.68)	
ERR:011	Temp. sensor error. Cannot calculate.	온도센서나 온도계의 에러 때문에 연산할 수 없습니다.	온도센서와 온도계의 상태를 확인해 주십시오.	
ERR:012	Comparator is invalid. (Delta T or BIN is ON)	ΔT 또는 BIN 기능이 ON일 때는 콤 퍼레이터를 ON 할 수 없습니다.	ΔT와 BIN 기능을 OFF로 하십시오.	
ERR:013	0 ADJ is invalid. (Must be lower than 10 $M\Omega$ range)	10 MΩ 레인지 이하에서만 영점 조 정을 실행할 수 있습니다.	(100 MΩ 레인지 이상은 영점 조정할 수 없습니다)	
ERR:020	Undo not available.	통계기능 취소는 1회만 가능합니다.	_	
ERR:030	Command error.	커맨드 에러	커맨드가 올바른지 확인하십시오. (부속 애플리케이션 디스크)	
ERR:031	Execution error. (Parameter error)	실행 에러. 파라미터 값이 범위를 벗어났습니다.	파라미터 범위가 올바른지 확인해 주 십시오.	
ERR:032	Execution error.	실행 에러	각 커맨드에서 실행 에러 조건이 되어 있지 않은지 확인해 주십시오.	
ERR:060	Cannot enable MUX function. Disconnect cable from front terminal.	MUX를 사용하는 경우는 정면단자 에서 측정 리드를 분리하십시오.	MUX를 사용하는 경우는 정면단자에 서 측정 리드를 분리하십시오.	

亚 시		의미	대처 방법
표시	I	의미	
ERR:061	MUX switching error.	멀티플렉서 릴레이의 핫 스위칭 방 지 기능 이상입니다.	측정대상에서 나오는 전류가 작아지 지 않기 때문에 릴레이를 전환할 수 없 습니다. 변압기 등은 역기전력의 영향 을 받고 있을 가능성이 있으므로 딜레 이를 길게 설정하십시오. 또, 측정단자 에는 전류나 전압을 가하지 마십시오.
ERR:090	ROM check sum error.	프로그램 ROM Check Sum 에러	기기 고장입니다. 수리를 맡겨 주십시오.
ERR:091	RAM error.	CPU RAM 에러	기기 고장입니다. 수리를 맡겨 주십시오.
ERR:092	Memory access failed. Main power off, restart after 10s.	메모리와 통신 에러가 발생했습니다.	일단 주 전원을 끄고 10초 이상 기다렸 다가 다시 전원을 투입해 주십시오.
ERR:093	Memory read / write error.	메모리의 읽기 / 쓰기 테스트 에러	기기 고장입니다. 수리를 맡겨 주십시오.
ERR:095	Adjustment data error.	조정 데이터 에러	기기 고장입니다. 수리를 맡겨 주십시오.
ERR:096	Backup data error.	설정 백업 에러	설정이 초기화되었습니다. 측정조건 등을 재설정하십시오.
ERR:097	Power line detection error. Select power line cycle.	전원 주파수 검출 에러	공급 전원에 맞춰서 주파수를 설정하 십시오.
ERR:098	Blown FUSE or measurement lead is broken.	퓨즈가 끊어졌습니다.	퓨즈를 교체해 주십시오. 퓨즈가 끊어지지 않은 경우는 측정단 자와 가드단자가 단락되었을 가능성 이 있습니다. 측정 리드가 고장나지 않 았는지 확인하십시오.
ERR:099	Clock is not set. Reset? (13-01-01 00:00:00) Press F2"	시계 미설정으로 F2 [OK] 키를 누 르면 13-01-01 00:00:00 로 초기화 됩니다.	백업 전지 교체시기입니다. 가까운 영업소에 연락하십시오.
ERR:100	MUX unit error.	MUX 유닛에서 에러가 발생했습니다.	기기 고장입니다. 저항계 본체를 수리 맡겨 주십시오.
INFO:001	Panel load. OK?	패널 로드합니다. 실행하시겠습니까?	_
INFO:002	Panel loading	패널 로드 중	_
INFO:003	Enter panel name. ESC: CANCEL, ENTER: SAVE EXEC	저장할 패널명을 입력해 주십시오. ESC로 저장을 취소, ENTER로 저 장을 실행합니다.	_
INFO:004	Enter panel name. Panel is used, will be overwritten. ESC: CANCEL, ENTER: SAVE EXEC	저장할 패널명을 입력해 주십시오. 저장 위치의 패널은 사용되고 있습 니다. 덮어쓰기 되므로 주의해 주십 시오. ESC로 저장을 취소, ENTER로 저 장을 실행합니다.	-
INFO:005	Panel saving	패널 저장 중	_
INFO:006	Clear panel. OK?	패널을 clear 합니다. 실행하시겠습 니까?	_
INFO:007	Panel clearing	패널을 clear 중	_
INFO:008	Printing	인쇄 중	-
INFO:010	Start interval print.	인터벌 인쇄를 시작했습니다.	-
INFO:011	Stop interval print.	인터벌 인쇄를 종료했습니다.	_
INFO:020	Performing 0 adjustment. OK?	영점 조정을 실행합니다. 실행하시 겠습니까?	_
INFO:021	Clear 0 adjustment data. OK?	영점 조정을 clear합니다. 실행하시 겠습니까?	_

14.1 문제 해결

표시		의미	대처 방법
INFO:022	Cleared 0 adjustment data.	영점 조정 데이터는 clear 되었습니 다.	-
INFO:023	0 ADJ warning. Adjust within 1% f.s.	영점 조정 데이터가 큽니다.(경고)	레인지의 풀 스케일의 1%이내로 할 것을 권장합니다.
INFO:025	Undo statistical calculations.	통계 연산을 1회 취소했습니다.	-
INFO:026	Self-calibrating	셀프 캘리브레이션 측정을 실행 중 입니다.	-
INFO:030	Reset? NORMAL RESET (without panel clear) / SYSTEM RESET (with panel clear) / MUX RESET (only CH settings)	초기화를 실행합니다.	_
INFO:035	MUX CH settings will be reset. Change setting?	4단자 / 2단자 전환을 하면, MUX의 CH 설정이 초기화됩니다.	-
INFO:036	0 adjusting	MUX 스캔에서의 영점 조정을 실행 중입니다.	_
INFO:037	Short-circuit pin No.1 to No.42, OK?	유닛 테스트를 위해 핀 No.1부터 No.42를 단락하십시오.	-
INFO:038	Testing MUX units	멀티플렉서 유닛 테스트를 실행 중 입니다.	테스트 종료 후, 결과가 표시됩니다.
INFO:040	Enter password for Adjustment Mode.	조정 모드에 대한 패스워드를 입력 해 주십시오.	조정화면은 당사가 수리, 조정 시에 사용하는 화면이므로 일반 고객께서는 이용하실 수 없습니다.
INFO:080	Self-calibration is set to "MANUAL".	셀프 캘리브레이션 측정이 MANU 로 설정되어 있습니다.	-

14.2 측정회로 보호용 퓨즈의 교체



- ↑ 경 고 · 퓨즈는 지정된 형상과 특성, 정격전류, 전압인 것을 사용해 주십시오. 지정 이외의 퓨즈(특히 정격전류가 큰 것)를 사용하거나, 퓨즈홀더를 단락한 채로 사용하지 마십시오, 본 기기가 파손되고 인명사고가 발생할 우려 있습니다. 지정 퓨즈: F1.6AH / 250V (소호제 충진) φ5×20 mm
 - 감전사고를 피하기 위해 주 전원 스위치를 끄고, 코드와 리드선류를 분리한 뒤 퓨 즈를 교체해 주신시오.


주의 사항

교체용 퓨즈를 넣지 않고 퓨즈홐더를 끼워 넣으면 퓨즈홐더가 잘 안 빠지게 됩니다. 반드시 퓨즈를 넣고 끼우십시오.

뒷면

- 본 기기의 주 전원 스위치(뒷면)가 OFF(○)가 되어 있는 것을 학인하고, 전원 코드를 분리합니 다
- 일자 드라이버 등으로 본 기기 뒷면의 퓨즈홀더 고정부분을 돌려 퓨즈홈더를 분리합니다.

- 퓨즈를 지정 정격의 퓨즈로 교체합니다. (퓨즈홈더의 형상에 따라 교체방법이 다릅니다)
- 퓨즈홈더를 다시 끼워넣습니다.

14.3 수리·점검

↑ 경고 개조 분해, 수리하지 마십시오. 화재나 감전사고, 부상의 원인이 됩니다.

교체 부품과 수명에 대해서

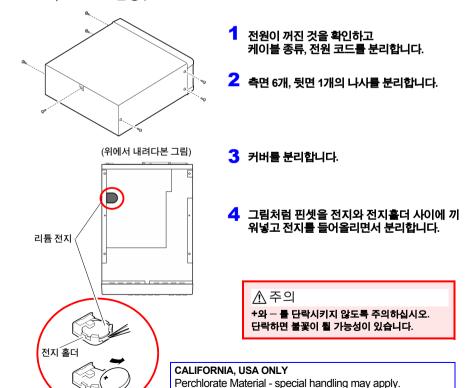
제품에 사용하고 있는 부품에는 오랜 사용으로 인해 특성이 열화되는 것이 있습니다. 본 기기를 오랫동안 사용하시기 위해서 정기적인 교체를 권장합니다. 교체 시에는 당사 또는 대리점으로 연락 주십시오.

또한, 사용 환경이나 사용 빈도에 따라 부품의 수명은 달라집니다. 권장 교체 주기의 기간을 보증 하는 것이 아닙니다.

부품명	권장 교체 기간	비고 · 조건
전해 콘덴서	약 10년	해당 부품이 탑재된 기판을 교체합니다.
액정 백라이트 (휘도 반감기)	약 50,000 시간	
백업용 전지	약 10년	전원을 켰을 때, 날짜나 시간이 크게 어 긋나있으면 교체시기입니다.
릴레이	약 5,000만번	
릴레이	약 5,000만번	4선식의 경우
(Z3003 멀티플렉서 유닛)	약 500만번	2선식의 경우

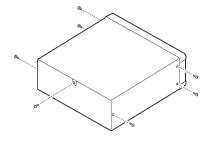
14.4 본기기의 폐기

본 기기는 시계 백업용으로 리튬 전지를 사용하고 있습니다. 본 기기를 폐기할 때는 리튬 전지를 분리하여 지역에 정해진 규칙에 따라 처분하십시오 .

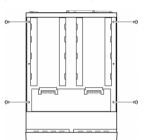

리튬 전지 분리법

⚠ 경 고 감전사고를 피하기 위해 주 전원 스위치를 끄고, 전원 코드와 측정 리드를 분리한 뒤 리튬 전지를 제거하십시오.

필요한 공구:


- 십자 드라이버 (No.1) 1개
- 핀셋 1개 (리튬 전지 분리용)

RM3545. RM3545-01인 경우


See www.dtsc.ca.gov/hazardouswaste/perchlorate

RM3545-02의 경우

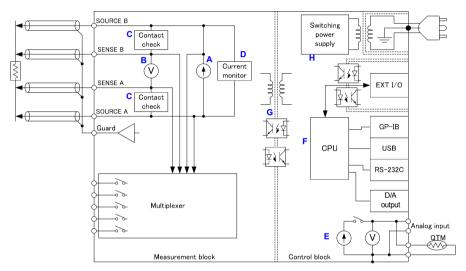
- 1 전원이 꺼진 것을 확인하고 멀티플렉서 유닛, 케이블 종류, 전원 코드를 분리합니다.
- 추면 6개, 뒷면 1개의 나사를 분리합니다.

- 3 커버를 분리합니다.
- 4 4개의 나사를 분리하여 멀티플렉서 유닛용 프 레임을 분리합니다.

전지 홀더

5 그림처럼 핀셋을 전지와 전지홀더 사이에 끼 워넣고 전지를 들어올리면서 분리합니다.

⚠ 주의


+와 - 를 단락시키지 않도록 주의하십시오. 단락하면 불꽃이 될 가능성이 있습니다.

CALIFORNIA, USA ONLY

Perchlorate Material - special handling may apply. See www.dtsc.ca.gov/hazardouswaste/perchlorate

부록

부록1 블록도

- 측정 레인지에 따른 정전류를 SOURCE B단자에서 SOURCE A단자에 흘려보내, SENSE B단 자와 SENSE A단자 간의 전압을 측정합니다. 얻어진 전압치를 흘려보내고 있는 정전류치로 나 눠 저항치를 구합니다.(A, B)
- 열기전력 등 오프셋 전압이 큰 상황에서는 측정전류를 반전하여 정방향과 역방향으로 2번 측정 함으로써 오프셋 전압의 영향을 줄일 수 있습니다.(A)
- 저잡음 전압계는 0.3 ms의 적분시간으로도 안정된 측정이 가능합니다.(B)
- 측정을 시작하면 콘택트 체크 회로(Contact Check)와 정전류 모니터(Current Monitor)가 기능하여 측정 중에 일어나는 이상 상태를 계속 감시합니다.(C, D)
- 온도 측정회로를 내장하고 있어서 온도에 대한 의존성이 높은 측정대상을 측정할 때에는 저항 측정치를 온도에 따라 보정할 수 있습니다.
 - 온도 측정회로는 정전류원을 분리함으로써 아날로그 출력 탑재 온도계도 연결할 수 있습니다. (E)
- 고속 CPU를 사용함으로써 초고속 측정과 쾌적한 시스템 응답을 실현했습니다.(F)
- 측정부(Measurement block)는 제어부(Control block)에서 절연되어 있어서 노이즈의 영향을 잘 받지 않게 되어 있습니다.(G)
- 전원부에는 100 V ~ 240 V와 와이드 입력 스위칭 전원을 사용하고 있으므로 전원 사정이 나쁜 환경에서도 안정적인 측정이 가능합니다.(H)

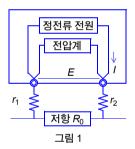
부록2 4 단자법(전압 강하법)

낮은 저항을 정밀하게 측정하는 데 있어서 측정기와 프로브를 연결하는 배선의 저항, 프로브와 측 정대상 간에 발생하는 접촉 저항이 큰 저해요소가 됩니다.

