8860-50 HICKI 8861-50 4 Analysis and Communication Supplement 8861-51 Supplement

This supplement describes the procedures for analyzing data using numerical calculations, waveform calculations and FFT functions, and how to communicate with the instrument using a computer.

Dec. 2016 Revised edition 8 8860B987-08 16-12H

i

Contents

Introdu	ction1
Chap Nume	erical Calculation Functions 3
1.1	Numerical Value Calculation Workflow4
1.2	Settings for Numerical Value Calculation6
1.3	Judging Calculation Results11
1.4	Saving Numerical Calculation Results14
	 1.4.1 Automatically Saving Numerical Calculation Results
	1.4.3 Example of Saving Numerical Calculation Results16
1.5	Reading Numerical Calculation Results on a PC17
1.6	Numerical Value Calculation Expressions19
	oter 2 form Calculation Functions23
2.1	Waveform Calculation Workflow24
2.2	Settings for Waveform Calculation26
2.3	Calculation Waveform Display33
2.4	Waveform Processing Calculation Operators and Results 34
	oter 3 function 37
3.1	Overview and Features37
3.2	Screen Organization (FFT Function)
	3.2.1 Waveform Screen
	3.2.2 Settings Screen40
3.3	Operation Workflow45
3.4	Setting FFT Analysis Conditions51
	3.4.1 Selecting the FFT Function
	3.4.2 Selecting the Data Source for Analysis
	3.4.3 Setting the Frequency Range and Number of Analysis Points 533.4.4 Setting the Window Function
	3.4.5 Setting Peak Values of Analysis Results
	3.4.6 Averaging Waveforms

ii Contents

	3.4.7	Emphasizing Analysis Results (phase spectra only)	61
	3.4.8	Analysis Mode Settings	62
	3.4.9	Setting the Display Range of the Vertical Axis (Scaling	g) 66
	3.4.10	Setting and Changing Analysis Conditions on the	
		Waveform Screen	67
3.5	Selec	ting Channels	
3.6	Settin	g the Screen Layout of the Waveform Screen	72
3.7	Savin	g Analysis Results	75
3.8	Printir	ng Analysis Results	76
3.9	Analy	sis with the Waveform Screen	78
	3.9.1	Selecting the Display Method	78
	3.9.2	Selecting Gauges and Values	79
	3.9.3	Analyzing after Specifying an Analysis Starting Point .	80
3.10	FFT A	nalysis Modes	
	3.10.1	Analysis Modes and Display Examples	85
	3.10.2	Analysis Mode Functions	102
3.11	FFT D	Definitions	103

Chapter 4 Communications Settings_____117

- 1	1	7
_		

4.1	Connection Configurations1	18
4.2	Controlling the Instrument over the LAN Interface 1	20
	4.2.1 Settings and Connection Procedure	120
	4.2.2 Making Settings on the Instrument	121
4.3	Using FTP to Access Instrument Files (FTP Server) 1	27
	4.3.1 Making Settings on the Instrument	127
	4.3.2 Operate on the PC	129
4.4	Performing Remote Operations on the Instrument	
	from an Internet Browser (Web Server)1	32
	4.4.1 Making Settings on the Instrument	132
	4.4.2 Operate on the PC	134
4.5	E-Mail Notifications1	38
4.6	Using an Interface Card1	41
4.7	Controlling the Instrument with Command	
	Communications1	42
	4.7.1 Making Settings on the Instrument	142
	4.7.2 Operate on the PC	145

Index _____Index 1

Introduction

In this manual, "the instrument" means the Model 8860-50, the 8861-50, the 8860-51 or the 8861-51 Memory HiCorder.

- * Unless otherwise noted in this manual, information provided for the 8860-50 also applies to the 8860-51, and information provided for the 8861-50 also applies to the 8861-51.
- * The 8860-51 and 8861-51 do not have a PC CARD slot.

The following documents are provided with this instrument. Refer to them as appropriate for your application.

Document		Description	
1 Quick Start Manual		Read this first. It describes preparations for use, basic operating pro- cedures and usage methods.	
2	Input Module Guide	To connect input modules and measurement cables, and when making input channel set- tings; this Guide describes the optional input modules, relat- ed cable connection procedures, and their settings and specifications.	
3	Instruction Manual	To obtain setting details; this Manual describes details of the functions and op- erations of the instrument, and its specifications.	
4	Analysis and Communication Supplement (This document)	To analyze measurement data using the cal- culation functions, and to communicate with the instrument; this supplement describes the procedures for analyz- ing data using numerical calculations, waveform cal- culations and FFT functions, and how to communicate with the instrument using a computer.	

Before Use

Be sure to read the safety precautions in the *Quick Start Manual*. Also read the precautions regarding input modules and connection cables in the chapter about connections in the *Input Module Guide*.

Registered trademarks

Windows is a registered trademark of Microsoft Corporation in the United States and/or other countries.

Symbols and Indicators in This Manual

The following symbols in this manual indicate the relative importance of cautions and warnings.

	Indicates that incorrect operation presents a possibility of injury to the user or damage to the instrument.
NOTE	Indicates advisory items related to performance or correct operation of the instrument.

Other Indicators

(p.)	Indicates the location of reference information.
*	Indicates that descriptive information is provided below.
A→B	Indicates an operation sequence.
[]	Screen labels such as menu items, page titles, setting items, dialog titles and buttons are indicated by square brackets [].
CURSOR (Bold characters)	Bold characters within the text indicate operating key labels.

Accuracy

We define measurement tolerances in terms of f.s. (full scale) values, with the following meanings:

f.s. : maximum display value or scale length

In this instrument, the maximum displayable value is the range (V/div) times the number of divisions (20) on the vertical axis. Example: For the 1 V/div range, f.s. = 20 V

Numerical Calculation Functions Chapter 1

Numerical calculations can only be used with the Memory function.

Results calculated from the acquired waveform are displayed as numerical values on the Waveform screen. Judgments can also be made based on calculation results.

Numerical calculation settings are made on the Numerical Calculations Setting screen (Num Calc).

Numerical Calculations		
 Average value RMS value Peak-to-Peak (p-p) value Maximum value Time to maximum value Minimum value Time to minimum value 	 Rise time Fall time Standard Deviation Area value X-Y Area value Time to specified level Dube width 	 Numerical results of four standard arithmetic operators (Total 19 types) Specified calculation between A/B cursors Numerical calculations are available in the range specified by A/B cursors
Time to minimum valuePeriod	Pulse widthDuty (%)	Details of calculation expressions: "1.6 Numerical Value Calculation

• Frequency

· Pulse count

"1.6 Numerical Value Calculation Expressions" (p. 19)

Judgments based on Numerical Calculation (p. 11)

Results of numerical calculations can be compared with a specified range for GO/NG judgments.

Saving and Printing Numerical Calculation Results

- · Automatic saving of numerical calculation results
- Manual saving of existing numerical calculation results
- See "1.4 Saving Numerical Calculation Results" (p. 14) in this manual, "Chapter 11 Saving/Loading Data & Managing Files" in the *Instruction Manual*
- Automatic printing
- Manual printing
- See "Chapter 12 Printing" in the Instruction Manual

Of the nineteen types of numerical calculation available, sixteen types can be applied at the same time.

Up to sixteen groups composed of multiple calculation types (operations) can be defined, with up to sixteen types of calculation per group. By setting up such groups of multiple calculations beforehand, they can be readily selected at calculation time.

See "1.6 Numerical Value Calculation Expressions" (p. 19)

When Scaling is enabled, numerical calculations are performed on scaled values. Numerical calculation is also available when Memory Division is enabled.

1.1 Numerical Value Calculation Workflow

Before Setting

When specifying a waveform range for calculation: [A-B]

Before executing a calculation, specify the calculation range using the A/B cursors (Vertical or Trace cursors) on the Waveform screen. Set the calculation range on the Num Calc Settings screen to [A-B].

- Horizontal cursors cannot be used to specify the range.
- When one cursor is used, the calculation range is from the cursor to the end of the data.

See "8.7 Specifying a Waveform Range" in the *Instruction Manual* "1.2 Settings for Numerical Value Calculation" (p. 6)

To change calculation settings and recalculate

You can make changes to calculation settings and resume calculations from the Waveform screen.

See "To recalculate after changing calculation type settings" (p. 9)

The following two calculation methods are available:

- Calculate while measuring
 Requires making numerical calculation settings beforehand.
- Apply calculations to existing data Calculations can be applied to data after waveforms are acquired, or after data has been saved to storage media.

Calculating While M	easuring
Make Calculation Settings	Make calculation settings on the Numerical Calculation Settings screen (p. 6).
	When judging based on calculation results: (p. 11)
	To automatically print or save calculation results: make printing and saving settings be- fore measuring.
	Printing calculation results automatically
	([Printer] page on the Print Settings screen: Calculation Results [On])
	See "12.3 Making Auto Print Settings" in the Instruction Manual
	 Saving calculation results automatically ([Auto Save] page on the Save Settings screen: Auto Save [On], Calculation Results
1	[On])
	See "1.4.1 Automatically Saving Numerical Calculation Results" (p. 14)
Start Measurement	I
•	
Acquire Data	The instrument acquires data when the trigger criteria are met.
↓ · · · · · · · · · · · · · · · · · · ·	(If triggering is not enabled, the instrument acquires data when you press the START key.)
Calculate	"Calculating" appears on the screen's status bar.
	Calculations are performed sequentially from No. 1 to No. 16.
Display Coloulation Deputto	(To interrupt calculations, press the STOP key to abort)
Display Calculation Results	Results are displayed on the Waveform screen (p. 9).
•	
(Calculation Judgments)	(only if judgments are enabled)
•	
(Print or Save)	(if auto printing or auto saving are enabled)
+	Calculation results are automatically printed or saved.
Stop Measurement	
Applying Calculatio	ns to Existing Data
(Load the Data)	(To load measurement data from storage media for calculation)
	See "11.4 Loading Data" in the Instruction Manual
Make Calculation Settings	Make calculation settings on the Numerical Calculation Settings screen (p. 6).
Make Calculation Settings	When judging based on calculation results: (p. 11)
Execute Calculation	Press the [Execute] button to execute calculations. (To interrupt calculations, press the STOP key)
<u> </u>	(To menupicalculations, press the STOP key)
Display Calculation Results	Results are displayed on the Waveform screen (p. 9).
•	
(Calculation Judgments)	(only if judgments are enabled)
•	
(Print or Save)	Print or save calculation results as occasion demands.
	Print: PRINT key
	 Save: SAVE key See "12.4 Making Manual Print (PRINT Key Output) Settings" in the Instruction Manual
	"1.4.2 Optionally Selecting Numerical Calculation Results & Saving (SAVE Key)" (p. 15)