배선 저항은 굵기와 길이에 따라 크게 차이가 납니다. 저항 측정에 사용되는 케이블은, 예를 들면 AWG24 (0.2sq)일 때 약 90 m Ω /m, AWG18(0.75sq)일 때 약 24 m Ω /m입니다.

접촉 저항은 프로브의 마모 상태와 접촉압, 그리고 측정 전류에 좌우됩니다. 접촉이 좋은 상태라도 수 mQ이고, 때로는 수 Q에 달하는 경우도 흔합니다.

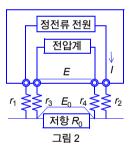
그래서 작은 저항을 확실하게 측정하기 위해서는 4단자법이 이용됩니다.


2단자 측정의 경우(그림1)는 측정 리드 그 자체의 도체저항이 측정대상의 저항에 가산되어 오차의 원인이 됩니다.

4단자 측정(그림2)은 정전류를 공급하는 전류원 단자(SOURCE A, SOURCE B)와 전압강하를 검출하는 전압 검출단자(SENSE A, SENSE B)로 구성되어 있습니다.

측정대상에 연결된 전압 검출단자 측의 리드선에는 전압계의 입력 임피던스가 높기 때문에 전류가 거의 흐르지 않습니다. 그래서 측정 리드의 저항과 접촉 저항의 영향을 받지 않고 정확하게 측정할 수 있습니다.

* 본 기기의 전압계 입력 임피던스 : 10 GΩ 이상(참고값)


2 단자법을 이용한 측정

전류 I는 피측정 저항 R_0 , 배선저항 r_1, r_2 에 흐릅니다 . 따라서 측정하는 전압은

 $E=I(r_1+R_0+r_2)$ 로 구할 수 있고, 배선저항 r_1, r_2 를 포함한 값이 됩니다.

4단자법을 이용한 측정

전류 I는 r_2 에서 피측정 저항 R_0 를 통과하여, r_1 로 흐릅니다. 전압계는 입력저항이 크기 때문에 r_3 , r_4 로는 전류가 흐르지 않습니다. 따라서 r_3 , r_4 의 전압강하는 0이 되어 측정하는 전압 E와 측정저항 R_0 양단의 전압강하 E_0 는 같아져서 $r_1 \sim r_4$ 의 영향을 받지 않고 저항을 측정할수 있습니다.

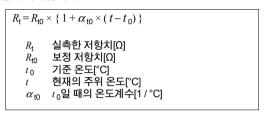
부록3 직류방식과 교류방식에 대해서

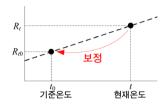
저항 측정(임피던스 측정)에는 직류방식과 교류방식이 있습니다.

- 직류방식 저항계 RM3542, RM3543, RM3544, RM3545, RM3548 일반적인 디지털 멀티미터 일반적인 절연저항계
- 교류방식 배터리 하이테스터 3561, BT3562, BT3562-01, BT3563, BT3563-01 배터리 테스터 BT3554, BT3554-01 일반적인 LCR 미터

직류의 측정 방식은 범용 저항기와 코일저항, 접촉저항, 절연저항 측정 등에 폭넓게 이용됩니다. 직류방식은 직류 전원과 직류 전압계로 구성되고 회로구성이 간단하기 때문에 정밀도를 올리기 쉬운 반면. 측정하는 경로에 기전력이 있는 경우 오차가 발생합니다.

참조: "부록10 열기전력의 영향에 대해서"(p. 부24)


교류방식은 인덕터와 캐패시터, 배터리의 임피던스 측정 등 "직류로는 측정할 수 없는" 경우 사용됩니다. 교류방식의 저항계는 교류 전원과 교류 전압계로 구성되므로 본질적으로 직류 기전력의 영향을 받지 않습니다. 그 반면, 코일의 직렬등가저항에는 철손 등이 포함되는 등 직류일 경우의 측정치와 차이가 날 때가 있으므로 주의가 필요합니다.


	직류 저항계	교류 저항계
측정 신호 검출 전압	직류 지류전원 지류전압계 <i>Rx</i>	교류전원 교류전압계 용자
장점	고정밀도 측정이 가능	기전력의 영향을 받지 않는다 리액턴스 측정이 가능
단점	직류 중첩 측정을 할 수 없기 때문에 기전력의 영향을 받는다 (OVC 기능에 의해 열기전력 정도라면 보정 가능)	정밀도를 올리기 어렵다
용도	변압기, 모터 등 코일의 직류저항, 접촉저항, 절 연저항, PCB의 배선저항	배터리의 임피던스, 인덕터, 캐패시터 전기 화학 측정
측정 범위	10 ⁻⁸ ~ 10 ¹⁶	$10^{-3} \sim 10^{8}$
당사 측정기	저항계 : RM3542 ~ RM3548 DMM : 3237 ~ 3238 절연저항계 : IR4000시리즈, DSM시리즈	배터리 하이테스터 : 3561, BT3562, BT3563 LCR 미터 : IM3570, IM3533, IM3523 등

부록4 온도 보정 기능(TC)에 대해서

온도 보정은 동선처럼 온도 의존성이 있는 측정대상의 저항치를 특정 온도(기준온도)의 저항치로 환산하여 표시합니다.

저항치 $R_{\rm t}$, $R_{\rm t0}$ 을 t °C 및 t_0 °C에서의 측정대상(t_0 °C에서의 저항온도계수: $\alpha_{\rm t0}$)의 저항치로써 아래와 같이 나타냅니다.

예

현재의 온도=30°C, 이때의 저항치=100 Ω 의 동선(20˚C일 때의 저항온도계수=3930 ppm/˚C)의 경우, 20˚C일 때의 저항치는 아래와 같이 구할 수 있습니다.

$$R_{t0} = \frac{R_t}{1 + \alpha_{t0} \times (t - t_0)}$$

$$= \frac{100}{1 + (3930 \times 10^{-6}) \times (30 - 20)}$$

$$= 96.22 \Omega$$

온도 보정 설정, 실행 방법은 아래를 참조해 주십시오.

참조: "4.5 온도의 영향을 보정하기(온도 보정 기능(TC))"(p.75) 참조: "5.4 온도상승시험하기(온도 환산 기능(△T))"(p.116)

주의 사항

- 온도센서는 바깥 기온을 검출하는 것으로 표면온도를 측정할 수는 없습니다.
- 측정하기 전에 본 기기의 워밍업을 충분히 실시하고 온도센서를 측정대상 근처에 배치하여 온 도센서와 측정대상이 주위 온도와 충분히 같아진 뒤 사용하십시오(10분 이상).

금속 및 합금 도전재료의 성질

종류	성분 [%]	밀도(×10 ³) [kg/m ³]	도전율	온도계수 (20°C) [ppm/℃]
연동선	Cu>99.9	8.89	1.00 ~ 1.02	3810 ~ 3970
경동선	Cu>99.9	8.89	0.96 ~ 0.98	3770 ~ 3850
카드뮴 동선	Cd 0.7 ~ 1.2	8.94	0.85 ~ 0.88	3340 ~ 3460
은동	Ag 0.03 ~ 0.1	8.89	0.96 ~ 0.98	3930
크롬 동	Cr 0.4 ~ 0.8	8.89	0.40 ~ 0.50 0.80 ~ 0.85	2000 3000
콜슨 합금선	Ni 2.5 ~ 4.0 Si 0.5 ~ 1.0		0.25 ~ 0.45	980 ~ 1770
연알루미늄선	Al>99.5	2.7	0.63 ~ 0.64	4200
경알루미늄선	Al>99.5	2.7	0.60 ~ 0.62	4000
알드레이선	Si 0.4 ~ 0.6 Mg 0.4 ~ 0.5 AI 잔부		0.50 ~ 0.55	3600

동선의 도전율

직경 [mm]	연동선	주석 도금 연동선	경동선
0.01 ~ 0.26 미만	0.98	0.93	-
0.26 ~ 0.29 미만	0.98	0.94	-
0.29 ~ 0.50 미만	0.993	0.94	-
0.50 ~ 2.00 미만	1.00	0.96	0.96
2.00 ~ 8.00 미만	1.00	0.97	0.97

온도계수는 온도 및 도전율에 따라 달라집니다. 20° C일 때의 온도계수를 α_{20} , 도전율 C의 t $^{\circ}$ C에서의 온도계수를 α_{Cl} 라고 하면, α_{Cl} 는 상온 부근에서는 다음과 같이 나타낼 수 있습니다.

$$\alpha_{\text{Ct}} = \frac{1}{\frac{1}{\alpha_{20} \times C} + (t-20)}$$

예를 들어 국제표준 연동의 온도계수는 20°C일 때 3930 ppm / °C입니다. 주석 도금 연동선(직경 $0.10 \sim 0.26$ 미만)일 때는 20°C의 온도계수 α 는 다음과 같이 구할 수 있습니다.

$$\alpha_{20} = \frac{1}{\frac{1}{0.00393 \times 0.93} + (20 - 20)} = 3650 \text{ ppm / °C}$$

참고 문헌: Handbook for Electronics, Information and Communication Engineers, Volume 1, published by the Institute of Electronics, Information and Communication Engineers

부록5 온도 환산 기능(ΔT)에 대해서

온도 환산 기능은 저항치가 온도에 의존하는 점을 이용하여 측정한 저항치를 온도로 환산하여 표 시합니다. 여기서는 온도 환산 기능의 방법에 대해 설명합니다. JIS C 4034에 의하면 온도 상승치는 저항법에 의해 다음과 같이 표시됩니다.

$$\Delta t = \frac{R_2}{R_1} (k + t_1) - (k + t_a)$$

 Δt 온도상승[°C] t_1 초기저항 R_1 을 측정했을 때의 코일(냉 상태) 온도[°C]

온도상승시험 종료 시의 냉매 온도I°CI

온도t 1(냉 상태)에서의 코일저항[Ω]

 R_2 온도상승시험 종료 시의 코일저항[Ω]

도선재료의 0°C일 때의 온도계수의 역수[°C]

예

초기온도 t_4 가 20°C일 때의 저항치 R_4 이 200 mΩ인 동선에서 현재의 주위온도 t_3 가 25°C, 저항측정치 R_2 이 210 mΩ일 때 온도 상승치는 아래와 같습니다.

$$\Delta t = \frac{R_2}{R_1} (k + t_1) - (k + t_a)$$

$$= \frac{210 \times 10^{-3}}{200 \times 10^{-3}} (235 + 20) - (235 + 25)$$

$$= 7.75^{\circ} C$$

따라서 현재의 저항체의 온도 te는 아래와 같이 구할 수 있습니다.

$$t_{R} = t_{a} + \Delta t = 25 + 7.75 = 32.75$$
°C

여기서 측정대상이 구리 또는 알루미늄이 아닌 경우의 정수 k는 온도보정기능으로 나타낸 식과 위 의 식에 의해 온도계수 $\alpha_{\rm fi}$ 라 하면 아래와 같이 구할 수 있습니다.

$$k = \frac{1}{\alpha_{t0}} - t_0$$

예를 들면 구리가 20° C일 때의 온도계수는 $3930 \text{ ppm} / {^{\circ}}$ C이므로 이 때의 정수 k는 아래와 같은 값 이 되어 JIS에서 규정한 구리의 정수 235와 거의 같은 값을 나타냅니다.

$$k = \frac{1}{3930 \times 10^{-6}} - 20 = 234.5$$

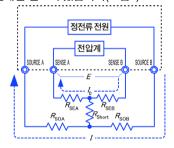
부록6 영점 조정에 대해서

영점 조정은 0Ω 을 측정했을 때 남게되는 값을 차감해 영점을 조절하는 기능입니다. 따라서 영점 조정은 0Ω 을 연결한 상태에서 실시할 필요가 있습니다. 그러나 저항치가 전혀 없는 측정대상을 연결하는 것은 쉽지 않기 때문에 현실적이지 않습니다.

그래서 실제 영점 조정 시에는 유사하게 0 Ω을 연결한 상태를 만들어서 영점을 조절합니다.

0 Ω을 연결한 상태를 만들려면

이상적인 0Ω 을 연결한 경우, 옴의 법칙 $E = I \times R$ 의 관계식에 의해 SENSE A와 SENSE B 사이의 전압은 0 V가 됩니다. 즉 SENSE A와 SENSE B 사이의 전압을 0 V로 하면 0Ω 을 연결한 상태와 동일한 상태로 만들 수 있습니다.


본 기기로 영점 조정을 실시할 경우에는

본 기기에서는 측정이상 검출기능에 의해 각 측정 단자간의 연결상태를 감시하고 있습니다. 그러므로 영점 조정을 실시할 경우 각 단자간을 적절히 연결해둘 필요가 있습니다(그림1).

우선 SENSE A와 SENSE B 사이의 전압을 0 V로 하기 위해 SENSE A와 SENSE B 사이를 단락합니다. 사용하는케이블의 배선저항 $R_{\rm SEA}+R_{\rm SEB}$ 는 몇 Ω 이하이면 문제 없습니다. 이는 SENSE 단자가 전압측정단자로 전류 I_0 가거의 흐르지 않기 때문에 $E=I_0 \times (R_{\rm SEA}+R_{\rm SEB})$ 의 관계식에서 I_0 등이이되어, 배선저항 $R_{\rm SEA}+R_{\rm SEB}$ 가 몇 Ω 만 되면 SENSE A와 SENSE B 간의 전압은 거의 0이 되기 때문입니다.

다음으로 SOURCE A와 SOURCE B 사이를 연결합니다. 이는 측정전류가 흐르지 못할 경우에 표시되는 에러를 회 피하기 위합입니다. 사용하는 케이블의 배선저항 $R_{\rm SOA}$ + $R_{\rm SOB}$ 는 측정전류가 흐를 수 있는 저항 이하일 필요가 있습니다.

그리고 SENSE와 SOURCE 간의 연결상태도 감시하고 있는 경우에는 SENSE와 SOURCE 간도 연결할 필요가 있습니다. 사용하는 케이블의 배선저항 R_{Short} 는 몇 Ω 정도면 문제 없습니다.

 $E = (I_0 \times R_{SEB}) + (I_0 \times R_{SEA})$ = $(0 \times R_{SEB}) + (0 \times R_{SEA})$ = $0 \mid V \mid$

그림 1. 유사하게 0 Ω 을 연결한 상태

이상과 같이 배선함으로써 SOURCE B에서 흘러나온 측정전류 /는 SOURCE A로 흘러들어가, SENSE A나 SENSE B의 배선에 흘러들어가는 일은 없어집니다. SENSE A와 SENSE B 간의 전압 을 정확히 0 V로 유지할 수 있게 되어 적절히 영점 조정할 수 있게 됩니다.

적절히 영점 조정하려면

표1에 나타낸 것은 올바른 연결방법과 잘못된 연결방법입니다. 그림 중의 저항은 배선저항을 나타내는 것으로 각각 몇 Ω 이하라면 문제 없습니다.

(a)처럼 SENSE A와 SENSE B 및 SOURCE A와 SOURCE B를 각각 연결하여 SENSE와 SOURCE 간을 하나의 경로로 연결한 경우, SENSE A와 SENSE B 간에 전위차는 발생하지 않고, 0 V가 입력됩니다. 이로써 영점 조정은 올바르게 이루어집니다.

한편, (b)처럼 SENSE A와 SOURCE A 및 SENSE B와 SOURCE B를 각각 연결하여 A와 B 간을 하나의 경로로 연결한 경우, SENSE A와 SENSE B 간에는 $I \times R_{Short}$ 의 전압이 발생합니다. 때문에 유사하게 0Ω 을 연결한 상태가 되지 않아 영점 조정이 올바르게 이루어지지 않습니다.

정전류 전원 정전류 전원 연결 방법 전압계 SOURCE A SENSE A SOURCE B (a) SENSE-SOURCE 간을 (b) A-B 간을 각각 하나의 점으로 연결 각각 하나의 점으로 연결 SENSE A와 $R_{SEA} + R_{SEB}$ $R_{SEA} + R_{Short} + R_{SER}$ SENSE B 간의 저항 측정전류 *[*가 흐르는 $R_{SOR} \rightarrow R_{SOA}$ $R_{SOB} \rightarrow R_{Short} \rightarrow R_{SOA}$ 경로 SENSE A와 $I \times R_{\text{Short}}$ 0 SENSE B 간에 발생하는 전압 영점 조정 시의 올바름 잘못됨 연결방법으로써

표 1 : 연결 방법

측정 리드를 사용하여 영점 조정을 실시할 경우에는

실제로 측정 리드를 사용한 상태에서 영점 조정을 실시할 때, 실수로 표1 (b)와 같이 연결해버리는 경우가 있습니다. 영점 조정을 실행할 때는 각 단자의 연결상태를 충분히 주의할 필요가 있습니다. L2101 클립형 리드의 연결방법을 예로 설명합니다. 옳고 그른 각각의 연결방법에서의 리드 선단부의 연결상태와 그 등가회로는 표2와 같습니다. 이와 같이 올바른 연결법은 표1 (a)와 같은 연결이 되어, SENSE A와 SENSE B 간은 0 V가 되지만, 잘못된 연결방법은 표1 (b)와 같은 연결이 되어 SENSE A와 SENSE B간이 0 V가 되지 않습니다.

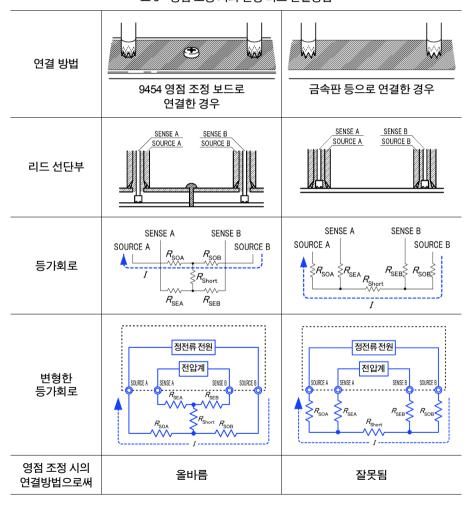

잘못됨 올바름 SENSE SOURCE SENSE SENSE : 연결 방법 SENSE SOURCE SOURCE SOURCE 검정 빨강 빨강 검정 SENSE A SENSE A ^^^^ SENSE B SOURCE B 리드 선단부 SOURCE A SOURCE A ____ ~~~~ SENSE A SENSE A È R_{SEA} R_{SEA} SENSE B -- SOURCE B 등가회로 R_{Short} SOURCE A SOURCE A R_{SEB} R_{SOB} SOURCE B SENSE B 정전류 전원 정전류전원 전압계 전압계 SOURCE A SENSE A SENSE B SOURCE B SOURCE A SENSE A SENSE B SOURCE B 변형하 등가회로 영점 조정 시의 올바름 잘못됨 연결방법으로써

표 2: 영점 조정 시의 클립형 리드 연결방법

9454 영점 조정 보드을 사용하여 영점 조정을 실시할 경우에는

영점 조정을 실행할 때, 9454 영점 조정 보드 대신에 금속판 등을 사용할 수 없습니다. 9454 영점 조정 보드는 단순한 금속판이 아니라, 2겹의 금속판을 하나의 점으로 나사 고정한 구조로 되어 있습니다. 영점 조정 보드는 9465 핀형 리드의 영점 조정을 하는 경우에 사용합니다. 핀형 리드를 영점 조정 보드에 연결한 경우와 금속판 등에 연결한 경우의 단면도 및 등가회로는 표 3과 같습니다. 이와 같이 영점 조정 보드로 연결한 경우 표1 (a)와 같은 연결이 되어, SENSE A와 SENSE B 간은 0 V가 됩니다. 그러나 금속판 등으로 연결한 경우 표1 (b)와 같은 연결이 되어 SENSE A와 SENSE B 간은 0 V가 되지 않습니다.

표 3: 영점 조정 시의 핀형 리드 연결방법

자체제작 측정 리드를 사용하는 측정에서 영점 조정이 어려운 경우에는

자체제작한 측정 리드를 사용하는 측정에서 영점 조정을 실행하려면, 자체제작 측정 리드의 선단을 표1 (a)처럼 연결합니다. 단, 표1 (a)처럼 연결하는 것이 어려운 경우, 아래와 같은 방법을 들 수 있습니다.

직류 저항 측정기의 경우

영점 조정을 실시하는 주된 목적은 측정기 본체의 오프셋을 제거하는 것입니다. 그러므로 영점 조정에 의해 차감되는 값은 거의 측정 리드에 의존하지 않습니다. 따라서 표준 측정 리드를 사용하여 표1 (a)처럼 연결하여 영점 조정을 실시한 뒤 자체제작 측정 리드로 교체함으로써 측정 기 본체의 오프셋을 제거한 상태로 측정할 수 있습니다.

교류 저항 측정기의 경우 (Hioki 3561, BT3562, BT3563 등의 경우)

영점 조정을 실시하는 주된 목적으로 측정기 본체의 오프셋을 제거하는 것과 더불어 측정 리드 형 상의 영향을 제거하는 것입니다. 그러므로 영점 조정을 하는 경우에는 자체제작 측정 리드를 가능 한 한 측정상태에 가까운 형상으로 배치한 뒤, 표1 (a)처럼 연결하여 영점 조정을 실시할 필요가 있 습니다.

단, 당사 제품의 경우 교류 저항 측정에 있어서도 필요한 분해능이 100 μΩ 이상이면 직류 저항 측정기와 동일한 영점 조정 방법으로 충분한 경우가 있습니다.

부록7 측정치가 안정되지 않을 때

측정치가 안정되지 않을 때는 다음 사항을 확인해 주십시오.

(1) 4단자 측정으로 되어 있지 않다

4단자법을 이용한 측정은 측정대상에 접촉하는 부분까지 4개의 프로브로 접촉할 필요가 있습니다.

그림1 처럼 측정하면, 프로브와 측정대상과의 접촉저항도 포함 해서 측정해버립니다.

접촉저항은 금도금끼리라도 수 $m\Omega$, Ni도금끼리면 수십 $m\Omega$ 존재 합니다.

수kΩ의 저항측정이라면 문제없겠지만, 프로브 선단이 타(산화)거나 오염되면 접촉저항이 kΩ수준이 되는 경우도 종종 있습니다.

타(산화)거 났습니다.

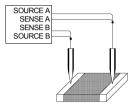


그림 1. 2 단자 측정

정확한 측정을 위해서는 측정대상에 접촉하는 부분까지 확실하 게 그림2의 4단자법으로 해 주십시오.

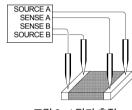


그림 2. 4 단자 측정

(2) 외래 노이즈의 영향을 받고 있다

측정대상에 대한 노이즈 혼입, 측정 케이블과 전원 케이블, 통신선 등에서 노이즈가 들어와 측정치가 불안정해지는 경우가 있습니다. 노이즈는

- 고전압 혹은 대전류 선로에서 나오는 유도 노이즈
- 전원선 등에서 나오는 도전성 노이즈

로 나눌 수 있습니다. 노이즈의 원인에 따라 대처방법이 달라집니다.

자세한 내용은 "부록9 노이즈 대책에 대해"(p. 부20)를 참조하십시오.

(3) 클립형 리드에 의한 여러 군데의 접촉

4단자법에서는 그림3처럼 원단(遠端)에서 측정 전류를 흘려보내 전류의 분포가 균등해진 안쪽에서 전압을 검출하는 것이 이상적이라고 여겨지고 있습니다.

측정이 편리하도록 Hioki L2101 클립형 리드의 선단은 톱니 모양으로 가공했습니다. 클립 부분을 확대하면 그 림4처럼 측정전류가 여러 곳에서 흘러나와 전압도 여러 곳에서 검출하게 됩니다. 이때 측정치는 접촉한 폭의 불확실성을 갖게 됩니다.

또 그림5처럼 약 100 mm의 리드선 저항을 측정할 경우, 클립의 안쪽은 100 mm, 한편 클립의 바깥쪽은 110 mm 라서 측정치는 10 mm (10%)의 불확실성을 갖게 됩니다. 이것이 원인이 되어 측정치가 안정되지 않는 경우 가능 한 한 점접촉으로 측정하면 안정성이 높아집니다.

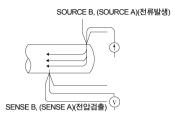


그림 3. 이상적인 4 단자법

그림 4. L2101 클립형 리드를 사용한 측정

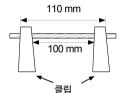


그림 5. 약 100 mm 의 리드선 저항을 측정할 경우

(4) 측정대상에 폭과 두께가 있는 경우

측정대상이 판자나 블록처럼 폭과 두께가 있는 경우와 100 mΩ을 밑도는 전류검출저항기(션트저항기)에서는 클립형 리드나 핀형 리드로는 정확한 측정이 어려워집니다. 이들을 사용한 경우 접촉압과 접촉각도에 의해 측정치는 몇%에서 몇십%까지 변동하는 경우가 있습니다. 예를 들어 W300 × L370 × t0.4의 금속판을 측정한 경우, 같은 곳을 측정해도

0.2 mm 피치의 핀형 리드 1.1 mΩ

0.5 mm 피치의 핀형 리드 0.92 mΩ ~ 0.97 mΩ

L2101 클립형 리드 0.85 mΩ ~ 0.95 mΩ

로 측정치가 크게 다릅니다.

또, 전류검출저항기에서는 프린트 배선판에 실장한 상 태에서 저항치를 규정하고 있으므로 전류검출저항기의 단자 부분을 핀형 리드로 측정해도 원하는 저항치를 얻 을 수 없습니다.

그 원인은 프로브와 측정대상의 접촉저항 등이 아니라, 측정대상의 전류 분포에 있습니다.