1.2 Settings for Numerical Value Calculation

Num	erical Calculati	ons		MEM
То оре	n the screen: Press	the <code>SET</code> key $ ightarrow$	Select Num Calc with the SUB M	ENU keys →Num Calc Settings screen
	Operating Key	Procedure		
1	Enable the Num	erical Calcula	tion function.	
÷.	CURSOR	Move the curso	r to the [Numerical Calc.] item.	[Numerical Calcol
	F2	Select [On].		2 Calculation Area Whole
2	Specify the nun	nerical calcula	tion range.	Stop Criteria NG
	CURSOR	Move the curso	r to the [Calculation Area] item.	
	F1 to F8	Select either ch		When selecting $[A-B]$, specify the calcula-
		Whole	Applies calculations to the whole waveform. (default setting)	tion range using the A/B cursors on the Waveform screen. If no measurement data has been ac- quired by the instrument, first measure
		A-B	Applies calculations to the data be- tween A/B cursors.	once so that the range can be specified for calculations to be applied to subsequent measurements.
3	Perform calcula	tion settings.		
	Group of Calculation Settings	<u>G1</u>		G12 G13 G14 G15 G16
	Calculation Setting Choices			Parameter2 Parameter3 Stat
	Calculation No. Settings can also a dialog (p. 8).		2 RMS Value 1 1 4 5 6 Ilculation Channel for Calcul pe Calculation Param	the calculation type.
	SHEET/PAGE	Select the group (G1 to G16)	o for which to set calculations.	
	CURSOR F1	Move the curso lect [Calculation	r to your setting choice, and se-].	Also select [Judgment] if you require judg- ment of calculation results. (p. 11)
4	Select the Calcu	ulation type.		
	CURSOR	Move the curso row of the calcu	r to the [Type] column of the No. lation to set.	
	F1 to F8	Select the calcu	llation type.	
	(Switch Display: F8)	Off	No calculation. (default setting)	
		Average	Average value of waveform data	
		RMS Value	RMS value of waveform data	
		P-P Value	Peak-to-peak value of waveform data	
		Maximum	Maximum value of waveform data	
		Time to Max	Time from trigger to maximum value	
		Minimum	Minimum value of waveform data	
		Time to Min	Time from trigger to minimum value	
		Period	Period of signal waveform	
		Frequency	Frequency of signal waveform	

	Operating Key	Procedure		
	F1 to F8 (Switch Display: F8)	Rise Time	Rise time of waveform data	
		Fall Time	Fall time of waveform data	
		Std Deviation	Standard deviation of waveform data	
		Area	Area enclosed by zero position and signal waveform	
		X-Y Area	Area of X-Y composite waveform	
		Time to Level*	Time from trigger to specified level	
		Pulse Width*	Pulse width of waveform data	
		Duty*	Duty of waveform data	
		Pulse Count*	Pulse count of waveform data	
		4 Operations	Four arithmetic operations on numer- ical calculation results	To print or save calculation results while
5	Select the chan	nel for calcu	lations.	measuring Before measuring, enable Auto Save (p. 14) or Auto Print. Enable [Calc Results] on
	CURSOR	Move the curs	or to the [Ch] item.	the Save Settings or Print Settings screen.
	F1 to F8		nel for calculations.	See "11.3.4 Setting Auto Save", "12.3 Making Auto Print Settings"
		The waveform	calculations (Zn) can be selected.	in the Instruction Manual
6	Set parameters	•		To print or save existing data
	(not required for se	ome calculation	types)	Press the PRINT or SAVE key (p. 15). Manual Print Settings
	CURSOR	Move the curs	or to the [Parameter] item.	Manual Save Settings See "12.4 Making Manual Print (PRINT
	F1 to F8		iate parameter settings.	Key Output) Settings",
		About setting of		"11.3.5 Setting Manual Save (SAVE Key Output)" in the <i>Instruction</i>
			ntering Text and Numbers" in the <i>n Manual</i>	Manual
7	Select a calcula	tion group.		
	CURSOR	Move the curs	or to the [Operand Selection] item.	Execute
	F1 to F8	Select a calcu	lation group.	Operand Selection G1
	ute the calculation in judging calculation in the second sec			7 [Execute] button
	in judging calcul	, , , , , , , , , , , , , , , , , , ,		
nnl	ving Calculation	e to Evisting	Data	Execute calculation of the displayed group.
ν Γ		-		
	CURSOR		or to the [Execute] button.	Changes made to calculation settings while measuring do not take effect until
	F1	Select [Execut	ej.	measurement has been stopped and re- started.
/hei	n calculating aut	omatically af	ter measurement	

Making settings in the [Calculation] dialog

Image: Character of the cursor to the [No.] column of the calculation to set, and select F1 [All Settings] to open the [Calculation] dialog.

Parameter Settings _____ (Displayed as required for the selected calculation type)

Calculation Marker

Markers are displayed next

to the calculation No. of en-

To copy settings between

abled calculations.

calculation Nos.: Select F2 [Copy]. (p. 10)

Calculation - No.9			
Type Frequency	Ch	Unit1 ≜ Ch1	Mode: Voltage
Level	Slope Filter	Stat	
ρv	∫↑ 💽 Off	First 💽	
[Judge]—Lower— Off -1	Upper		Close

Move the cursor to each item, and make the setting. See Parameter setting: "1.6 Numerical Value Calculation Expressions" (p. 19)

After making the appropriate settings, press the **ENTER** key or move the cursor to the **[Close]** button and press the **F1 [Close]** key to accept your settings.

Numerical Calculation Results

Numerical calculation results are displayed on the Waveform screen.

If the display is hard to view because of overlapping numerical values and waveforms Press the **DISP** key. Numerical values and waveforms are displayed separately.

To recalculate after changing calculation type settings

Select your choices for the calculation setting items on the Waveform screen, and execute calculation.

Press the SUB MENU keys to switch to the [Num Calc] settings.

Numerical CalculationCalculation No. and Selection Channel for Calculation Execution Button

Group No. of Numerical Calculation

Select a Group No. for calculation or change your choices, and select the **[Exe-cute]** button.

All calculations specified for the selected Group No. are performed.

To save or print calculation results after measuring

When Selection Save (default setting) is enabled, press the **SAVE** key and select [Calc Results] for the Save Type.

When Selection Print (default setting) is enabled, press the **PRINT** key and select **F6** [Calc Results].

1.2 Settings for Numerical Value Calculation

1.3 Judging Calculation Results

Set the judgment criteria (upper and lower threshold values) by which to judge numerical calculation results. Judgment criteria can be set for every numerical calculation.

Waveform acquisition processing depends on the trigger mode setting (Single or Repeat) and the criteria specified to stop measuring upon judgment (GO, NG or GO & NG).

NOTE

Judgment when memory division is enabled

When memory division is enabled, waveform data is retained in the measured block only when stop criteria are met.

When stop criteria are not met, measurement continues to repeat within the same block.

Judg	jing Numerical	Value Ca	alculation Results	MEM			
То оре	en the screen: Press	the <mark>SET</mark> I	${\sf Key} o {\sf Select} \ {f Num \ Calc} \ {\sf with the \ SUB \ ME}$	NU keys \rightarrow Num Calc Settings screen			
	Operating Key Procedure						
1	Make settings for calculation (p. 6).						
2	Select the appropriate calculation judgment settings.						
	Group of Calculation GI G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 Calculation Setting Contents No Type Ch Comp Lower Upper Upper Calculation No. Settings can also be made in a dialog (p. 8). Calculation Type Ch Calculation C						
SHEET/PAGESelect the group for which to set calculation judgment. (G1 to G16)CURSORMove the cursor to your setting choice, and select [Judgment].							
2	Enable the judg		-				
3	CURSOR		cursor to the [Comp] setting for Calcu-				
	F2	Select [Or	ו].				
4	Specify the jude	gment thr	esholds.				
	CURSOR	Set the [L	ower] and [Upper].	The upper threshold of the period range			
	F1 to F8	values.	entry method and enter the threshold e: -9.9999E+29 to 9.9999E+29	cannot be set below the lower thresh- old, and vice-versa. See "3.3.3 Entering Text and Num-			
5	Select the Stop	Criteria u	ipon judgment.	bers" in the Instruction Manual			
	CURSOR	Move the	cursor to the [Stop Criteria] item.				
	F1 to F8	Select eith	ner choice.				
		GO	Continue to the next process when within the threshold range (PASS judgment)	[Numerical Calc.]			
		NG	Continue to the next process when out- side of the threshold range (FAIL judg- ment)	Calculation Area Whole Stop Criteria NG			
ł		GO & NG	Continue to the next process regardless of judgment result.	5			
Exec	ute calculation.						
Judg	ing Existing Data	3					

CURSOR	Move the cursor to the [Execute] button.
F1	Select [Execute].

When judging automatically after measurement

START Starts measurement.

E	Execute	
Operand Selection	G1	-

Processing depends on the Trigger Mode setting. If calculating while acquiring waveforms, measurement is repeated until the Stop

Criteria are met.

Description About judgment results

Judgment results of numerical calculations are displayed on the Waveform screen.

Within the judgment threshold range: GO judgment

Out of the judgment threshold range: NG judgment (displayed in red)

Numerical Calculation Average RMS Value P-P Value Maximum Time to Max Minimum Time to Min Period Average RMS Value Maximum Time to Max RMS Value RMS Value RMS Value RMS Value RMS Value RMS Value RMS Value	1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-2 1-2 1-2	Judge: NG -0.01 V 0.72 V 2.14 V 1.07 V -3.90ms 9.88ms -0.00 V 0.71 V 1.10 V 820us 0.72 V 0.7 V 0.8 V 0.719 V
---	--	--

When printing, judgment results for each parameter are also printed.

When performing external control

When the external I/O terminals are enabled, the signal is output from the next sampling period.

See "14.2.5 GO/ NG Evaluation Output (GO/EXT OUT1)/ (NG/EXT OUT2)" in the Instruction Manual

When the judgment result is GO

• The GO signal is output at the GO/EXT OUT1 external I/O terminal.

When the judgment result is NG

- The NG signal is output at the NG/EXT OUT2 external I/O terminal. The NG judgment is asserted when any channel is judged as NG.
- Channels judged as NG are indicated by an "x" in printouts.
- When the beeper is enabled, a beep sounds when a result is out of the threshold range.

Saving Numerical Calculation Results 1.4

Automatically Saving Numerical Calculation 1.4.1 **Results**

Calculate and automatically save during data acquisition. Before measurement begins, the calculation settings need to be set.

CAUTION

When using auto save during measurement, do not remove the storage media specified as the save destination until the measurement operation is completely finished. Doing so may damage data on the storage media.

Automatically Saving Numerical Calculation Results MEM

To open the screen: Press the SET key \rightarrow Select Save with the SUB MENU keys \rightarrow Save Settings screen

	Procedure			
Set the save des See "11.3.4 Settin	stination. ng Auto Save" in the ving of numer Move the curs	ical calculation results. sor to the [Calc Results] item.	Auto Save SAVE Key [Auto-Save] On Save in 1 PC CARD #1 : ¥TEST Save in 2 Off Save Method Normal Save Directory Creation Off	
Enter a save r CURSOR F1 to F8	IRSOR Move the cursor to the [Name] item.		[Calc Results] 2 On Name 3 MEAS Save Specified File New File	
Select the file CURSOR F1 to F8	Move the curs	or to the [Save Specified File] item.	ble byte) can be used for the save nam A sequential number starting from 000	
	New File ment.		added after save names (if [New File] is selected). Note that a PC will not be able to handle the following characters if they are used.	
	Set the save des See "11.3.4 Settin Enable the sa CURSOR F2 Enter a save r CURSOR F1 to F8 Select the file CURSOR	Enable the saving of numer CURSOR Move the curs F2 Select [On]. (I Enter a save name (if you w CURSOR Move the curs F1 to F8 Enter the save Select the file See "3.3.3 Er Instruction Instruction Select the file Select either of F1 to F8 Select either of New File New File	Set the save destination. See "11.3.4 Setting Auto Save" in the Instruction Manual Enable the saving of numerical calculation results. CURSOR Move the cursor to the [Calc Results] item. F2 Select [On]. (Default setting: Off) Enter a save name (if you want to use a different name). CURSOR Move the cursor to the [Name] item. F1 to F8 Enter the save name. (Default setting: MEAS) See "3.3.3 Entering Text and Numbers" in the Instruction Manual Select the file creation method. CURSOR Move the cursor to the [Save Specified File] item. F1 to F8 Select either choice. New File Creates a new file for each measurement.	

Confirm the measurement configuration and numerical calculation result settings, then start measurement (START key).

After the data is acquired and the numerical calculation process completes, the numerical calculation results (text) are saved automatically to the specified storage media.

• ASCII:

- + = [] \ / | : * ? " < > ; ,
- · White space characters

Some saved characters may differ from those used on the instrument. (p. 16)

1.4.2 Optionally Selecting Numerical Calculation Results & Saving (SAVE Key)

Perform calculations on data saved to storage media and internal memory and save the calculation results by pressing the **SAVE** key.

Before calculation results can be saved, the calculation settings needs to be set and the calculations need to be performed.

Man	ually Saving Nu	merical Ca	culation Results		MEM	
То оре	en the screen: Press	the SET key	→ Select <mark>Save</mark> wi	ith the SUB M	<mark>ENU</mark> keys →Sav	ve Settings screen
1	Set manual save See "11.3.5 Setting I Manual For [Selection Save	Manual Save (SAVE Key Output)" in the <i>Instruction</i> re], press the SAVE key after setting the calculation rming the calculations. g box appears.)		[SAVE Key] Page		
2	Select the save CURSOR F4		or to the [Save Type] i esults].	item.	[Save Type] 2 Save Specified File 3	Calc Results
3	Select the file concernment of	Move the curs	sor to the [Save Spec			
	F1 to F8	the numerical Select either c				
		New File Existing File	Creates a new file eac surement starts (start op Adds calculation results	peration).		acters may differ from instrument (p. 16).
For [Quick Save]:			'		

Press the SAVE key

The calculation results (text) are saved to the specified storage media upon pressing the key.

For [Selection Save]:

Select the [OK] button.

The calculation results (text) are saved to the specified storage media upon selecting the button.

1.4.3 Example of Saving Numerical Calculation Results

NOTE If you save numerical calculation results or data in text format, characters or display items used on the instrument are converted as shown below. (Characters used on the instrument \rightarrow Saved characters) $^{2} \rightarrow ^{2}, ^{3} \rightarrow ^{3}, ^{n} \rightarrow ^{n}, \mu \rightarrow \sim u, \Omega \rightarrow \sim o, \epsilon \rightarrow \sim e, ^{\circ} \rightarrow \sim c,$ $\pm \rightarrow \rightarrow +, \mu \epsilon$ (display only) $\rightarrow u E, ^{\circ}C$ (display only) $\rightarrow C$

Calculation No. 1: Maximum value of analog channel 1-1 Calculation No. 2: Minimum value of analog channel 1-1 Calculation No. 3: Maximum value of analog channel 1-2 Calculation No. 4: Minimum value of analog channel 1-2

1.5 Reading Numerical Calculation Results on a PC

The following explains how to import data into Excel on Windows.

The capacity of Excel to import data from a text file is limited to 256 columns and 65,536 rows.

Text files containing data that exceeds these limits cannot be imported into Excel. To avoid exceeding these limits when saving text data, select [Displayed Ch] as the channels to save, or specify the saving range as that between A/B cursors.

Numerical Calculation Results Data Imported into Excel

M	icrosoft Excel - MEAS	5.TXT					_ 🗆	×
:2	<u>File Edit View</u> I	insert	F <u>o</u> rmat <u>T</u> oo <mark>l</mark> s <u>D</u> at	a <u>W</u> indow <u>H</u> elp		Type a question for help		×
80	📂 🖬 🔒 🖪 🖸) AB	۶ 🎎 🔏 🗈 🛍 -	🛷 🗳 - (° - 18)	$\Sigma \rightarrow A \downarrow A \downarrow \downarrow \downarrow A$	🕜 🚆 Arial		- 1
	A2 🗸	fx						
	A		В	С	D	E	F	F
1	Trig Time		No1 Maximum A1_1	No2 Minimum A1_1	No3 Maximum A1_2	No4 Minimum A1_2		
2		l	V	V	V	V		
3	05-05-12 10:29:57.9	900	141	-141.6	0.01805	-0.01725		
4	05-05-12 10:30:00.7	770	141.4	-142.2	0.01875	-0.01945		
5	05-05-12 10:30:03.5	580	141.4	-141.6	0.0185	-0.01915		
6	05-05-12 10:30:06.4	410	141.6	-142	0.01965	-0.01915		
7	05-05-12 10:30:09.2	210	141	-141	0.0177	-0.01875		
8	05-05-12 10:30:12.0	040	140.8	-141.2	0.0172	-0.0175		
9	05-05-12 10:30:14.8	B30	141	-141.4	0.0187	-0.0183		
10								
11								
12								
13								
14 4	> > MEAS				•			
Read	У					NUM		1.

1.6 Numerical Value Calculation Expressions

Numerical Calculation Type	Description		
	Obtains the average value of waveform data.		
Average	$Avg = \frac{1}{n} \sum_{i=1}^{n} di$ Avg: Average value n: Data count di: Data on channel number i		
RMS (Root-Mean-Square) value	Obtains the RMS value of waveform data. If Scaling is enabled, calculations are applied to the waveform after scaling. $RMS = \sqrt{\frac{1}{n} \sum_{i=1}^{n} d_i^2} \text{RMS: RMS value} \\ \sqrt{\frac{1}{n} \sum_{i=1}^{n} d_i^2} \text{n: Data count} \\ \text{d: Data on channel number i} $		
Peak-to-Peak (P-P) value	Obtains the value of the difference (peak-to- peak value) between maximum and minimum values of waveform data.		
Maximum Value	Obtains the maximum value of waveform da- ta.		
Time to Maximum Value (Time to Max)	Obtains the time (in seconds) from the last trigger point to the maximum value. If the maximum value occurs in two or more instances, the first instance is treated as the maximum value.		
Minimum Value	Obtains the minimum value of waveform da- ta.		
Time to Minimum Value (Time to Min)	Obtains the time (in seconds) from the last trigger point to the minimum value. If the minimum value occurs in two or more instances, the first instance is treated as the minimum value.		
Period and Frequency	Displays the period (in seconds) and frequency (Hz) of the signal waveform. The calculation is based on the interval between two sequential points where the waveform crosses the same level (amplitude) in the same direction (slope). Setting Choices: Level, Slope (\uparrow or \downarrow) Filter and Statistics (p. 21)		

•

Numerical Calculation Type	Description
Rise Time and Fall Time	The rise time of the acquired waveform from A% to B% (or fall time from B% to A%) is ob- tained by calculation using a histogram (fre- quency distribution) of the 0 and 100% levels of the acquired waveform. As waveform data is acquired, the rise time (or fall time) is obtained from the first rising (or falling) edge. When calculation of the range specified by the A/B cursors is selected, the obtained rise time (or fall time) is the first rising (or falling) edge between the cursors. Setting Choices: Numerical percentage (%) of rise time (A% \rightarrow B%) or fall time (B% \rightarrow A%), Statistics (p. 21)
Standard Deviation (Std Deviation)	Obtains the standard deviation of the waveform data. $\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (di - Avg)^{2}} $ $\sigma: \text{ Standard Deviation} \\ \text{Avg: Average} \\ \text{n: Data count} \\ \text{di: Data on channel number i} $
Area	Obtains the area value (V•s) enclosed by the zero position (point of zero potential) and the signal waveform. When calculation of the range specified by the A/B cursors is selected, the calculated area is constrained to the waveform between the cursors. $S = \sum_{i=1}^{n} di \bullet h$ $S = \sum_{i=1}^{n} di \bullet h$ $S = \Delta t: Sampling period$ Selected is constrained to the waveform between the cursors is constrained to the waveform between the cursors. Selected is constrained to the waveform between the cursors. $S = \sum_{i=1}^{n} di \bullet h$ $S = \Delta t: Sampling period$ Area of shaded is constrained to the range specified by the cursor is cursor is cursor is selected. The cursor is curso
X-Y Area	Obtains the area (V ²) of an X-Y composite waveform. In the following figures, the areas within the lines are calculated. The calculation is available even if the X-Y composite waveform is not intended for display. To enable area calculation, specify the calculation range using the A/B cursors (Vertical or Trace) on the waveform of each channel for X-Y composition. (The area cannot be specified directly by A/B cursors on the X-Y waveform.) See About A/B cursors: "8.8 Cursor Values" in the <i>Instruction Manual</i> When the trace consists of multiple When the trace is an open curve loops V = 0 See $N = 0$ Second