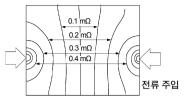


그림 6. 금속판의 등전위선 (W300 mm × L370 mm× t0.4 mm)

*끝점에 1 A의 전류를 주입하여 50 μV 마다 등전위선을 플롯

그림6은 금속판의 등전위선을 플롯한 예입니다. 마치 일기예보의 기압배치도와 바람의 관계처럼 등전위면의 간격이 좁은 곳은 전류밀도가 높고, 넓은 곳은 전류밀도가 낮습니다. 이 그림에서 전류 의 주입점 부근은 전위 기울기가 커져있음을 확인할 수 있습니다. 이는 전류가 금속판에 퍼져나가 는 도중이라 전류밀도가 높아져있기 때문입니다. 이 때문에 전압 검출 단자를 전류 주입점 부근에 배치하면, 약간의 접촉 위치의 차이로 측정치가 크게 달라져버립니다.

이와 같은 영향을 피하기 위해서는 전류 주입점의 안쪽에서 전압을 검출하는 것이 바람직합니다. 대체로 측정대상의 폭(W) 혹은 두께(t)의 3배이상 안쪽이면 전류 분포는 고르다고 여겨집니다.

그림7처럼 SENSE 단자는 SOURCE 단자로부터 3W 혹은 3t 이상 안쪽에 배치하는 것이 바람직합니다.

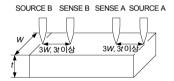


그림 7. 측정대상에 폭이나 두께가 있는 경우의 프로빙 위치

(5) 측정대상의 온도가 안정되지 않는다

동선의 저항은 약 0.4% / ℃의 온도계수를 가지고 있습니다. 동선을 손으로 잡는 것만으로도 측정 대상의 온도가 상승하여 저항치도 상승합니다. 또한 손을 떼면 온도가 내려가고 저항치도 내려갑니다. 코일의 절연 바니시 처리 직후는 코일 온도가 현저히 상승해 있어서 그 경우도 저항치는 비교적 높아집니다.

측정대상의 온도가 프로브와 다르면 열기전력도 발생하여 오차의 원인이 됩니다. 가능한 한 측정대상의 온도가 실온과 같아진 뒤 측정하십시오.

(6) 측정대상이 열을 받는다

본 기기의 측정대상에 대한 최대 인가전력은 아래와 같습니다.

열용량이 작은 측정대상은 발열하여 저항치가 달라지는 경우가 있습니다. 그런 경우는 저전력 저항측정을 ON으로 설정하십시오.

• 저전력 OFF인 경우

		High	Low	
레인지	측정 전류	최대 측정범위에서의 전력	측정 전류	최대 측정범위에서의 전력
10 mΩ	1 A	12 mW		-
100 mΩ	1 A	120 mW	100 mA	1.2 mW
1000 mΩ	100 mA	12 mW	10 mA	120 µW
10 Ω	10 mA	1.2 mW	1 mA	12 µW
100 Ω	10 mA	12 mW	1 mA	120 µW
1000 Ω	1 mA	1.2 mW		_
10 kΩ	1 mA	12 mW		_
100 kΩ	100 μA	1.2 mW		-
1000 kΩ	10 μΑ	120 µW		_
10 MΩ	1 μΑ	12 µW		-
100 MΩ (고정밀도 모드 ON)	100 nA	1.2 µW		_
100 MΩ, 1000 MΩ (고정밀도 모드 OFF)	1 114()174	1.3 µW		_

• 저전력 ON인 경우

레인지	측정 전류	최대 인가전력 (측정대상 저항치) × (측정전류) ²
1000 mΩ	10 mA	120 μW
10 Ω	1 mA	12 μW
100 Ω	1 mA	120 μW
1000 Ω	100 μΑ	12 μW

(7) 열기전력의 영향을 받고 있다

종류가 다른 금속이 접합하여, 접합부분과 관측부분 사이에 온도차가 존재함으로써 열기전력이 발생합니다. 일반적으로 측정 리드에는 동선이 사용되고, 커넥터 부분에는 니켈도금이, 그리고 납 땜부분에는 주석이 사용되는 등 접합부분의 금속을 동일한 재질로 유지하는 것은 현실적이지 않 습니다.

열기전력에 따른 오차 대응에 대해서는 "부록10 열기전력의 영향에 대해서"(p. 부24)를 참조하십시오.

(8) 저전력 저항측정을 이용하고 있다

저전력 저항측정은 보통의 저항측정에 비해 측정전류가 작게 되어 있습니다. 따라서 외래 노이즈 와 열기전력의 영향을 받기 쉬워집니다.

전원 코드나 형광등, 전자 밸브, 컴퓨터 디스플레이 등 큰 전계, 자계가 발생하는 기기에서 가능한 한 멀리 이격하십시오. 외래 노이즈가 문제가 되는 경우는 "부록9 노이즈 대책에 대해"(p. 부20)를 참조하십시오.

열기전력이 문제가 될 때는 본 기기의 오프셋 전압보정(OVC) 기능을 이용하십시오. 제한된 택트타임으로 인해 오프셋 전압보정(OVC) 기능을 이용할 수 없을 때는 배선 종류로 구리 등 열기전력이작은 소재를 사용하고 측정대상이나 커넥터 등 연결 부분에 바람이 닿지 않도록 조치하십시오.

(9) 변압기나 모터를 측정하고 있다

변압기의 빈 단자에 노이즈가 들어가거나, 모터의 축이 움직이거나 하면, 측정하고 있는 코일에 전 압이 유도되어 측정치가 불안정한 경우가 있습니다.

변압기의 빈 단자는 단락시켜두면 노이즈의 영향을 잘 받지 않게 됩니다.

모터는 진동시키지 않도록 주의하십시오.

(10)큰 변압기를 측정하고 있다

대형 변압기 등 큰 인덕턴스 성분을 가지는 데다가, Q가 높은 측정대상을 측정하면 측정치가 불안 정할 때가 있습니다. 본 기기는 측정대상에 정전류를 흘려보내 측정합니다. 큰 인덕턴스에 대해서 도 안정적인 정전류원은 응답시간이 희생됩니다. 큰 변압기를 측정하여 저항치가 불안할 경우는 당사에 연락하십시오.

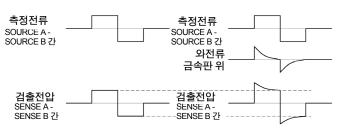
(11)케이블 형상의 영향

RM3545에서는 열기전력을 취소하기 위해 측정전류의 극성을 정기적으로 반전시킵니다(OVC 기능).

또한 발열을 억제하기 위해 측정 시에만 전류를 인가하는 사양으로 되어 있습니다. 이 측정전류가 급격하게 변동할 때는 자계도 변동하여 SENSE A – SENSE B 간의 전압검출배선에는

$$v = \frac{\mathrm{d}\phi}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\mu S \frac{I}{I} \right) = \frac{\mu S}{I} \cdot \frac{\mathrm{d}I}{\mathrm{d}t}$$

의 전압이 유도됩니다. 본 기기에서는 이 영향을 피하기 위해 측정전류가 변화하여 일정시간이 경과한 뒤에 SENSE A – SENSE B 간의 전압을 취득합니다.


측정 케이블이나 측정대상 근처에 금속이 있는 경우에는 주의가 필요합니다. 측정전류가 변동하면 금속에는 와전류가 유도됩니다(그림8). 유도되는 전류는 톱니 모양의 파형이 되어 SENSE A – SENSE B 간의 전압검출배선에 장시간 영향을 미칩니다(그림9의 b). 와전류는 금속판의 저항에의해 서서히 감쇠하므로 이 영향은 측정 속도가 빠를수록 현저합니다.

대응책으로 아래 5가지가 유효합니다.

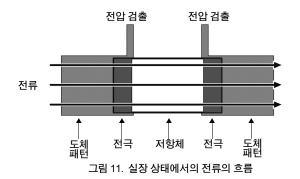
- 1. 금속을 멀리 한다
- 2. SENSE A과 SENSE B의 배선을 꼬아서 합친다. 와전류의 영향을 잘 받지 않게 됩니다.
- 3. SOURCE A과 SOURCE B의 배선을 꼬아서 합친다. 와전류의 발생을 억제합니다.
- 4. 딜레이 설정을 길게 한다. 와전류가 진정된 후 측정을 시작할 수 있습니다.
- 측정 속도를 느리게 한다.
 영향이 큰 측정 시작 시점의 데이터를 평균화함으로써 영향을 줄일 수 있습니다.

그림 8. 와전류의 발생

a. 와전류의 영향이 없는 경우

b. 와전류의 영향이 있는 경우

그림 9. 와전류에 의한 검출전압의 변화


(12)전류검출저항기(션트저항기)의 측정

2단자 구조의 전류검출저항기를 프린트 배선판에 실장하여 사용 할 때에는 배선저항의 영향을 피하기 위해 그림10 처럼 전류 배 선과 전압검출배선을 분리합니다. 전류가 검출저항기에 균일하 게 흐르게 하기 위해 전류배선은 전극과 같은 폭만큼 확보하고 또한 전극 가까이에서 배선이 휘어지지 않도록 조치를 취할 필요 그림 10. 프린트 배선판에 실장된 가 있습니다(그림11). 한편, 전류검출저항기 검사에는 일반적으 로 와이어 프로브가 이용됩니다(그림12), 이 경우 측정전류는 주

전류검출저항기

입점(SOURCE B)에서 서서히 전류검출저항기 내에 퍼져나가 다시 프로브의 한 지점(SOURCE A)으로 돌아옵니다(그림13). 전류주입점(SOURCE A, SOURCE B)은 전류밀도가 높아 그 근처에 전압단자(SENSE A. SENSE B)를 배치하면, 실장상태의 저항치에 비해 높아지는 경향이 있습니 다(그림14).

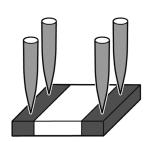


그림 12. 검사 상태의 프로빙

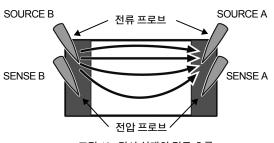
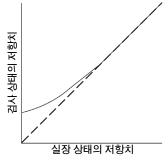
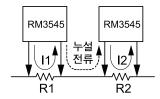
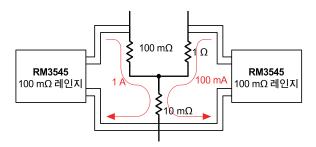


그림 13. 검사 상태의 전류 흐름




그림 14. 실장 상태와 검사 상태의 차이

부록8 여러 대의 RM3545를 사용하려면


두 시료가 연결되어 있는 RM3545를 여러 대 사용하여 로터리 스위치 등 여러 곳을 측정할 필요가 있는 경우에 대해서 설명합니다.

RM3545는 시료에 정전류를 흘려 저항을 측정하는데, 여러 개의 프로브가 한 곳에 연결되면 측정 전류가 다른 RM3545의 측정전류에 중첩이 되어 정확한 측정을 하지 못할 수 있습니다.

예를 들면 오른쪽 그림처럼 2대의 RM3545를 사용하여 2개의 저항을 측정하는 경우, R1에 흐르는 전류는 I1, R2에 흐르는 전류는 I2인데 한쪽의 RM3545에서 다른 쪽의 RM3545에 미세한 전류가 새는 경우가 있어 정확한 측정을 할 수 없는 경우도 있습니다.

아래 그림과 같은 경우, $10 \,\mathrm{m}\Omega$ 에 대해서 2대의 측정전류가 공통되게 흘러 오차가 발생합니다.

이때 좌측의 RM3545는 다음과 같이 표시됩니다.

$$\frac{(100 \text{ m}\Omega \times 1 \text{ A} + 10 \text{ m}\Omega \times 1.1 \text{ A})}{1 \text{ A}} = 111 \text{ m}\Omega$$

우측의 RM3545는 다음과 같이 표시됩니다.

$$\frac{(1 \Omega \times 100 \text{ mA} + 10 \text{ m}\Omega \times 1100 \text{ mA})}{100 \text{ mA}} = 1.11 \Omega$$

부록9 노이즈 대책에 대해

(1) 유도 노이즈의 영향

전원 코드나 형광등, 전자 밸브, 컴퓨터 디스플레이 등에서는 큰 노이즈가 발생합니다. 저항측정에 영향을 미치는 노이즈원으로는

- 1. 고전압선로와의 정전결합
- 2. 대전류선로와의 전자결합
- 을 생각할 수 있습니다.

고전압선로와의 정전결합

고전압선로에서 유입되는 전류는 결합하는 정전용량의 지배를 받습니다. 예를 들어, 100 V의 상용전원라인과 저항 측정용 배선이 1 pF로 정전결합하고 있는 경우, 대략 38 nA의 전류가 유기됩니다.

$$I = \frac{V}{Z} = 2\pi \cdot 60 \cdot 1 \text{ pF} \cdot 100 \text{ V}_{RMS} = 38 \text{ nA}_{RMS}$$

 1Ω 의 저항기를 $100 \, \text{mAz}$ 측정할 경우, 그 영향은 겨우 $0.4 \, \text{ppm에}$ 불과하므로 무시해도 무방합니다. 한편, $1 \, \text{M}\Omega$ 을 $10 \, \text{µAz}$ 측정할 경우 0.38%의 영향이 있습니다. 이와 같이 고전압선로와의 정전결합은 고 저항 측정에 있어서 주의해야 하며, 배선 및 측정대상을 정전 실드하는 것이 효과적입니다(그림 1).