Numerical Calculation Type	Description	
Time to Level	Finds the point where the signal crosses a specified level from the start of the calculation range, and obtains the time elapsed from the last trigger event. Setting Choices: Level, Slope (\uparrow or \downarrow) and Filter	
Pulse Width	Obtains pulse width as the time difference between one rising or falling intersection of the waveform through a specified level to the next intersection (with opposite slope). Setting Choices: Level, Slope (\uparrow or \downarrow), Filter and Stati	Level
Duty (%)	Obtains the duty percentage based upon the ratio of the time from a rising intersection to the next falling intersection at a specified level, to the time from the same falling intersection to the next rising intersec- tion at the same level. Duty (%) = $\frac{Tu-d}{Tu-d + Td-u} \times 100$ (%) T_{u-d} : Time (seconds) after rising intersection to falling intersection T_{d-u} : Time (seconds) after falling intersection to the next rising intersection Setting Choices: Level, Filter and Statistics (see Table	Level
Pulse Count	Obtains the count of pulses from the number of rising or falling intersections with a specified level. One pulse is counted when the signal falls back below the specified level after rising through it (or vice versa) Setting Choices: Level, Slope (\uparrow or \downarrow) and Filter	
Four Arithmetic Operations (4 Operations)	Performs arithmetic operations $(+, -, \times, \div)$ upon arbitrar culations. Setting Choices: Numerical Calculation No., arithmeti	-

NOTE

• Depending on the signal waveform for parameters of period, frequency, rise time and fall time, calculated values may not be displayed.

• When Scaling is enabled, calculations are performed after waveform data has been scaled. Also, the units of parameter values should match the scaling units.

See About Scaling:

"5.4 Converting Input Values (Scaling Function)" in the Instruction Manual

Setting Choices: Pertaining to the operation for which [Stat] (statistics) is selected (Period and Frequency, Rise Time and Fall Time, Pulse Width or Duty)

[Stat] Selection	Setting Choices
First	Obtains the first calculation result within the calculation area.
Ave	Obtains the average value of multiple calculation results within the calculation area
Max	Obtains the largest value of multiple calculation results within the cal- culation area.
Min	Obtains the smallest value of ultiple calculation result within the cal- culation area.

Waveform Calculation Functions Chapter 2

Waveform calculations can only be used with the Memory function.

A pre-specified calculation equation is applied to acquired waveform data, and the calculation results are displayed as a waveform on the Waveform screen.

Waveform calculation settings are made on the Waveform Calculations Setting screen (Wave Calc).

- Four Arithmetic Operators (+, -, *, /)
- Absolute Value (ABS)
- Exponent (EXP)
- Common Logarithm (LOG)
- Square Root (SQR)
- Moving Average (MOV)
- Slide along the time axis
- Differential Calculus: 1st derivative (DIF), 2nd derivative (DIF2)
- Integral Calculus: 1st integral (INT), 2nd integral (INT2)
- Trigonometric functions (SIN, COS TAN)
- Inverse Trigonometric functions (ASIN, ACOS ATAN)
 (Total 11 types)
- Specified calculation between A/ B cursors

Waveform calculations can be limited to data within the range specified by A/B cursors. Calculation operator details: "2.4 Waveform Processing Calculation

Operators and Results" (p. 34)

Of the eleven types of waveform calculation available, sixteen types can be applied at the same time.

When Scaling is enabled, numerical calculations are performed on scaled values.

2.1 Waveform Calculation Workflow

Before Setting

When specifying a waveform range for calculation: [A-B]

Before executing a calculation, specify the calculation range using the A/B cursors (Vertical or Trace cursors) on the Waveform screen. Set the calculation range on the Wave Calc Settings screen to [A-B].

- Horizontal cursors cannot be used to specify the range.
- When one cursor is used, the calculation range is from the cursor to the end of the data.

See "8.7 Specifying a Waveform Range" in the *Instruction Manual* "2.2 Settings for Waveform Calculation" (p. 26) in this manual

Changing calculation settings while measuring

Changes made to calculation settings while measuring are applied after measurement is finished.

To change calculation settings and recalculate

Make changes to calculation contents on the Waveform Calculation Settings screen, and execute the calculation.

See "2.2 Settings for Waveform Calculation" (p. 26)

To not display a calculation waveform, or to display only the desired waveform

The displayed sheet and calculation waveform to be displayed can be selected on the Sheet Settings screen.

See "2.3 Calculation Waveform Display" (p. 33)

The following two calculation methods are available (p. 25)

Calculate while measuring Requires making waveform calculation settings beforehand.
Apply calculations to existing data

Calculations can be applied to data after waveforms are acquired, or after data has been saved to storage media.

· Maximum recording length available for waveform calculations

Installed Me	mory (Word)	Maximum recording length	*1 Half of Maximum	
8860-50	8861-50	(Divisions)	Recording Length	
32M	64M	2,500	1,250	
128M	256M	10,000	5,000	
512M	1G	40,000	20,000	
1G 2G		80,000	40,000	

*1. When using a single timebase with [16CH] and logic channels selected (on the [Use Ch] page of the Status setting screen)

When using two timebases with [16CH] (Timebase 1) and [8CH] (Timebase 2) (on the [Use Ch] page of the Status setting screen)

When calculating measured waveforms with the REC&MEM function

If the recording length is set longer than the above maximum, waveform calculation is not performed. In this case, reset the recording length so that it is below the maximum, or after performing a partial or divided save, reload a portion of the data into the instrument and apply the calculation.

- Waveform calculation is not available when using Roll Mode and Memory Division.
- When Memory Division is disabled, up to 16 past waveforms can be used for reference. However, waveforms other than the currently referring block (that which includes data for calculation) are deleted when waveform calculation executes.
- Waveform averaging calculations can be performed after measurement is finished.
- If a waveform calculation is interrupted when loading data, the incomplete calculation result is displayed. To repeat the calculation, select the [Execute] button on the Waveform Calculation Settings screen.

NOTE

Calculating While Measuring

Applying Calculations to Existing Data

2.2 Settings for Waveform Calculation

Wav	eform Calculati	ons	[MEM		
То оре	en the screen: Press	the <code>SET</code> key \rightarrow	Select Wave Calc with the SUB ME	NU keys \rightarrow Wave Calc Settings screen		
	Operating Key	Procedure				
1	Enable the Wav	eform Calcula	tion function.			
-	CURSOR	Move the cursor	to the [Waveform Calc.] item.	-[Waveform Calc.] - On		
	F2	Select [On].		2 Calculation Area Whole		
2	Specify the way	veform calculat	tion range.			
_	CURSOR	Move the cursor	to the [Calculation Area] item.	E Formula Scale 🏦 Const		
	F1 to F8	Select either cho	pice.	When selecting [A-B], specify the calcula-		
		Whole	Applies calculations to the whole waveform. (default setting)	tion range using the A/B cursors on the Waveform screen.		
		А-В	Applies calculations to the data be- tween A/B cursors.	If no measurement data has been ac- quired by the instrument, first measure		
3	Perform calcula	tion settings.		once so that the range can be specified for calculations to be applied to subsequent		
	CURSOR	_	r to your setting choice on the	measurements.		
		[Formula] page.	, , , , , , , , , , , , , , , , , , ,			
	F1	Select [Set]. A dialog is disp equation.	layed for entering a calculation			
	Calculation N	lo1	Selecting the channel for calculation After selecting the unit and channel number, select the [Set] button.			
	Enter calculation - operators Enter numerical - values and symbols Enter constants - Constants must have ously entered on page. (p. 29)	s 4 been previ- the [Const]) ,	Home End		
	CURSOR F1 to F8	Select a calculat Example of calc	tion equation. ulation equation entry:(p. 32)	If "=" is displayed The entered calculation equation is syn- tactically correct.		
	F7		ntry, select [OK]. ation is displayed in the [Formu-	If "?" is displayed The equation has a syntax error. The cursor is placed at the location of the		
		for calculation re play, make setting	esults display is [Auto]. gs on the [Scale] page. y Settings" (p. 30)	 error to facilitate correction. Are parentheses correctly matched? Has a multiplication operator "*" been omitted? 		

	Operating Key	Procedure	
4	on the Sheet S	lemands) settings for waveform calculation results ettings screen (p. 33) g and auto printing as needed (<i>Instruction</i>	
5	Execute the ca	Iculations.	Execute
Appl	ying Calculation	s to Existing Data	(Calculation: 10,000 div)
	CURSOR Move the cursor to the [Execute] button.		
	F1	Select [Execute].	
То са	Iculate while me	easuring	
	START	Starts measurement. Calculation waveforms are displayed after load- ing waveforms.	

Waveform Calculation Results

Example: Waveform of the calculated absolute value of the waveform of CH1-1. Calculation equation = ABS(CH(1,1))

To copy settings from one calculation to another The method is the same as for copying numerical value calculations.

See "Copying Settings Between Calculation Nos." (p. 10)

To distribute calculation results onto sheets, or to display in separate Graphs

Display/non-display of calculation waveforms and graph division can be set on the Sheet Settings screen.

See "2.3 Calculation Waveform Display" (p. 33)

Description About calculation equations

Operators:

Operators.					
Operator	Name	Operator	Name		
ABS	Absolute Value	DIF2	2 nd Derivative		
EXP	Exponent	INT2	2 nd Integral		
LOG	Common Logarithm	SIN	Sine		
SQR	Square Root	COS	Cosine		
MOV	Moving Average	TAN	Tangent		
SLI	Movement parallel to the time axis	ASIN	Inverse Sine		
DIF	1 st Derivative	ACOS	Inverse Cosine		
INT	1 st Integral	ATAN	Inverse Tangent		

See "2.4 Waveform Processing Calculation Operators and Results" (p. 34)

Entering Calculation Equations

1

- Each entered calculation equation may contain up to 80 characters.
- Each constant in a calculation equation may contain up to 30 digits.
- The multiplication operation (*) must always be explicitly entered.
- Each calculation expression may contain up to eight instances of the four arithmetic operators.

Multiplication and division or addition and subtraction of channels within parentheses [e.g., (CH(1,1)*CH(1,2)) or (CH(1,1)+CH(1,2))] each count as one operation.

ABS(CH(1,1))+CH(1,2)*CH(2,1)-(CH(2,2)+CH(3,2))*ABS(CH(4,1))/DIF(CH(1,1),1)

- Division by zero, such as $1/0 (1 \div 0)$, results in overflow output.
- Channel data is specified in the form CH(u,n), where u = the Unit (input module) number, and n = the number of the channel within input module u. (Example: To specify the data on Channel 2 of Unit 1, enter "CH(1,2)".)
- The result of calculation Z_i can be used in other calculation equations. However, the nth equation can only refer to the results of equations up to Z_{n-1}. (Example: Equation Z4 can include the results of equations Z1 through Z3.)

Using the MOV, SLI, DIF and DIF2 operators in an equation

The number # after a comma within parenthesis (_,#) for each operation is set to the calculation operator.

Operator	Setting Choice	Setting Examples
MOV (Moving Average) SLI (Parallel Movement)	Set the number of points to move. Setting Range MOV (Moving Average): 1 to 5000 SLI: -5000 to 5000	Calculate the 10-point mov- ing average of CH1-1: MOV(CH(1,1),10)
DIF (Derivative) DIF2 (2nd Derivative)	Specify the sampling interval for dif- ferentiation. "1" is normally acceptable, but this should be set larger to capture fluc- tuation values of slowly changing waveforms. DIF and DIF2 Setting Range: 1 to 5000	Differentiate CH1-2 using a 20-point sampling interval: DIF(CH(1,2),20)

When calculation results overflow (OVER)

- The displayed A/B cursor values (and those printed when the printer recording type is set to [Numeric]) are incorrect.
- When [Scale] is set to [Auto], waveforms appear at the top or bottom edge of the screen. This makes calculation result overflow obvious.

Waveform calculations with Timebase 2 (measurements using sampling rate 2)

- Calculation equations Z1 to Z8 apply only to Timebase 1, and Z9 to Z16 apply only to Timebase 2.
- Channel data set to use Sampling Rate 1 can only be used in equations Z1 to Z8, and channel data set to use Sampling Rate 2 can only be used in equations Z9 to Z16.
- Inclusion of the results of one calculation (Zn) in another is also limited to only those calculations which apply to the same timebase.
 (Example: equation Z8 can include only the results of Z1 to Z7, and Z16 can

(Example: equation 28 can include only the results of 21 to 27, and 216 can include only the results of Z9 to Z15.)

MEM

Defining Constants

To open the screen: Press the SET key \rightarrow Select Wave Calc with the SUB MENU keys \rightarrow Wave Calc Settings screen

Operating Key	Procedure			
SHEET/PAGE	Select the [Const] page.	Constant No.		
CURSOR	Move the cursor to the Constant No. to be de- fined.	ormula 🔠 Scale 🔯 Const		
F1 to F8	Select an entry method, and enter the constant.			
	Setting range: -9.9999E+29 to +9.9999E+29			
	See "3.3.3 Entering Text and Numbers" in the Instruction Manual			

Defined constants are shown in the constant display of the calculation equation setting dialog.

	Formula Scale 125 Const							
	No Col.	Scale I	Lower	Upper	Units	Comment		
Calculation No. —		Auto Auto Auto Auto						
		F1			-	-	lumn of the calculation In the [Calculation] dial	
	Scale Settin	ig - No:1						
	Scale	Manual		—Units ——				
	Upper	10		Range/div	1		- Set the Value per Div	vision.
Upper and Lower	Lower	-10		0 Posi %	50	_	- Set the Zero Position	n (same as
Limit Settings	Comment			,		-	the Variable Function	
					Close			

Making settings in the [Calculation] dialog

Waveform Calcu-
lation ExampleCalculate the RMS waveform from the instantaneous waveform
The RMS values of the waveform input on Unit 1 Channel 1 are calculated and
displayed. This example describes the calculation of waveform data measured
for one cycle over two divisions.

		for one cycle over two divisions.
	Operating Key	Procedure
1	Enable the	Waveform Calculation function.
	CURSOR	Move the cursor to the [Waveform Calc.] item.
	F2	Select [On].
2	Specify the	waveform calculation range.
	CURSOR	Move the cursor to the [Calculation Area] item.
	F1	Select [Whole].
3	Perform cal	Iculation settings.
-	CURSOR	Move the cursor to No. 1 on the [Formula] page.
	F1	Select [Set].
		A dialog is displayed for entering a calculation equation.
	Entering th	e calculation equation
	-	CH(1,1)*CH(1,1),200))
		samples per cycle (1 division = 100
	samples) Here	e, one cycle is two divisions (200 1 2 3 - ABS EXP LOG SQR Set BS Del
	samples)	Enter numerical values 4 5 6 + Mov sli DIF INT Uniti I Chi I set Undo Clear and symbols 7 8 9 * DIF2 INT2 SIN Cos Unit: H-Speed Home End
		TAN ASIN ACOS ATAN Range: SmV/div
		It is convenient to set constants
		beforehand on the [Const] $b=1$ $t=2.06/86-015$ $j=0$ $n=0$ page. (p. 29) $d=0$ $h=0$ $l=0$ $p=3.1416$ Close
	When finishe	d entry, select F7 [OK].
		equation is displayed in the [Formula] field.
4	Execute the	e calculations.
	START	Starts measurement. $ \begin{bmatrix} Z 1 = SQR(MOV(CH(1,1)*CH(1,1),200)) 2 3 3 $
		The calculation waveform is displayed after ac-
		quiring the input waveform.
		CH1-1 Waveform
		Calculation waveform of RMS values
		0.us 50.0ms 200.0ms 250.0ms 200.0ms

To view the waveform calculated from the acquired data, press the [Execute] button on the Waveform Calculation Settings screen.
2.3 Calculation Waveform Display

Assignment of calculation results and split-screen graph display arrangement can be set.

[MEM]

These settings are effective when Waveform Calculation is enabled.

Waveform Calculation Display Settings

To open the screen: Press the SET key \rightarrow Select Sheet with the SUB MENU keys \rightarrow Sheet Settings screen

	Operating Key	Procedure		
1	SHEET/PAGE	Select the	Wcal] page.	Analog Image: Control of the section
2	Select whether	to display	calculation waveforms.	[1 Z-1 G1
	CURSOR		cursor to the [Unit-Ch] column for the No. to be displayed.	3 Z-3 G3 4 Z-4 G4
	F1 to F8	Select the play.	desired calculation equation for dis-	Z1 to Z16 correspond to the calculation equations
		Off	The calculation waveform is not displayed.	defined on the Waveform Calculation Setting (Wave Calc) screen.
		Z1 to Z16	Displays the selected calculation wave- form.	
3	Select a Graph (when [Split-Sc [Display Type] i	reen] is se	et to [2 Graphs] or more, or the	
	CURSOR F1 to F8	Select the Graph nun	ursor to [Graph]. Graph number to be displayed. nber samples (G1, G2,) are dis- ne left side of the screen.	
4	Verify the calcu	lation wav	eform on the Waveform screen.	
-	DISP	The Wavef	orm screen appears.	

2.4 Waveform Processing Calculation Operators and Results

b_i: ith member of calculation result data, d_i: ith member of source channel data

Waveform Calculation Type	e Description						
Four Arithmetic Opera- tors (+, -, *, /)	Executes the corresponding arithmetic operation.						
Absolute Value (ABS)	$b_i = /d_i /$ (<i>i</i> = 1, 2, n)						
Exponent (EXP)	$b_i = exp(d_i)$ (<i>i</i> = 1, 2, n)						
Common Logarithm (LOG)	When $d_i > 0$, $b_i = log_{10} d_i$ When $d_i = 0$, $b_i = -\infty$ (overflow value output) When $d_i < 0$, $b_i = log_{10} / d_i / (i = 1, 2,, n)$ Note: Use the following equation to convert to natural logarithm calculations. $LnX = log_e X = log_{10} X / log_{10} e$ $1 / log_{10} e \approx 2.30$						
Square Root (SQR)	When $d_i \ge 0$, $b_i = \sqrt{d_i}$ When $d_i < 0$, $b_i = -\sqrt{ d_i }$ (<i>i</i> = 1, 2, n)						
	When k is odd number:When k is even number:						
Moving Average (MOV)	$bi = \frac{1}{k} \sum_{\substack{t = i - \frac{k}{2} \\ t = i - \frac{k}{2}}}^{i + \frac{k}{2}} dt (i = 1, 2,, n) \qquad bi = \frac{1}{k} \sum_{\substack{t = i - \frac{k}{2} \\ t = i - \frac{k}{2} \\ t = i - \frac{k}{2}}}^{i + \frac{k}{2}} dt (i = 1, 2,, n)$ $dt: t^{\text{th}} \text{ member of source channel data}$ k: number of points to move (1 to 5000) 1 div = 100 points. k is specified after a comma. (Ex.) To make Z1 the moving average of 100 points: MOV(Z1, 100)						
Slides waveform data along the time axis (SLI)	Moves along the time axis by the specified distance. $b_i = d_i - k$ (<i>i</i> = 1, 2,, n) <i>k</i> : number of points to move (-5000 to 5000) k is specified after a comma. (Ex.) To slide Z1 by 100 points along the time axis: SLI(Z1,100) Note: When sliding a waveform, if there is no data at the beginning or end of the calcula- tion result, the voltage value becomes zero. 1 div = 100 points.						
Sine (SIN)	$b_i = sin(d_i)$ (i = 1, 2,, n) Trigonometric functions employ radian (rad) units.						
Cosine (COS)	$b_i = cos(d_i)$ (<i>i</i> = 1, 2, n) Trigonometric functions employ radian (rad) units.						
Tangent (TAN)	$b_i = tan(d_i)$ (i = 1, 2, n) where $-10 \le b_i \le 10$ Trigonometric functions employ radian (rad) units.						
Arcsine (ASIN)	When $d_i > 1$, $b_i = \pi/2$ When $-I \le d_i \le 1$, $b_i = asin(d_i)$ When $d_i < 1$, $b_i = -\pi/2$ Trigonometric functions employ radian (rad) units.						

b_i: ith member of calculation result data, d_i: ith member of source channel data