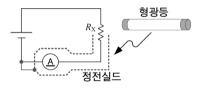


그림1. 고전압 배선 가까이에서는 정전 실드

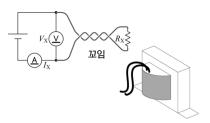
대전류선로와의 전자결합

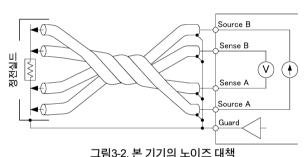
대전류선로에서는 자계가 발생합니다. 턴 수가 큰 변압기와 초크 코일에서는 더욱 큰 자계가 방출됩니다. 자계로 인해 유기되는 전압은 거리와 면적에 영향을 받습니다. 1 A의 상용 전원선에서 10 cm 떨어진 10 cm²의 루프에는 약 0.75 μ V의 전압이 발생합니다.

$$v = \frac{d\phi}{dt} = \frac{d}{dt} \left(\frac{\mu_0 IS}{2\pi r} \right) = \frac{4\pi \cdot 10^{-7} fI}{r}$$
$$= \frac{4\pi \cdot 10^{-7} \cdot 60 \text{ Hz} \cdot 0.001 \text{ m}^2 \cdot 1A_{RMS}}{0.1 \text{ m}} = 0.75 \text{ } \mu\text{V}_{RMS}$$

1 mΩ의 저항기를 1 A로 측정할 경우 그 영향은 0.07%입니다. 한편으로 고저항 측정에서는 검출 전압을 크게 하기 쉬우므로 그다지 문제가 되지 않습니다.

영향은 노이즈를 발생시키는 라인과 저항 측정의 전압 검출 배선을 이격시켜 각각을 트위스트(꼬임) 하는 것이 효과적입니다(그림2).





그림2. 대전류배선 가까이에서는 트위스트

본 기기의 유도 노이즈 대책

본 기기의 노이즈 대책은 그림 3-1처럼 측정 리드에 페라이트 코어를 장착하거나, 그림 3-2처 럼 실드된 4개의 배선을 트위스 트하여 측정대상을 Guard전위 에서 실드하는 것이 효과적입니다.

또 본 기기 대책뿐만 아니라 노이즈원에 대해서도 동일하게 대책을 강구하는 것이 중요합니다. 노이즈원이 될 수 있는 주 위의 대전류 배선은 트위스트 하고, 고전압 배선은 실드를 하면 보다 더 효과적입니다.

유도 노이즈가 상용전원에 기인하는 경우

상용전원에 기인하는 유도 노이즈는 상용전원라인 이나 전원 콘센트에서뿐만 아니라, 형광등이나 가 전제품에서도 발생합니다. 상용전원에 기인하는 노이즈는 사용하는 상용전원 주파수에 의존하며 50 Hz 혹은 60 Hz 주파수에서 발생합니다.

이 상용전원에 기인하는 노이즈의 영향을 줄이기 위해 일반적으로는 적분시간을 전원 주기의 정수 배하는 방법을 취합니다(그림4).

본 기기의 측정 속도는 FAST, MED, SLOW1, SLOW2의 4단계입니다. 고저항 혹은 저저항 측정

그림4. 상용전원에 기인하는 노이즈

에서는 측정치가 안정되지 않는 경우가 있습니다. 그 경우는 측정 속도를 느리게 하거나 노이즈 대책을 충분히 실시하십시오.

또한 전원 주파수 설정이 60 Hz인 채로 전원 주파수 50 Hz 지역에서 사용하면, 적분시간이 전원 주파수의 정수배가 되도록 측정 속도를 설정해놓아도 측정치가 불안정해집니다. 본 기기의 전원 주파수 설정을 확인하십시오.

(2) 전도 노이즈의 영향

측정대상이나 측정 리드에 중첩되는 유도 노이즈와는 다른 경로의 노이즈로 전도 노이즈가 있습니다. 전도 노이즈란 전원라인이나 USB 등의 제어라인에 중첩되는 노이즈를 말합니다.

전원라인에는 모터, 용접기, 인버터 등 여러 기기가 연결되어 있습니다. 이러한 설비가 가동 중 혹은 기동, 정지할 때마다 전원에는 큰 스파이크 전류가 흐릅니다. 이 스파이크 전류와 전원라인의 배선 임피던스로 인해 전원라인이나 전원의 접지선에는 큰 스파이크 전압이 발생하여 계측기에 영향을 미치는 경우가 있습니다.

마찬가지로 컨트롤러의 제어선에서도 노이즈가 주입되는 경우가 있습니다. 컨트롤러의 전원에서 침입한 노이즈와 컨트롤러 내의 DC-DC 컨버터 등에서 발생하는 노이즈가 USB나 EXT I/O 배선 경유로 계측기에 침입합니다(그림5).

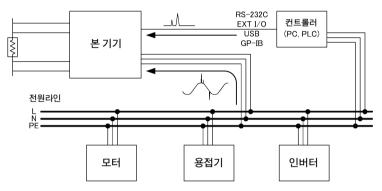
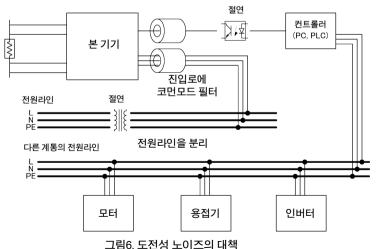



그림5. 도전성 노이즈의 진입

전도 노이즈는 Hioki 3145 노이즈 하이로거 등으로 모니터링하면서 대책을 세우는 것이 효과적입니다. 그리고 침입경로가 특정된 경우에는 그림 6에 나타낸 대책이 유효합니다.

전원리인을 분리한다

동력계와 용접기 등은 본 기기와 다른 계통의 전원을 사용하는 것이 좋습니다.

침입로에 코먼모드 필터(EMI 초크)를 삽입한다

코먼모드 필터는 가능한 한 임피던스가 높은 것을 선택하고, 여러 개 넣을수록 효과가 커집니다.

절연한다

제어선은 광절연함으로써 높은 효과를 얻을 수 있습니다.

전원라인도 노이즈 컷 변압기로 절연하면 효과가 있습니다. 단, 절연 전후에 접지선을 공통으로 해 버리면 효과가 약해지는 경우가 있으므로 주의하십시오.

부록10 열기전력의 영향에 대해서

열기전력은 프로브와 측정대상의 리드선 사이 등 이종금속의 연결 부분에 발생하는 전위차를 말하 며, 이 열기전력이 크면 측정에 오 차가 발생합니다(그림 1). 또 열기 전력의 크기는 측정환경의 온도 에 따라서도 다르고 일반적으로 온도차가 클수록 열기전력은 커집니다.

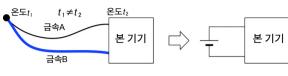


그림 1. 열기전력의 발생

열기전력이 커지는 예

- 측정대상이 퓨즈. 온도퓨즈. 서미스터. 바이메탈. 서모스탯이다.
- 전압 검출 라인에 single stable relav의 접점을 사용하고 있다.
- 전압 검출 단자에 악어클립을 사용하고 있다.
- 전압 검출 단자를 손으로 잡고 있다.
- 측정대상과 본 기기의 온도가 크게 다르다.
- SENSE A단자 측의 배선재와 SENSE B단자 측의 배선재가 다르다.

저항측정에서는 측정대상 $R_{\rm x}$ 에 측정전류 $I_{\rm M}$ 를 흘려 측정대상의 전압강하 $R_{\rm x}I_{\rm M}$ 를 검출합니다. 저저항 측정에서는 $R_{\rm x}$ 가 작기 때문에 검출전압 $R_{\rm x}I_{\rm M}$ 이 필연적으로 작아집니다. 검출전압이 작은 경우에는 측정대상과 프로브 사이 또는 케이블과 측정기 사이에 발생하는 열기전력과 전압계의 오프셋 전압 $V_{\rm EMF}$ 가 측정에 영향을 미치게 됩니다(그림2). 측정대상을 손으로잡으면 측정대상의 온도가 올라가고, 프로브가 손의열로 뜨거워지는 경우도 있습니다. 이와 같은 영향 때

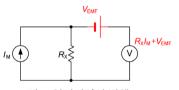


그림 2. 열기전력의 발생

문에 주의를 기울여도 열기전력을 1 uV 이하로 제어하기란 어렵습니다.

예로써 열기전력이 10 μ V 있는 상황에서 진짜 저항치가 1 $m\Omega$ 인 측정대상을 측정전류 1 A로 측정한 경우, 측정기는

$$\frac{1 \text{ m}\Omega \times 1 \text{ A} + 10 \text{ }\mu\text{V}}{1 \text{ A}} = 1.01 \text{ m}\Omega$$

라고 표시해 참된 측정치에 대해 1%나 오차를 포함하게 됩니다. 또 전압계의 오프셋 전압도 1 µV ~ 10 mV로 매우 커 저저항 측정에서의 큰 오차 요인이 됩니다.

열기전력의 영향을 줄이는 방법으로써

- 1. 큰 측정전류로 검출 전압을 올린다
- 2. 열기전력을 영점 조정한다
- 3. 검출 신호를 교류로 한다.

등이 있습니다.

1. 큰 측정전류로 검출 전압을 올린다

전술한 열기전력 예에서 측정전류를 1 A에서 100 A로 하면 오차는 0.01 %로 줄일 수 있습니다.

$$\frac{1 \text{ m}\Omega \times 100 \text{ A} + 10 \text{ µV}}{100 \text{ A}} = 1.0001 \text{ m}\Omega$$

단, 측정대상에는 RI²의 전력이 걸리므로 주의가 필요합니다.

2. 열기전력을 영점 조정한다

측정대상 R_X 에 전류를 흘려보내지 않는 상태를 만들어냄으로써, 전압계에는 열기전력 V_{EMF} 만이 입력되게 됩니다. 단, SOURCE단자를 개방해버리면 본 기기는 전류 이상을 검출하여 측정치를 표시하지 않게 됩니다. 따라서 R_X 에 전류가흐르지 않도록 SOURCE선을 단락하여 영점 조정을 실행함으로써 열기전력을 취소할 수 있습니다(그림3).

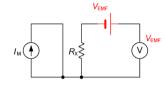


그림3. Rx에 전류를 흘리지 않고 영점 조정

참조: "3.5 측정치 확인하기"(p.52)

참조: "부록6 영점 조정에 대해서"(p. 부7)

3. 검출 신호를 교류로 한다

검출신호를 교류로 하는 것은 근본적인 해결방법입니다. 열기전력, 전압계의 오프셋전압 모두 초단위의 짧은 시간으로는 안정적인 직류로 여겨져, 검출 신호를 교류로 함으로써 주파수 영역에서의 분리가 가능해집니다. 본 기기의 OVC기능(OVC: Offset Voltage Compensation)에서는 측정전류를 펄스파형으로써 열기전력을 배제한니다

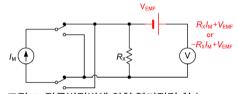


그림 4. 전류반전법에 의한 열기전력 취소

(그림4). 구체적으로는 측정전류를 정방향으로 흘렸을 때의 검출전압에서 역방향으로 흘렸을 때의 검출전압을 빼 열기전력의 영향을 받지 않는 저항치를 얻습니다.

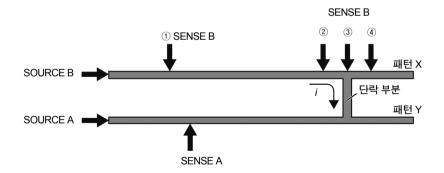
$$\frac{(R_{\mathsf{X}}I_{\mathsf{M}} + V_{\mathsf{EMF}}) - (-R_{\mathsf{X}}I_{\mathsf{M}} + V_{\mathsf{EMF}})}{2I_{\mathsf{M}}} = R_{\mathsf{X}}$$

측정대상이 유도성인 경우는 전류를 흘리고나서 측정을 시작할 때까지의 지연시간(딜레이) 설정(p.84)이 필요합니다.

지연시간은 인덕턴스가 측정치에 영향을 주지 않도록 설정하십시오. 처음에는 지연시간을 비교적 길게 설정하여 측정치를 보면서 서서히 지연시간을 줄여 주십시오.

부록11 프린트 기판 단락 위치의 검출

여러 곳의 저항치를 비교함으로써 프린트 기판의 단락 위치 추측에 도움이 됩니다.(부품이 미실장 인 것)


아래와 같이 패턴X와 패턴Y가 단락되어 있다고 가정합니다.

- 1 SOURCE A와 SOURCE B를 각각의 패턴에 연결합니다.
- 2 SENSE A를 SOURCE A 근처에, SENSE B를 ①의 장소에 연결합니다.
- 3 SENSE B를 ①, ②, ③, ④로 이동하면서 측정치를 읽습니다. 저항치가 높은 부분은 단락 위 치에서 멀다는 것을 의미합니다. SOURCE B단자, SENSE B단자를 이동시키면서 단락한 곳 을 유추하십시오.

예

- \bigcirc 20 m Ω
- (2) 11 mO
- ③ 10 mO
- (4) 10 mO

이상의 측정치에서 ③ 부근에서 단락되었다는 것을 추측할 수 있습니다.

부록12 접점저항측정에 대해서

(1) 접점의 종류

스위치와 릴레이, 커넥터 접점은

저력용 전점

신호용 접점

으로 크게 나뉩니다.

• 전력용 접점

수십 암페어의 전류가 통전되는 선로는 $1 \text{ m}\Omega$ 의 저항이 있는 것만으로도 와트 단위의 전력을 소비해버립니다. 때문에 차단기 등 대전류선로의 스위치 접점은 $1 \text{ m}\Omega$ 을 훨씬 밑도는 저항치입니다. 파워 릴레이와 차단기 등은 대전류선로에서 사용하는 것을 전제로 하고 있습니다. 그 때문에 통전전류가 작은 경우(마이크로 암페어 수준)에는 접점이 서서히 부식하여 접점이 전혀 도통하지 않게되는 경우가 있으므로 주의가 필요합니다.

• 신호용 접점

일반 전자회로용 스위치나 커넥터는 통전전류가 1 A 이하이기 때문에 접점저항은 수십mΩ입니다. 통전전류가 마이크로 암페어 수준에서도 안정된 접촉을 얻을 수 있도록 접점에 금도금을 해놓는 것이 일반적입니다.

도전성 고무를 이용한 스위치는 누르는 힘에 따라 크게 저항치가 변화합니다. 접촉저항은 1 kΩ 전후로 상당히 높게 되어 있지만 접점의 내구성이 매우 높은 점이 특징입니다.

(2) 접점저항의 측정

전력용 접점

특별히 규정이 없는 경우는 1A 정도의 전류로 측정하면 충분한 분해능으로 측정할 수 있습니다. 단, 국소적으로 접점저항이 높은 곳이 있는 경우, 실사용 상태에 가까운 전류를 흐르게 하여 접점의 발열을 관측할 필요가 있습니다.

전력용 접점은 통상 5 V 이상의 비교적 높은 전압에서 사용됩니다. 개방전압이 낮은 저항계로 측정한 경우에는 보통은 문제가 되지 않는 접점의 오염(산화피막 등의 오염)을 관통하지 못하여 "접촉불량"으로 판정해버리는 경우가 있습니다. 이와 같은 이유로 전력용 접점을 저전력 저항계로 측정하는 것은 바람직하다고 할 수 없습니다.

• 신호용 접점

신호용 접점은 IC 입력단자에 연결하게 되는 경우가 많아, 통전전류가 $1\,\mu$ A 이하가 되는 경우도 종 종 있습니다. 접점 개폐를 되풀이하거나 진동으로 접점 표면의 도금이 벗겨지면 접점의 부식(산화, 황화)이 급속히 진행됩니다.

접점이 부식하여 접촉저항이 높은 상태에 있는 경우 1 A 등 대전류로 측정하면 접점저항이 서서히 회복해가는 경향을 볼 수 있습니다. 게다가 부식이 진행되어 절연상태에 있는 접점을 개방전압이 큰 저항계로 측정하면 부식 부분을 관통하여 "접촉양호"라고 판정해버리는 경우가 있습니다.

이러한 이유로 신호용 접점을 측정할 때는 가능한 한 개방전압을 억제하고 매우 작은 전류로 측정 해야 합니다(드라이 서킷 테스트). 본 기기에서 저전력 ON으로 설정함으로써 드라이 서킷 테스트 가 가능해집니다.

(3) 개방상태의 저항

일반적으로 접점이 개방상태에서는 10 MΩ 이상의 저항치가 됩니다. 초기 절연저항은 케이스의 절연 재질에 따르는 바가 크고 오래 사용한 상태에서는 접점의 부스러기와 주변 먼지에 의해 열화 되는 경향이 있습니다.

개방상태의 저항은 개방된 접점에 인가될 수 있는 최고 전압으로 저항치를 측정할 필요가 있습니다. 이 때문에 배전설비 점검에 사용되는 절연저항계에서는 25 V ~ 5 kV의 고전압을 인가할 수 있도록 설계되어 있습니다.

(4) 접점저항에 관한 규격

저항측정에 관해서 기재되어 있는 대표적인 규격을 열거합니다. 내용에 대해서는 각각의 규격을 참조하십시오.

JIS C 2525 금속 저항 재료의 도체저항 및 체적저항률 시험방법

JIS C 3001 전기용 구리재의 전기저항

JIS C 3002 전기용 동선 및 알루미늄선 시험방법

JIS C 3005 고무 • 플라스틱 절연전선 시험방법

JIS C 3101 전기용 경동선

JIS C 3102 전기용 연동선

JIS C 3152 주석도금 연동선

JIS C 4034 회전전기기계

JIS C 5012 프린트 배선판 시험방법

JIS C 5402 전자기기용 커넥터

JIS C 5442 제어용 소형 전자 릴레이의 시험방법

JIS C 8306 배선기구의 시험방법

JIS H 0505 비철금속재료의 체적저항률 및 도전율 측정방법

JIS K 7194 도전성 플라스틱의 4탐침법에 의한 저항률 시험방법

참고 URL http://www.jisc.go.jp/

부록13 JEC 2137 유도기에 대응한 저항 측정

"JEC 2137 유도기" 규격에는 다음 식에 따라 저항치를 보정하도록 규정되어 있습니다.

$$R_{\text{tR}} = R_{\text{tTx}} \times \frac{t_{\text{R}} + k}{t_{\text{T}} + k} \qquad 41$$

 R_{tR} 기준온도 t_{R} 에서의 코일 저항치 R_{tT} 온도 t_{T} 로 측정했을 때의 코일 저항치 t_{R} 기준온도 [°C] t_{T} 코일저항을 측정했을 때의 온도 [°C] t_{T} 정수(동선의 경우는 235)

식1을 변형하면 다음과 같이 됩니다.

한편, 본 기기의 온도 보정은 식 3과 같습니다. 온도계수는 식4처럼 설정하십시오.

예를 들면 기준온도를 20°C로 하는 경우는 본 기기의 온도계수를 아래와 같이 설정해 주십시오.

$$\alpha_{tR} = \frac{1}{t_R + k} = \frac{1}{20 + 235} = 3922 \text{ [ppm/°C]}$$

부록14 측정 리드를 자체제작하기, 멀티플렉서에 배선하기

권장 측정 리드 사양

도체저항	500 mΩ/m0 ō├
정전용량	150 pF/m이(하
케이블 유전체 재질	폴리에틸렌(PE), TEFLON(TFE), 발포 폴리에틸렌(PEF) 절연저항 100 GΩ이상 (실력치)

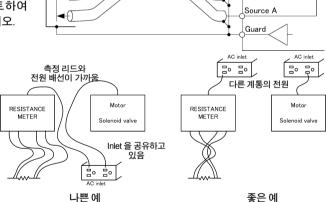
예: Hitachi Metals. Ltd., Furukawa Electric Co., Ltd., Sumitomo Electric Industries, Ltd.; UL1354, UL1631, UL1691

연결 예

◄()

◄()

배선 전에


참조: "부록7 측정치가 안정되지 않을 때"(p. 부12)

• 측정 리드에는 실드선을 사용하고 실드전위는 본 기기의 GUARD 단자에 연결하십시오 . 프로브 부분이나 측정대상 주변도 GUARD 전위에서 실 ** 드하십시오.

4개의 배선은 트위스트하여 루프 면적을 작게 하십시오.

 측정 리드 및 측정대상 은 대전류, 고전압, 고 주파수의 배선(내압시 험기, 전원 코드, 모터, 전자밸브)으로부터 이 격해주십시오.

• 10 mΩ 레인지, 100 mΩ 레인지(측정전류 1 A 설 정 시)에서는 유도현상

Source B

Sense B

Sense A

(♠)

의 영향이 현저해집니다. 리드 위치나 형상이 변화하면 측정치가 변화하는 경우가 있습니다. 가능한 한 위치나 형상이 변동하지 않도록 주의하십시오. 또 측정 리드나 측정대상으로부터 금속을 이 격시키십시오.

- 본 기기를 2대 이상 사용할 경우, 여러 대의 배선을 하나로 묶지 마십시오. 유도현상 때문에 측정 치가 불안정해지거나 콘택트 체크 회로가 오검출하는 경우가 있습니다.
- 내부회로에 대해서는 블록도(p.부1)를 참조해 주십시오.

• 배선저항이 아래 표의 값을 넘으면 전류 이상 상태가 되어 측정할 수 없게 됩니다. 측정전류 1 A의 레인지에서는 배선저항(케이블선 저항, 릴레이 ON 저항) 및 측정대상과 프로브와의 접촉저항을 낮게 억제해 주십시오.

LP OFF

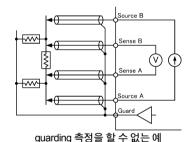
레인지	100 MΩ 레인지 고정밀도 모드	전류 전환	측정 전류	SOURCE B-SOURCE A (측정대상 이외) [*]
10 mΩ	-	-	1 A	1.5 Ω
100 mΩ	-	High	1 A	1.5 Ω
100 mΩ	-	Low	100 mA	15 Ω
1000 mΩ	-	High	100 mA	15 Ω
1000 mΩ	-	Low	10 mA	150 Ω
10 Ω	-	High	10 mA	150 Ω
10 Ω	-	Low	1 mA	1 kΩ
100 Ω	-	High	10 mA	100 Ω
100 Ω	-	Low	1 mA	1 kΩ
1000 Ω	-	-	1 mA	1 kΩ
10 kΩ	-	_	1 mA	1 kΩ
100 kΩ	-	-	100 μΑ	1 kΩ
1000 kΩ	-	-	10 μA	1 kΩ
10 ΜΩ	-	-	1 μA	1 kΩ
100 MΩ	ON	-	100 μΑ	1 kΩ
100 MΩ	OFF	-	1 µA 이하	1 kΩ
1000 ΜΩ	OFF	_	1 µA 이하	1 kΩ

LP ON

레인지	측정 전류	SOURCE B-SOURCE A (측정대상 이외) [*]
1000 mΩ	1 mA	2 Ω
10 Ω	500 μΑ	5 Ω
100 Ω	50 μA	50 Ω
1000 Ω	5 μΑ	500 Ω

* Z3003 멀티플렉서 유닛을 사용하는 경우는 유닛 내부의 배선저항(릴레이 포함)이 포함됩니다. 유닛 내부의 배선저항은 유닛 테스트로 1 Ω 이하임을 확인할 수 있습니다.

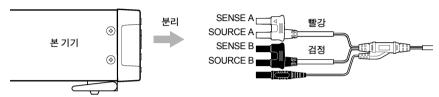
참조: "8.6 멀티플렉서 유닛의 테스트를 실행하기"(p.167)


부록14 측정 리드를 자체제작하기, 멀티플렉서에 배선하기

- 전압 검출 회로의 입력저항은 충분히 크기 ãö문에 SENSE선의 배선저항이 1 kΩ 정도가 되어도 측정치에 영향을 주는 일은 없습니다. 단, 노이즈의 영향을 받기 쉬워지므로 가능한 한 배선저항 을 작게 하십시오. 또 배선저항이 커서 콘택트 체크가 에러가 되는 경우는 배선저항을 작게 하거 나 콘택트 체크 기능을 OFF로 하십시오.
- 배선이 길면 노이즈가 유입되기 쉽고, 측정치가 안정되지 않는 경우가 있습니다.
- 4단자 구조를 유지한 채로 연장하십시오. 도중에서 2단자 구조가 되면 배선저항과 접촉저항의 영향이 나타나 올바른 측정을 할 수 없게 됩니다. 오차가 발생하는 예:

본 기기에서 릴레이까지 4단자구조로 배선하고 릴레이부터 2단자배선이 되어 있다.

- 측정 리드 연장 후에는 동작과 정확도("측정 사양"(p.252))를 확인해주십시오.
- 당사의 측정 리드의 선단을 잘라내어 사용할 경우, SOURCE A, SENSE A, SENSE B, SOURCE B의 실드 선과 심선이 닿지 않도록 주의하십시오. 접촉하면 올바 른 측정을 할 수 없게 됩니다.
- 실드선의 말단은 접지 등에 연결하지 마십시오. 그라운 드 루프가 발생하여 노이즈의 영향을 받기 쉬워집니다. 잘라낸 채로 주변 금속에 접촉하지 않도록 처리하십시 오.
- GUARD 단자에는 1 mA 이상의 전류를 흘리지 마십시오.
 네트워크 저항기의 guarding 측정에는 사용할 수 없습니다.



부록15 측정 이상 시의 확인방법

본 기기에서는 SOURCE A, SOURCE B, SENSE A, SENSE B 4개의 연결 상태를 모니터링하고 있습니다.

의도하지 않은 측정 이상이 발생한 경우에는 다음을 확인해주십시오.

4 측정대상에 프로브를 접촉한 상태로 측정 리드의 플러그 부분을 본 기기에서 분리합니다.

SOURCE A - SENSE A 간의 저항을 테스터 등으로 확인합니다(아래 그림 ①).
SOURCE B - SENSE B 간의 저항을 테스터 등으로 확인합니다(아래 그림 ②).
접촉이 양호하면 보통 1 Ω 이하가 됩니다.

3 SOURCE A - SOURCE B 사이의 저항을 테스터 등으로 확인합니다(아래 그림 ③). 접촉이 양호하면 "측정대상의 저항치 + 배선저항"이 됩니다.

상기 저항치가 높은 경우에는 다음을 확인해주십시오.