Waveform Calculation Type	Description
Arccosine (ACOS)	When $d_i > 1$, $b_i = 0$ When $-1 \le d_i \le 1$, $b_i = acos(d_i)$ When $d_i < -1$, $b_i = \pi$ ($i = 1, 2,, n$)Trigonometric functions employ radian (rad) units.
Arctangent (ATAN)	$b_i = atan(d_i)$ (i = 1, 2, n) Trigonometric functions employ radian (rad) units.
First derivative (DIF) Second derivative (DIF2)	The first and second derivative calculations use a fifth-order Lagrange interpolation polynomial to obtain a point data value from five sequential points. d ₁ to d _n are the derivatives calculated for sample times t ₁ to t _n . Note: Scattering of calculation results increases as input voltage level decreases. If scattering is excessive, apply the moving average (MOV). Calculation formulas for the first derivative Point $t_1 b_1 = (-25d_1 + 48d_2 - 36d_3 + 16d_4 - 3d_5)/12h$ Point $t_2 b_2 = (-3d_1 - 10d_2 + 18d_3 - 6d_4 + d_5)/12h$ Point $t_2 b_2 = (-3d_1 - 10d_2 + 18d_3 - 6d_4 + d_5)/12h$ Point $t_3 b_3 = (d_1 - 8d_2 + 8d_4 - d_5)/12h$ Point $t_i b_i = (d_{i,2} - 8d_{i,1} + 8d_{i+1} - d_{i+2})/12h$ \downarrow Point $t_{n,2} b_{n,2} = (d_{n,4} - 8d_{n,3} + 8d_{n,1} - d_n)/12h$ Point $t_{n,2} b_{n,2} = (d_{n,4} - 8d_{n,3} - 18d_{n,2} + 10d_{n,1} + 3d_n)/12h$ Point $t_n b_n = (3d_{n,4} - 16d_{n,3} - 18d_{n,2} + 48d_{n,1} + 25d_n)/12h$ Point $t_n b_n = (3d_{n,4} - 16d_{n,3} - 36d_{n,2} - 48d_{n,1} + 25d_n)/12h$ b_1 to b_n : calculation results $h = \Delta t$: Sampling Period Calculation formulas for the second derivative Point $t_1 b_1 = (35d_1 - 104d_2 + 114d_3 - 56d_4 + 11d_5)/12h^2$ Point $t_2 b_2 = (11d_1 - 20d_2 + 6d_3 + 4d_4 - 45)/12h^2$ Point $t_3 b_3 = (-d_1 + 16d_{2} - 30d_3 + 16d_4 - d_5)/12h^2$ \downarrow Point $t_{n,2} b_{n,2} = (-d_{n,4} + 16d_{n,3} - 30d_{n,2} + 16d_{n,1} - d_{n})/12h^2$ Point $t_{n,2} b_{n,2} = (-d_{n,4} + 4d_{n,3} + 6d_{n,2} - 20d_{n,1} + 11d_n)/12h^2$ Point $t_{n,2} b_{n,2} = (-d_{n,4} + 4d_{n,3} + 6d_{n,2} - 20d_{n,1} + 11d_n)/12h^2$ Point $t_n b_n = (11d_{n,4} - 56d_{n,3} + 114d_{n,2} - 104d_{n,1} + 35d_n)/12h^2$

Waveform Calculation Type	Description
Waveform Calculation Type First integral (INT) Second integral (INT2)	First and second integrals are calculated using the trapezoidal rule. d_1 to d_n are the integrals calculated for sample times t_1 to t_n . Calculation formulas for the first integral Point $t_1 I_1 = 0$ Point $t_2 I_2 = (d_1 + d_2)h/2$ Point $t_3 I_3 = (d_1 + d_2)h/2 + (d_2 + d_3)h/2 = I_2 + (d_2 + d_3)h/2$ \downarrow Point $t_n I_n = I_{n-1} + (d_{n-1} + d_n)h/2$ I_1 to I_n : calculation results $h = \Delta t$: Sampling Period Calculation formulas for the second integral Point $t_1 II_1 = 0$
	Point $t_2 II_2 = (I_1 + I_2)h/2$ Point $t_3 II_3 = (I_1 + I_2)h/2 + (I_2 + I_3)h/2 = II_2 + (I_2 + I_3)h/2$ \downarrow Point $t_n II_n = II_{n-1} + (I_{n-1} + I_n)h/2$
	II_I to II_n : calculation results

 $\mathbf{b}_i\!:$ ith member of calculation result data, $\mathbf{d}_i\!:$ ith member of source channel data

FFT Function

Chapter 3

Overview and Features

FFT analysis can only be used with the FFT function.

The FFT (Fast-Fourier Transform) functions provide frequency analysis of input signal data.

Use these functions for frequency analysis of rotating objects, vibrations, sounds and etc.

For details, refer to "3.11 FFT Definitions" (p. 103).

Analysis can be performed on data as it is being measured, on pre-existing analog waveform data previously acquired with the Memory function, and on data output from waveform calculations.

However, FFT analysis cannot be applied to data acquired with the Model 8958 16-Ch Scanner Unit. Also, FFT analysis cannot be applied to pre-existing waveform data acquired from channels that used Timebase 2 for sampling.

When using an input module equipped with an anti-aliasing filter, the cut-off frequency can be automatically set by linking with the frequency range setting. (Model 8938 FFT Analog Unit, 8947 Chargh Unit, 8957 High Resolution Unit,

Major Features

8960 Strain Unit)

- FFT analysis frequency range: 133 mHz to 8 MHz
- Frequency resolution: 1/400th, 1/800th, 1/2000th, 1/4000th or 1/8000th of the frequency range
- FFT Analysis Modes (16 types)
 - Storage Waveform
 - RMS Spectrum
 - Power Spectrum Density*
 - Auto-correlation Function
 - Transfer Function
 - Impulse Response
 - 1/1 Octave Analysis*
 - Phase Spectrum

- Linear Spectrum
- Power Spectrum
- Cross-power Spectrum
- Histogram
- Cross-correlation Function
- Coherence Function
- 1/3 Octave Analysis*
- Power Spectrum Density (LPC)*

* Not available when using external sampling.

For phase spectra, only the required phase information is highlighted and displayed.

See "3.4.7 Emphasizing Analysis Results (phase spectra only)" (p. 61)

Also, when performing FFT analysis with the instrument connected to a sound level or vibration meter, scaling by dB can be set from the Channel Settings screen if you want to read values directly in calibrated units of measurement. See "Scaling" (p. 71)

To suppress the effects of aliasing distortion NOTE

We recommend using input modules that are equipped with anti-aliasing filtering to suppress the effects of aliasing distortion when sampling.

See Aliasing Distortion and Anti-Aliasing Filters "3.11 FFT Definitions" (p. 103)

Refer to the Instruction Manual for FFT function specifications.

Screen Organization (FFT Function) 3.2

Measurement-related settings for FFT analysis are made on the Settings screens (Status, Channel, Trigger and Sheet); saving and printing settings are made on the Save Settings and Print Settings screens; and measurement data display settings are made on the Waveform screen. The Channel Settings, Trigger Settings, Save Settings and Print Settings screens are nearly the same as for the other operating functions.

Waveform Screen 3.2.1

A/B Cursor Settings Dialog

Select the type of cursors. (Appears when you press the TYPE key or knob A)

Press the ESC key to remove the dialog.

Setting Items and Choices

3.2.2 **Settings Screen**

To open the Settings screen

Status Settings Screen

Make settings here for FFT analysis.

Input Data Selection (p. 52)

Select whether FFT analysis is to be applied to newly acquired data, or to a pre-existing waveform (Memory waveform).

[Analyze] Page

[Anal	yze 🛛 Scale						
Τ	No.	Analyze	Col.	Parameter	Ch1	Ch2	Yaxis	Xaxis
L	F 1	Storage Waveform	Λ		1-1		Lin-Mag	Linear
L	F 2	Linear Spectrum	Δ	Normal	1-1		Lin-Mag	Linear
L	F 3	RMS Spectrum	Δ		1-1		Lin-Mag	Linear
L	F 4	Power Spectrum	Δ		1-1		Lin-Mag	Linear
U	l Ele	Douvor Coostrum Donsitu	6		4.4		Lin Man	Linear

Peak Value Display Setting (p. 57)

Selects whether to display the peaks (maximal or maximum) of analysis results.

Averaging Settings (p. 58)

Noisy or unstable values can be averaged to clarify the waveform display. When averaging is enabled, select the method and count for averaging.

Phase Spectra Highlight-

For the maximum value of a power spectrum or cross-power spectrum, data exceeding the specified ratio can be displayed with emphasis (highlighted).

Selects the analysis mode, analysis channels, x and y axes and display parameters. (p. 62)

[Scale] Page									
	No.	yze <mark>3 Sca</mark> Scale	Lower	Upper	Units	Comment			
	F 1	Auto	70		V				
	E 3	Manu Auto	-70m	30m	V V				
L	E 4	Auto			V ²				

Sets the display scale of the vertical (y) axis. (p. 66)

Input Waveform Settings

Set the waveform display color, zero position, vertical axis magnification and display area. These settings are also available on the [All Ch] page.

Scaling Settings (p. 71)

Make these settings to convert measurement units for display as physical values when using a clamp or external sensor. These settings are also available on the [Scaling] page.

Settings on the [Analog] and [Wcal] pages are the same as for the Memory function.

Sheet

Sheet Settings Screen

Set the display method for the Waveform screen.

_	log 🗷 Wa	s	
No.	Analyze	Graph	
1	F-1	G1	Storage Waveform
2	F-2	G2	Linear Spectrum
3	F-3	G1	RMS Spectrum
4	F-4	G2	Power Spectrum
5	F-5	G1	Power Spectrum Density

Assigns FFT analysis results and sets graph arrangement for split-screen display.

Setting procedures on the Save Settings screen are the same for all functions. See "Chapter 11 Saving/Loading Data & Managing Files" in the *Instruction Manual* for details.

Save Settings Screen [Auto Save] Page

Make these settings to specify automatic saving. The factory default setting for auto save is [Off].

	FFT	HAuto Save Save	VE Key				
Auto-Save Settings		[Auto-Save]	On			 1.	
Select the action to take when the save destination or storage media becomes full during au-	Status Channel Tripper	Save in 1 Save in 2 Save Method	PC CARD #1:¥	3		16:28:42	
tomatic saving, such as wheth-	Sneet	Directory Creation	Normal Save	-			
er to create new directories. (Default setting: [Off])		[Waveform]	fon Jauro	8		 F3	
		Name Pattern Format	Trig(prefix) Binary			18	
Settings for Saving					[Screen Image] Off		Settings for Saving
Waveform Data							Screen Images
Select the saving format, area to save and related settings for automatic saving.	Save Pret					17	Make these setting to auto- matically save Waveform screens.
	Exit	to rave a waveform ar	d a value oneration rec	ult aut	omatically while measuring	SET	

Save Settings Screen [SAVE Key] Page

These settings determine the operation of the **SAVE** key.

Manual Save Settings	
(Saving by SAVE key)	

Save

Save

Set the save destination, file name and related settings for saving with the **SAVE** key.

Settings for Saving -Waveform Data

Select the saving format, area to save and related settings for waveform saving.

Save settings are also available for saving settings data and display images.

	Auto Save SAVE					
12	[SAVE Key] SAVE Key Operation					
nel	Save in Name	NETWORK #2 : ¥	_			
et	Same Name	Numbering	3	Name Pattern	Trig(prefix)	
	[Save Type]	Waveform	3			
	Format	Binary	3			
	•					
						_
. 1						_
e						

The choice save: It chooses the one to save when pushing SAVE key.

Save Type Settings

Select what to save with the **SAVE** key. Display contents depend on the selections. Setting procedures on the Print Settings screen are the same for all functions. See "Chapter 12 Printing" in the *Instruction Manual* for details.

Print Select the printing metho	od and	printer for automatic	reen [Printer] Pag or manual printing.	Je	
The factory default settir	ng for a	auto print is [Off].			
Auto Print Settings Make these setting to print automatically.	Status Channel Tripper Sheet	Print Eterns Print Settings Auto Print Off	[Printer] Internal Printer Printer Density Waveform Density Food After Printing Print Quality Normal		 Internal Printer Settings Set the printer's print density and quality.
Manual Print Settings Set the printing method (Quick or Selection Print) and items you want to print when press-		[Manual Print] Output Dusthation Printer PRINT Key Action Selection Print Print Gut Area(Screen) With A4 See (Report) Off	External Printer Crisinitation Portrait Mardin: Custom · Left 10 mm @ Ridht 10 mm @ Top 10 mm @ Bottom[10 mm @ Printing Colors Color @	19	External Printer Settings Set the paper orientation and margins.
ing the PRINT key.	Sove Print Exit The automatic	c print of the measured date.		RET RET	

Print

Print Settings Screen [Print Items] Page

Select the items to be printed (printout contents).

Print Item Common Settings Select the printout type, print area and horizontal axis dis- play value.	Status Channel Trigger Stuest	Printer Print Trems Common Settings Printout Type Print Items Grid Type Navmal Navmal	[Numerical Value Print Items] Thinning Off	Vaveform Numeric	 Numerical Printing Settings Select the thinning method for numerical data.
Waveform Printing Settings Select the items to print when printing waveforms. • Grid Type • List & Gauge • Print Upper and Lower Limits • Print Counter	Sove Print Exit	List & Gauge Off S Upper/Lower Linits Off S Counter Printing Off S somecting is done: it prints according to the displaye	-{Comment Printing Settings	10000000000000000000000000000000000000	– Printing Settings for Comments, Title and Settings Data

3.3 **Operation Workflow**

*1. Settings are the same as for the Memory and Recorder functions. Refer to the *Instruction Manual* for details about each setting.

*2. When saving or printing manually, settings can be changed after calculation.

Settings Procedure for FFT Analysis

Waveform screen or Settings screen: Using the CURSOR keys, move the cursor to the Function menu, and press the F3 [FFT] key.

116/

Waveform screen

Settings screen

3.3 Operation Workflow

3.4 Setting FFT Analysis Conditions

Basic measurement configuration settings are performed on the Status Settings screen. Measurement configuration can be performed from the Waveform screen (p. 67).

3.4.1 Selecting the FFT Function

The FFT function can be selected from the Opening, Waveform or Settings screen.

Function Selection: From the Opening Screen								
	Operating Key	Procedure	Opening Screen					
1	CURSOR	Move to the desired function.						
2	F1 to F8	Select the appropriate function.	System Settings					

Function Selection: From the Waveform or Settings Screen

	Operating Key	Procedure	Waveform Screen
1	CURSOR	Move to the function menu (at the top left).	FFT Freq 20kHz 50Hz(20ms)
2	F3	Select the FFT function.	Function Menus
	(Select from the	ne pull-down menu)	
	SELECT	The pull-down menu appears.	FFT Freq 20kHz • 50Hz (20ms)
	CURSOR	Select the appropriate function.	REC Function
	ENTER	Accepts the setting.	
			Pull-Down Menu

3.4.2 Selecting the Data Source for Analysis

Select the data to be used for FFT analysis.

Analysis can be applied either to new data as it is measured, or to existing data (previously recorded to memory).

Selecting Input Data

When the trigger mode is [Repeat] or [Auto], and the input data [Reference] is [From Mem]

Analysis is performed until the specified number of FFT analysis points have been processed, then the data is shifted by that amount and analysis repeats until all of the previously acquired data has been processed. (If the amount of data is less than the specified number of FFT analysis points, no analysis occurs.)

See "Trigger Modes and Averaging" (p. 60)

When no trace is displayed after pressing the START key

Analysis is impossible if [From Mem] is selected as the input data source and no recorded data exists in the instrument's memory.

Either select [New Data] as the input data source, or load the data to be analyzed before pressing the START key again.

See Screen Layout (p. 40), To set from the Waveform screen (p. 67)

	Operating Key	Procedure
1	Select the inpu	t data source.
	CURSOR	Move the cursor to the [Reference] item.
	F1 to F8	Selects the data to be analyzed.

New Data Acquire a new waveform for analysis.

From Mem Analyze a waveform recorded in memo-

ry.

2 When finished making settings, press the START key

For the [New Data] case

Measurement starts to acquire data for the number of analysis points specified as the [Sampling Point], and FFT analysis is performed.

For the [From Mem] case

Analysis is performed on the number of specified points from data previously recorded in memory (Memory function data or memory waveform data in REC&MEM function).

The analysis starting point can also be specified. See "3.9.3 Analyzing after Specifying an Analysis Starting Point" (p. 80)

The frequency range is selected automatically.

See "Relationship Between Frequency Range, Resolution and Number of Analysis Points" (p. 55)

To open the screen: Press the **SET** key \rightarrow Select **Status** with the **SUB MENU** keys \rightarrow Status Settings screen **See**. Screen Layout (p. 40) To set from the Wayeform screen (p. 67)

FFT

3.4.3 Setting the Frequency Range and Number of Analysis Points

About the frequency range and number of analysis points

The settings for the frequency range and number of analysis points determine the input signal acquisition time and frequency resolution.

The frequency range setting for the FFT function corresponds to the timebase (time/division) setting of the Memory function. Changing the frequency range also changes the data sampling period.

See "Relationship Between Frequency Range, Resolution and Number of Analysis Points" (p. 55)

The cut-off frequency of the anti-aliasing filter is the same as the frequency range setting.

The set number of analysis points specifies the amount of data to be analyzed with each measurement. Increasing the number of analysis points increases the frequency resolution, but also increases the time required for calculations.

See "Number of Analysis Points" (p. 105)

When using the external sampling to calculate:

Set the Sampling Clock to [EXT] (External sampling).

In this case, octave analysis, power spectrum density and LPC power spectrum density are not available.

The following two methods are available for setting the frequency range:

- Using the operating keys
- Using the TIME/DIV key (settable regardless of cursor position)

Frequency Range Setting: Using the TIME/DIV Key

To open the screen: Press the **SET** key \rightarrow Select **Status** with the **SUB MENU** keys \rightarrow Status Settings screen See Screen Layout (p. 40), To set from the Waveform screen (p. 67)

FFT

		s the SET key \rightarrow Select Status with the SUB N D), To set from the Waveform screen (p. 67)	MENU keys →Status Settings screer			
	Operating Key	Procedure				
1	Select the samp	bling clock.	& Basic			
	CURSOR F1	Move the cursor to the [Sampling Clock] item. Select [INT] (Internal). (default setting)	[FFT] Reference New Data Sampling Clock O INT CEXT			
2	Select the frequ	Jency range.	2 Frequency Range ColkHz 3 Sampling Point 1000			
	CURSOR	Move the cursor to the [Frequency Range] item.	Res(Recording Time) 50Hz(20m			
	F1 to F8 (Switch Display: F8)	Select the frequency range.	(during acquisition) The resolution is affected by settings o			
		8 (default setting), 4, 2 MHz 800, 400, 200, 80, 40, 20, 8, 4, 2 kHz 800, 400, 200, 80, 40, 20, 8, 4, 1.33 Hz 800, 667, 400, 333, 133 mHz	frequency range and the number or analysis points. Not displayed for exter nal sampling.			
		See "Relationship Between Frequency Range, Reso- lution and Number of Analysis Points" (p. 55)	Normally, select [INT].			
3	Set the number	of FFT analysis points.	To control sampling by an external sign select [EXT]			
	CURSOR	Move the cursor to [Sampling Point]	In this case, set only the number of ana			
	F1 to F8 (Switch Display: F8)	Select the number of points for analysis.	sis points. When [From Mem] is selected as the			
		1000(default setting), 2000, 5000, 10000, 20000	put data source The frequency range is set automa			