- 프로브가 오염되거나 마모되지 않았는가
- 프로브의 접촉압이 낮지 않은가
- 배선 전환에 파워 릴레이를 사용하고 있지 않은가(특히 Sense선)
 파워 릴레이의 접점에 전류를 흘려보내지 않은 상태에서 계속 사용하면, 접촉저항은 점차 높아 집니다.
- 배선이 가늘지 않은가
 특히 측정전류가 1 A인 경우, 왕복의 배선저항은 1.5 Ω 이내로 하십시오.
 참조: p.57
- 측정 리드가 끊어지려 하지 않는가 다른 측정 리드로 교체하거나 배선을 흔들거나 해서 저항치를 확인해주십시오.

부록16 내압시험기와의 조합

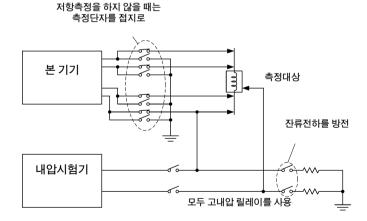
본 기기는 코일의 시험장치로서 내압시험기와 함께 사용하는 경우가 있습니다. 본 기기를 내압시험기와 조합해서 사용하면 코일에 비축된 전하가 본 기기를 연결한 순간 본 기기로 흘러들어와 고장을 야기하는 경우가 있습니다.

조합해서 사용할 때는 다음 사항에 유의하여 라인을 설계해 주십시오.

(1) 전환에 사용하는 릴레이의 접점 내압은 내압시험전압에 대해서 충분히 여유를 가지게 하십 시오(최소한 피크전압의 2배 이상).

고압 릴레이의 예

Okita Works LRL-101-50PC (접점간 DC5 kV)


LRL-101-100PC (접점간 DC10 kV)

Sanyu Switch USM-11524 (접점간 DC5 kV)

USM-13624SB (접점간 DC10 kV)

- (2) 내압시험 중에는 본 기기의 측정단자를 모두 접지로 내린다.
- (3) 처음에 저항측정을 하고, 내압시험은 제일 마지막에 한다.

저항측정 전에 내압시험을 해야만 하는 경우는 내압시험 후에 측정대상의 양끝을 접지로 내리고, 내압시험으로 비축된 전하를 방전하고 나서 저항측정을 실시하십시오.

내압시험기와의 조합

부록17 측정 리드(옵션)에 대해서

구매를 원하시면 당사 또는 대리점으로 연락 주십시오.

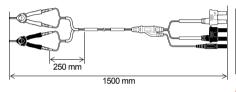
L2101 클립형 리드

선단이 클립형인 리드입니다. 클립만 하면 4단자 측정을 할 수 있습니다.

전체 길이: 약 1500 mm 분기-리드 간: 약 250 mm

클립 가능경: φ0.3 mm ~ φ5.0 mm

L2102 핀형 리드


클립할 수 없는 평면 상의 접촉부와 릴레이의 단자, 커넥 터 등 접촉 부분이 작은 측정대상이라도 갖다 대기만 하면 4단자 측정을 할 수 있습니다.

전체 길이: 약 1500 mm

분기-리드 간: 약 250 mm

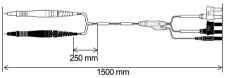
핀 선단: φ1.8 mm 첫 접촉압: 약 70 a

전 압축압: 약 100 g (스트로크 약 2 mm)

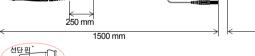
L2103 핀형 리드

자구조로 되어 있습니다. 소형 측정대상이라도 정확하게 저항을 측정할 수 있습니다.

전체 길이: 약 1500 mm 분기 - 리드 간: 약 250 mm


핀 간격: 0.2 mm 첫 접촉압: 약 60 a

전 압축압: 약 140 a (스트로크 약 1.3 mm)


L2104 4단자 리드

선단은 실장기판상의 IC의 floating 검사용으로 개발한 4단 SOURCE 단자가 악어클립, SENSE 단자가 테스트리드 봉인 4단자 리드입니다. 프린트 기판의 패턴저항이나 SOURCE 단자와 SENSE 단자를 이격하여 측정하는 경우 에 사용해 주십시오.

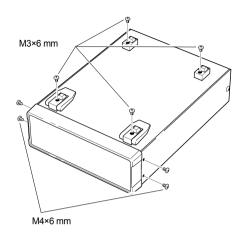
전체 길이: 약 1500 mm 분기-리드 가: 약 280 mm

* 선단 핀 교체 가능

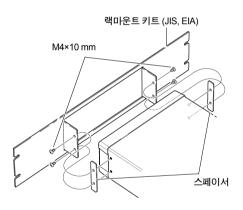
부록18 랙마운트

본 기기는 측면의 니사를 풀어 랙마운트 키트 등을 장착할 수 있습니다.

↑ 경 고 본 기기의 파손이나 감전사고를 방지하기 위해 사용하는 나사는 다음 사항에 주의 하십시오.

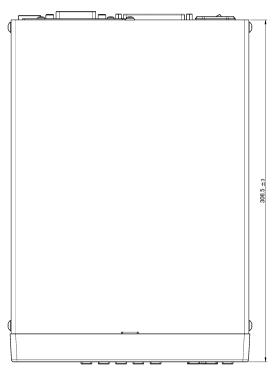

- · 측면에 랙마운트 키트를 장착할 때는 본 기기 내부에 나사가 3.5 mm 이상 들어가 지 않도록 하십시오.
- 랙마운트 키트를 떼어내고 원래대로 되돌리는 경우는 처음에 사용된 나사와 같은 것을 사용하십시오.

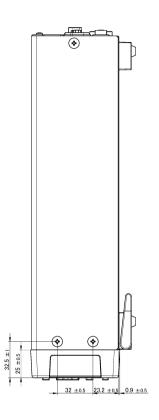
(지지다리: M3×6 mm, 측면: M4×6 mm)

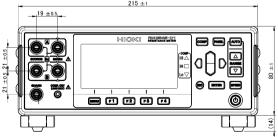

나사를 분실, 파손한 경우는 당사 또는 대리점으로 문의해 주십시오.

랙마운트 키트 참고도와 장착 방법 스페이서(2개 사용) 2× Ø4.5 랙마운트 키트(EIA) SPCC t2.3 2 × C2 2× Ø 4.5 79 79 88.1 32 464 480 랙미운트 키트(JIS) SPCC t2.3 2 × C2 2 × C2 2 × Ø 4.5 32 29 60 4 × C2

215.5 460 480


본 기기 바닥면의 지지다리, 측면 커 버의 나사(앞 양쪽 4개)를 풉니다.




2 본 기기 측면 양쪽에 스페이서를 넣고 랙마운트 키트를 M4 × 10 mm의 나사로 장착합니다.

랙에 장착할 때는 시판되는 받침대 등으로 보강하십시오.

부록19 외관도

부록20 교정에 대해서

교정조건

• 환경온습도 23°C ± 5°C, 80%RH이하

• 워밍업 시간 60분

• 전원 100 V ~ 240 V ± 10%, 50 Hz / 60 Hz, 왜곡률 5% 이하

• 외부 자계 지자기에 가까운 환경

• 리셋으로 설정 초기화

교정 설비

교정 설비로써 아래를 준비해주십시오.

저항 측정기능

설비	교정점	제조사	규격형명
표준 저항기	1 GΩ	일본 FINECHEM사 제품	RH1/ 2HV (1 GΩ)
표준 저항기	10 Ω ~ 100 MΩ	FLUKE사 제품	5700 A 상당품
표준 저항기	1 Ω	Alpha Electronics사 제품	CSR-1R0 상당품
표준 저항기	100 mΩ	Alpha Electronics사 제품	CSR-R10 상당품
표준 저항기	10 mΩ	Alpha Electronics사 제품	CSR-10N 상당품
저항 측정 리드		Hioki	L2104 4단자 리드

FLUKE사의 5700A를 준비할 수 없는 경우는 아래 설비를 이용하십시오.

Alpha Electronics사 제품

 • CSR-100 (10 Ω)
 • CSR-104 (100 k Ω)

 • CSR-101 (100 Ω)
 • CSR-105 (1 M Ω)

 • CSR-102 (1 k Ω)
 • CSR-106 (10 M Ω)

 • CSR-103 (10 k Ω)
 • CSR-107 (100 M Ω)

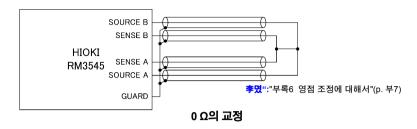
온도측정(서미스터)

설비	교정점	제조사	규격형명
멀티프로덕트 교정기	25℃, 2186.0 Ω	FLUKE사 제품	5520 A 상당품

온도(아날로그 입력)

설비	교정점	제조사	규격형명	
발생기	10℃: 0.1 V	Hioki	SS7012 상당품	
201	100℃ : 1 V	THOR	337012 334	
온도 측정 케이블			배선저항 왕복 500 mΩ 이하	

D/A출력

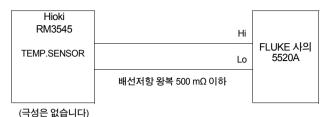

설비	교정점	제조사	규격형명
전압계	0Ω:0V 1Ω:1V	Hioki	3237상당품
출력 케이블			배선저항 왕복 500 mΩ 이하

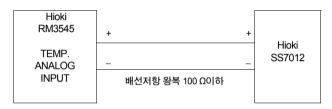
교정점

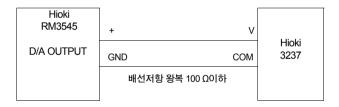
	레인지	교정점	OVC	측정 전류	100 MΩ 고정밀도 모드	0ADJ
	10 mΩ	0 Ω, 10 mΩ	ON, OFF	-	-	있음, 없음 ^{*1}
	100 mΩ	0 Ω, 100 mΩ	ON, OFF	High, Low	-	있음, 없음 ^{*1}
	1 Ω	0 Ω, 1 Ω	ON, OFF	High, Low	-	있음, 없음 ^{*1}
	10 Ω	0 Ω, 10 Ω	ON, OFF	High, Low	-	있음, 없음 ^{*1}
	100 Ω	0 Ω, 100 Ω	ON, OFF	High, Low	-	있음, 없음 ^{*1}
저항 측정	1000 Ω	0 Ω, 1 kΩ	ON, OFF	-	-	있음, 없음 ^{*1}
(저전력 OFF)	10 kΩ	0 Ω, 10 kΩ	OFF	-	-	-
	100 kΩ	0 Ω, 100 kΩ	OFF	-	-	-
	1000 kΩ	0 Ω, 1 ΜΩ	OFF	-	-	-
	10 ΜΩ	0 Ω, 10 ΜΩ	OFF	-	-	-
	100 ΜΩ	0 Ω, 100 ΜΩ	OFF	-	ON, OFF	-
	1000 MΩ	0 Ω, 1000 ΜΩ	OFF	-	OFF	-
	1000 mΩ	0 Ω, 1 Ω	ON	-	-	-
저항 측정	10 Ω	0 Ω, 10 Ω	ON	-	-	-
(저전력 ON)	100 Ω	0 Ω, 100 Ω	ON	-	-	-
	1000 Ω	0 Ω, 1 kΩ	ON	-	-	-
온도(서미스터)		25℃ : 2186.0 Ω입력				
온도 (아날로그 입력)		10℃ : 0.1 V입력				
		100℃ : 1 V입력				
D/A출력	1Ω	0 Ω : 0 V출력				
	1 32	1Ω:1V출력				

^{*1 0}ADJ없음은 OVC: OFF의 경우만

연결방법


표준저항기와의 연결


FLUKE 5700A와의 연결 (10 Ω 레인지 ~ 10 MΩ 레인지)


FLUKE 5700A와의 연결 (100 MΩ 레인지)

온도 측정(서미스터)

온도(이날로그 입력)

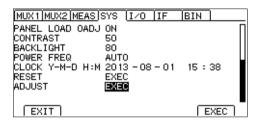
D/A출력

주의 사항 \cdot 0 Ω 교정의 결선에 대해서는 "부록6 영점 조정에 대해서"(p. 부7)를 참조해주십시오.

- 고저항, 저저항, 측정전류 Low 설정, 저전력 저항측정에서는 충분한 노이즈 대책 이 필요한니다.
 - 노이즈가 큰 상황에서는 측정치가 불안정하거나 어긋남이 발생할 수 있고, 측정 이상 검출기능이 반응하여 측정치를 표시하지 않게 되는 경우도 있습니다. 표준 저항기와 다이얼 저항기의 금속 외장은 본 기기의 GUARD 전위에 연결하십 시오.

李멌":"부록7 측정치가 안정되지 않을 때"(p. 부12)

• 전압검출 단자에 악어클립을 사용하지 마십시오. 열기전력의 영향으로 측정치가 어긋나는 경우가 있습니다.


YOKOGAWA사 2792를 이용해서 교정할 경우

4단자 리드를 이용해주십시오. 클립형 리드로는 연결할 수 없으므로 주의해주십시오.

부록21 조정에 대해서

시스템 설정화면에는 조정화면이 준비되어 있습니다. 조정화면은 당사가 수리, 조정 시에 사용하는 화면이므로 일반 고객께서는 이용하실 수 없습니다.

F 4 누르지 마십시오.

부록22 본 기기의 설정상태(MEMO)

본 기기를 교정, 수리하시면 본 기기의 설정을 초기상태로 되돌려놓게 됩니다. 교정, 수리를 맡기시기 전에 아래 표를 이용하여 본 기기의 설정을 기록해둘 것을 권장합니다. 샘플 애플리케이션 소프트웨어로 컴퓨터에 설정치를 저장할 수도 있습니다. 샘플 애플리케이션 소프트웨어는 당사 홈페이지에서 다운로드할 수 있습니다.

화면	설정 및 키	설정값
측정화면	COMP	
	PANEL	
	AUTO	
	▲▼(RANGE)	
	SPEED	
측정화면(P.1/2) (RM3545-02는 P.1/3)	VIEW (F2)	
측정화면(P.2/2)	0 ADJ (F2)	
(RM3545-02는 P.2/3)	LOCK (F3)	
측정화면 (P.3/3) *2	FRONT (F1)	
	MUX (F2)	
	SCANSET (F3)	

	화면	설정 및 키	설정값
설정화면	멀티플렉서	CH	
(SETTING)	채널설정 화면 (MUX1) ^{*2}	TERM	
	(MUX1) -	INST	
		0ALL	
		0ADJ	
	멀티플렉서	SPD	
	기본 측정화면 (MUX2) ^{*2}	RANGE	
	(MUX2) ²	UPP / REF	
		LOW%	
		PASS	
	측정 설정화면	TC SET	
	(MEAS)	ΔΤ	
		DELAY	
		AVERAGE	
		AUTO HOLD	
		SCALING(A*R+B)	
		OVC	
		LOW POWER	
		MEAS CURRENT	
		ΩDIGITS	
		CURR ERROR MODE	
		CONTACT CHECK	
		CONTACT IMPRV	
		100MΩ PRECISION	

₽ 48

부록22 본 기기의 설정상태(MEMO)

화면		설정 및 키	설정값
설정화면	시스템 설정화면	TERMINAL *2	
(SETTING)	ING) (SYS)	STATISTICS	
		TEMP INPUT	
		CALIBRATION	
		KEY CLICK	
		COMP BEEP Hi	
		IN	
		Lo	
		PASS	
		FAIL	
		PANEL LOAD 0ADJ	
		CONTRAST	
		BACK LIGHT	
		POWER FREQ	
	EXT I/O 설정화면	TRIG SOURCE	
	(I/O)	TRIG EDGE	
		TRIG / PRINT FILT	
		EOM MODE	
		JUDGE / BCD MODE	
	통신 인터페이스	INTERFACE	
	설정화면(IF)	SPEED	
		GP-IB *1	
		DATA OUT	
		CMD MONITOR	
		PRINT INTRVL	
		PRINT COLUMN	
		STAT CLEAR	
	BIN 설정화면 (BIN)	BIN	

^{*1} RM3545-01만

^{*2} RM3545-02만

색인

기호	F
ΔT	F.LOCK
23, 3, 1	FULL
숫자	F키22
OADJ	G
100 MΩ 레인지 고정밀도 모드96 4 단자법부2	GP-IB 인터페이스
A	Н
ABS 모드	HI 98, 183
AUTO22, 49	HILO
В	1
BCD_LOW	IN
BCDm-n	IN0, IN1
BIN0 ~ BIN9108, 183	INDEX
C	INT
	K
CA55, 296	
CAL92, 181	KEY_LOCK126, 181
CB	•
COMP22, 100	L
COMP.OUT단자22	LO
CONTACT A	LOAD0 ~ LOAD5
CONTACT B	LOADO - LOADS 121, 139, 102
CONTACT TERM.A	M
, , ,	M.LOCK
D	MENU7 22
D/A 출력175	MUX121, 139, 181
E	N
ENTER	NO UNIT55
EOM	
ERR55, 183, 295, 부33	0
ESC 22	OB 108, 183
EXT I/O	OUT0 ~ OUT2
연결 예	OVC
EXT I/O 커넥터	OvrRng 56, 99, 296
EXT I/O용 커넥터220	5

색인

P		노이즈	부20, 부21, 부32
PANEL		다	
PRINT 1	81, 242, 247	단선	
0		단신 데이터 메모리 기능	
Q		데이터 歯모디 기능 데이터 출력 기능	
Q&A		네이더 눌릭 기능 도전성 고무	
QUI (200	도전성 도료	
R		도선영 포표 딜레이 기능	
		글레이 기능 딜레이 설정	
RANGE	22, 49	24V 28	
REF% 모드	98, 103	라	
RMT	232		
RNG_OUT0 ~ RNG_OUT3	183	랙마운트	부36
RS-232C	272	레인지	
RS-232C 인터페이스	226	레인지 오버	55
RS-232C 커넥터	23	리셋	134
		릴레이접점	33
S			
SCN STOP	130 182	마	
SPEED		미이니스 초 전 원	F0
STAT	,	마이너스 측정치	
SW.ERR		멀티플렉서 멀티플렉서 에러	
OVV		멀티플렉서 유닛	
Т		멀티플렉서 유닛 테스트	
		멀티플렉서 채널 리셋	
TC	33, 75, 부4	멀티플렉서 커넥터	
T_ERR	139, 183	코디글릭시 기국니 모터	
T_FAIL		모표준편차	
T_PASS		THE DA	
TRG		바	
TRIG	181, 211	-	
U		배선	부30
U		백라이트	132
UNLOCK	127	백업	
USB 인터페이스		변압기	33, 부16
038 원디페이드	223	블록도	부1
V			
	_	사	
VIEW	27	상대치 판정	98
7 1		상하한치	
가		상한치	
공정능력지수		생플의 표준편차	
사포 · · · · · · · · · · · · · · · · · · ·	111	셀프 캘리브레이션	
치우침		셀프테스트	· · · · · · · · · · · · · · · · · · ·
교류방식		년트저항	
_ ;;		솔레노이드	
그중치	* *	수동 레인지	
	,	스위치	
나		스케일링	
		스탠바이 키	
내부 트리거		_ · · · · 시계	133
내부 회로 구성		시스템 리셋	134

신호 배치	179	지연시간 설정 직류방식	
<u>oł</u>			-
아날로그 출력 탑재 온도계	39	차	
에버리지		초기설정	136
에지 (edge)		초기화	
연속측정		초크코일	
열기전력		소프프를	
영점 조정		측정 레인지	
영점 조정 할 수 없을 때는		측정 리드	40, 200
오버 레인지 검출기능		ㅋᆼ 디ㅡ 연결하기	36 51
		옵션	
오프셋 전압 보정 기능		자체제작하기	
오픈 워크		측정 속도	· · · · · · · · · · · · · · · · · · ·
온도 보정		측정대상	
온도상승시험		온도가 안정되지 않는다	
온도센서		열을 받는다	
온도환산		측정범위	
와이어 하네스		측정의 흐름	
외관도		~ 6의 으ㅁ 측정이상	
외부 제어		측정이상 신호	
외부 트리거	209		
용접부	33	측정전류	· · · · · · · · · · · · · · · · · · ·
유닛 테스트	167	측정조건	
인쇄	239, 242	로딩하기 저장하기	
일반 저항측정	33		120
		측정치 메모리하기	225
자		메모디아기 안정되지 않는다	
<u>.</u>		자릿수 바꾸기	
자동 레인지	49	판정하기	
자동 홀드	60	표시되지 않는다	
자동측정	209	홀드하기	
저전력 저항측정	33, 부16	확인하기	
저항기	33	흔들림과 오차	
전류 이상 검출 기능	57		1 2, 1 00
전류검출저항	부18	카	
전선	33	21	
전송 속도	222	캘리브레이션	92. 181
전압 강하법	부2	커넥터	the state of the s
전원	43	커서 키	
전원 Inlet	35	콘택트 에러	
전원 주파수	129	콘택트 체크 기능	
전원 코드	35	콘퍼레이터 콤퍼레이터	
전자결합		금피데이디 점등하지 않는다	206
절대치 판정	98		
점검		콤퍼레이터 기능 크로스 케이블	
접촉 개선 기능	90	—	
접촉불량		클립형 리드	
정전결합		키 록 기능	
정확도		키 록 해제	
계산 예	,	키 조작음	128
온도측정			
,		타	
저항 측정		-10151 -15	
조정		타이밍 차트	
 주파수		EXT I/O	
지연시간	84	딜레이	

색 4

색인

통계 연산 통계 연산 결과 인쇄	114
파	
판정	98
판정 방법	
판정음	105
패널	
내용 삭제하기	124
패널명 변경하기	123
패널 로드	121
패널 저장	120
평균치	111
폐기	
퓨즈	33, 299
퓨즈홀더	23
프리런	210, 295
프린터	239, 272
프린트 기판	부26
하	
-10W0	00.400
허용범위	
홀드	
화면 콘트라스트	
화면구성	
	22

보증서

HIOKI

모델명	제조번호	보증 기간		
		구매일	년	월로부터 3년간

고객 주소:		
이름:		

요청 사항

- •보증서는 재발급할 수 없으므로 주의하여 보관하십시오.
- "모델명, 제조번호, 구매일" 및 "주소, 이름"을 기입하십시오.

※기입하신 개인정보는 수리 서비스 제공 및 제품 소개 시에만 사용합니다.

본 제품은 당사 규격에 따른 검사에 합격했음을 증명합니다. 본 제품이 고장 난 경우는 구매처에 연락 주십시오. 아래 보증 내용에 따라 본 제품을 수리 또는 신품으로 교환해 드립니다. 연락하실 때는 본 보증서를 제시해 주십시오.

보증 내용

- 1. 보증 기간 중에는 본 제품이 정상으로 동작하는 것을 보증합니다. 보증 기간은 구매일로부터 3년간입니다. 구매일이 불확실한 경우는 본 제품의 제조연월(제조번호의 왼쪽 4자리)로부터 3년간을 보증 기간으로 합니다.
- 2. 본 제품에 AC 어댑터가 부속된 경우 그 AC 어댑터의 보증 기간은 구매일로부터 1년간입니다.
- 3. 측정치 등의 정확도 보증 기간은 제품 사양에 별도로 규정되어 있습니다.
- 4. 각각의 보증 기간 내에 본 제품 또는 AC 어댑터가 고장 난 경우 그 고장 책임이 당사에 있다고 당사가 판단했을 때 본 제품 또는 AC 어댑터를 무상으로 수리 또는 신품으로 교환해 드립니다.
- 5. 이하의 고장, 손상 등은 무상 수리 또는 신품 교환의 보증 대상이 아닙니다.
 - -1. 소모품, 수명이 있는 부품 등의 고장과 손상
 - -2. 커넥터, 케이블 등의 고장과 손상
 - -3. 구매 후 수송, 낙하, 이전설치 등에 의한 고장과 손상
 - -4. 사용 설명서, 본체 주의 라벨, 각인 등에 기재된 내용에 반하는 부적절한 취급으로 인한 고장과 손상
 - -5. 법령, 사용 설명서 등에서 요구된 유지보수 및 점검을 소홀히 해서 발생한 고장과 손상
 - -6. 화재, 풍수해, 지진, 낙뢰, 전원 이상(전압, 주파수 등), 전쟁 및 폭동, 방사능 오염, 기타 불가항력으로 인한 고장과 손상
 - -7. 외관 손상(외함의 스크래치, 변형, 퇴색 등)
 - -8. 그 외 당사 책임이라 볼 수 없는 고장과 손상
- 6. 이하의 경우는 본 제품 보증 대상에서 제외됩니다. 수리, 교정 등도 거부할 수 있습니다.
 - -1. 당사 이외의 기업, 기관 또는 개인이 본 제품을 수리한 경우 또는 개조한 경우
 - -2. 특수한 용도(우주용, 항공용, 원자력용, 의료용, 차량 제어용 등)의 기기에 본 제품을 조립하여 사용한 것을 사전에 당사에 알리지 않은 경우
- 7. 제품 사용으로 인해 발생한 손실에 대해서는 그 손실의 책임이 당사에 있다고 당사가 판단한 경우, 본 제품의 구매금액만큼을 보상해 드립니다. 단, 아래와 같은 손실에 대해서는 보상하지 않습니다.
 - -1. 본 제품 사용으로 인해 발생한 측정 대상물의 손해에 기인하는 2차적 손해
 - -2. 본 제품에 의한 측정 결과에 기인하는 손해
 - -3. 본 제품과 연결된(네트워크 경유 연결을 포함) 본 제품 이외의 기기에 발생한 손해
- 8. 제조 후 일정 기간이 지난 제품 및 부품의 생산 중지, 예측할 수 없는 사태의 발생 등으로 인해 수리할 수 없는 제품은 수리, 교정 등을 거부할 수 있습니다.

HIOKI E.E. CORPORATION

http://www.hioki.com

HIOKI

www.hiokikorea.com/

Headquarters

81 Koizumi

Ueda, Nagano 386-1192 Japan

히오키코리아주식회사

서울특별시 강남구 테헤란로 322 (역삼동 707-34)

한신인터밸리24빌딩 동관 1705호

TEL 02-2183-8847 FAX 02-2183-3360

info-kr@hioki.co.jp

2103 KO

편집 및 발행 히오키전기주식회사

Printed in Japan

- •CE 적합 선언은 당사 홈페이지에서 다운로드할 수 있습니다.
- •본서의 기재 내용은 예고없이 변경될 수 있습니다.
- •본서에는 저작권에 의해 보호되는 내용이 포함되어 있습니다.
- •본서의 내용을 무단으로 복사•복제•수정함을 금합니다.
- •본서에 기재되어 있는 회사명•상품명은 각 사의 상표 또는 등록상표입니다.