Relationship Between Frequency Range, Resolution and Number of Analysis Points _

	Sam-						Numb	er of FFT	Analysis	Points			
Range	pling	Time- base	Sam-	1,0	00	2,0	00	5,0	00	10,0	000	20,0	000
[Hz]	frequen- cy [Hz]	[/div] (MEM)	pling period	Resolu- tion [Hz]	Acquisi- tion interval								
8 M * ¹	20 M	5 µs	50 ns	20 k	50 µs	10 k	100 µs	4 k	250 µs	2 k	500 µs	1 k	1 ms
4 M * ¹	10 M	10 µs	100 ns	10 k	100 µs	5 k	200 µs	2 k	500 µs	1 k	1 ms	500	2 ms
2 M * ¹	5 M	20 µs	200 ns	5 k	200 µs	2.5 k	400 µs	1 k	1 ms	500	2 ms	250	4 ms
800 k * ¹	2 M	50 µs	500 ns	2 k	500 µs	1 k	1 ms	400	2.5 ms	200	5 ms	100	10 ms
400 k * ¹	1 M	100 µs	1 µs	1 k	1 ms	500	2 ms	200	5 ms	100	10 ms	50	20 ms
200 k * ¹	500 k	200 µs	2 µs	500	2 ms	250	4 ms	100	10 ms	50	20 ms	25	40 ms
80 k * ¹	200 k	500 µs	5 µs	200	5 ms	100	10 ms	40	25 ms	20	50 ms	10	100 ms
40 k	100 k	1 ms	10 µs	100	10 ms	50	20 ms	20	50 ms	10	100 ms	5	200 ms
20 k	50 k	2 ms	20 µs	50	20 ms	25	50 ms	10	100 ms	5	200 ms	2.5	400 ms
8 k	20 k	5 ms	50 µs	20	50 ms	10	100 ms	4	250 ms	2	500 ms	1	1 s
4 k	10 k	10 ms	100 µs	10	100 ms	5	200 ms	2	500 ms	1	1 s	500 m	2 s
2 k	5 k	20 ms	200 µs	5	200 ms	2.5	400 ms	1	250 ms	500 m	2 s	250 m	4 s
800	2 k	50 ms	500 µs	2	500 ms	1	1 s	400 m	2.5 s	200 m	5 s	100 m	10 s
400	1 k	100 ms	1 ms	1	1 s	500 m	2 s	200 m	5 s	100 m	10 s	50 m	20 s
200	500	200 ms	2 ms	500 m	2 s	250 m	4 s	100 m	10 s	50 m	20 s	25 m	40 s
80	200	500 ms	5 ms	200 m	5 s	100 m	10 s	40 m	25 s	20 m	50 s	10 m	100 s
40	100	1 s	10 ms	100 m	10 s	50 m	20 s	20 m	50 s	10 m	100 s	5 m	200 s
20	50	2 s	20 ms	50 m	20 s	25 m	40 s	10 m	100 s	5 m	200 s	2.5 m	400 s
8 * ²	20	5 s	50 ms	20 m	50 s	10 m	100 s	4 m	250 s	2 m	500 s	1 m	1 ks
4 * ²	10	10 s	100 ms	10 m	100 s	5 m	200 s	2 m	500 s	1 m	1 ks	500 µ	2 ks
1.33 * ²	3.33	30 s	300 ms	3.33 m	300 s	1.66 m	600 s	666 µ	1.5 ks	333 µ	3 ks	166 µ	6 ks
800 m * ²	2	50 s	500 ms	2 m	500 s	1 m	1 ks	400 µ	2.5 ks	200 µ	5 ks	100 µ	10 ks
667 m * ²	1.67	60 s	600 ms	1.66 m	600 s	833 µ	1.2 ks	333 µ	3 ks	166 µ	6 ks	83.3 µ	12 ks
400 m * ²	1	100 s	1 s	1 m	1 ks	500 µ	2 ks	200 µ	5 ks	100 µ	10 ks	50 µ	20 ks
333 m * ²	833 m	120 s	1.2 s	833 µ	1.2 ks	416 µ	2.4 ks	166 µ	6 ks	83.3 µ	12 ks	41.6 µ	24 ks
133 m * ²	333 m	300 s	3 s	333 µ	3 ks	166 µ	6 ks	66.6 µ	15 ks	33.3 µ	30 ks	16.6 µ	60 ks

The cut-off frequency of the anti-aliasing filter is the same as the frequency range.

*1. The anti-aliasing filter is turned off. *2. Cut-off frequency is 20 Hz.

3.4.4 Setting the Window Function

The window function defines the segment of the input signal to be analyzed. Use the window function to minimize leakage errors. There are three general types of window functions:

Flat top window

The non-rectangular window functions generally produce lower-level analysis results. By applying attenuation correction, the attenuation introduced by the non-rectangular window functions can be corrected to bring analysis results back to similar levels.

Selecting the Window Function and Correction

To open the screen: Press the **SET** key \rightarrow Select status with the **SUB MENU** keys \rightarrow Status Settings screen See Screen Layout (p. 40), To set from the Waveform screen (p. 67)

	Operating Key	Procedure					
1	Select the wind	ow functi	on.	Window Exponential			
-	CURSOR	Move the cursor to the [Window] item.					
	F1 to F8	Select the	appropriate window function type.	Multiplication None (Mag) ×1.000(0.000dB)			
			lar (default setting), Hanning, Exponen- ning, Blackman, BlackmanHarris, Flat-	Correction value			
		See "Wind	low Function" (p. 110)				
2	If [Exponential]	is the se	Window Exponential				
_	Set the attenua	tion coeff	icient (percentage).	Coefficient 0 %			
	CURSOR	Move the	cursor to the [Coefficient] item.	(Mag) ×3.717(11.404dB)			
	F1 to F8	Setting the	tenuation coefficient as a percentage. e attenuation coefficient to 0% results e processing as a setting of 0.1%.				
3	Set attenuation	correctio					
Ŭ	CURSOR	Move the	cursor to the [Multiplication] item.				
	F1 to F8	Select the	correction method.				
		None	Attenuated window function values are not corrected. (default setting)	When the attenuation rate is 10% For the rectangular window function:			
		levels of the time-domain waveform	The window function multiplies the power levels of the time-domain waveform so that output levels are comparable to those of a rectangular window.	The correction value is always 1 (0 dB). For the exponential window function: The correction value depends on the atten- uation coefficient.			
		Average	The window function multiplies the aver- age value of the time-domain waveform so that output levels are comparable to those of a rectangular window.	Power correction $\sqrt{\frac{2\ln(x/100)}{(x/100)^2 - 1}}$ Average correc- $\ln(x/100)$			
				tion $(x/100) - 1$ x: Attenuation coefficient (%)			

FFT

3.4.5 Setting Peak Values of Analysis Results

Either local or global maxima ([maximal]/ [maximum]) of the input signal and analysis results can be displayed on the Waveform screen. However, if Nyquist display is selected on the Sheet Settings screen, no peak values are displayed.

Selecting Displayed Values

FFT

To open the screen: Press the **SET** key \rightarrow Select **Status** with the **SUB MENU** keys \rightarrow Status Settings screen See Screen Layout (p. 40)

Operating Key	Procedure		
Selecting peak	value disp		
CURSOR	Move the c	ursor to the [Peak] item.	Peak Off
F1 to F8	Select the played.	type of numerical value to be dis-	Averaging On Type Time-Linear
	Off	Not displayed.(default setting)	
	Maximal	(local maxima) When the value of data at a point is greater than that of the adjacent points, that data is considered a local maxima. The ten largest local maxima are dis- played.	Maximal 1 1 1 2 3
	Maximum	(global maxima) Among all data values, the ten points with the greatest values are displayed.	Maximum 4 5 6

NOTE

- Peak values on the Waveform screen can be displayed and printed, but cannot be saved as peak values in text files.
- Depending on split-screen settings, there may be insufficient space to display all ten maxima. In this case, only the number of maxima that can be displayed are shown, from the largest.

Example: 4-Section Split-Screen

FFT F-1 Storage Waveform Col On .	Y	Lin-Mag 🗸	X Linear	FFT(2/2)
F-11Storage Waveform (1-1) 100.0000mV -100.0000mV -100.0000mV 05 -20.000mV 20.000mV 20.000mV		Maximum 1 2 3 4 5	15.02ms 20us 2.02ms 14.02ms 10.02ms Overa	50.1469mV 50.1125mV 50.1094mV 50.0156mV 49.9906mV 49.9906mV
E2Elnear Spectrum (1-1) 45.0000mV -5.0000mV 0H2 20.000H4		Maximum 1 2 3 4 5	1.00kHz 3.00kHz 5.00kHz 7.00kHz 9.00kHz Overa	41.1592mV 4.6012mV 1.6999mV 0.8863mV 0.5711mV II 29.3234mV
EBover Spectrum Density (1-1) 20.0008 ywww.hurwylinyny.hurwyl ynynafrwynyllwrwylwrwylwrwylwrwylwrwylwrwylwrw		Maximum 1 2 3 4 5	1.00kHz 3.00kHz 5.00kHz 7.00kHz 9.00kHz	-47.71dB -66.74dB -75.39dB -81.05dB -84.87dB
E-4P0ver Spectrum D(LPC) (1-1) -20.00dB -120.00dB -120.00dB 0Hz 20.00Hz		Maximum 1 2 3 4 5	1.00kHz 1.05kHz 950Hz 1.10kHz 900Hz	-48,77dB -62,57dB -62,91dB -68,45dB -69,26dB
		Peak	value	display

From 1 to 5

NOTE

3.4.6 Averaging Waveforms

The averaging function calculates the average of the values obtained from multiple measurements of a periodic waveform. This can reduce noise and other non-periodic signal components. Averaging can be applied to a time-domain waveform or to a spectrum.

	Screen Layout (p.		\rightarrow Select Status with the SUB N	IENU keys →Status Settings screen			
	Operating Key	Procedure					
1	Enable average	ging.		· · · · · · · · · · · · · · · · · · ·			
		Move the curs	sor to the [Averaging] item.	1 Averaging On			
	F1 to F8	Select whethe	er to enable or disable averaging.	2 Type 3 Number			
		Off Avera	ging is disabled (default setting)	3 Number 3			
		On Avera	iging is enabled.	Highlight(phase) Off			
2	Select the typ	e of averaging					
	CURSOR	Move the curs	sor to the [Type] item.				
	F1 to F8	Select from th	e following types:	About averaging calculation formulas See "Averaging" (p. 109)			
		Time-Linear	Perform simple (linear) averaging of time-domain waveform values.	When averaging and auto saving or auto printing are enabled at the sam			
		Time-Expo- nential	Perform exponential averaging of time-domain waveform values.	time Data is saved or printed after the specifie count of values have been averaged.			
		Freq-Linear	Perform simple (linear) linear aver- aging of (frequency-domain) spec- trum values.	After calculating the average, chan the analysis channel does not cause calculation.			
		Freq-Expo- nential	Perform exponential averaging of (frequency-domain) spectrum values.				
		Freq-Peak Hold	Retain the maximum value of (fre- quency-domain) spectrum values.	See "Trigger Modes and Averaging" (p. 60)			
3	Select the co	unt for averagi	ng.				
-	CURSOR	Move the curs	sor to the [Number] item.				
	F1 to F8	Select the nur aged. Setting range:	mber of measurements to be aver- : 2 to 10,000				

- After measuring with averaging enabled, display is not available when the channel is changed. Also, when the analysis mode is changed, the analysis modes that can be displayed are limited.
- When averaging is performed with the analysis mode disabled (Off), no trace is displayed when the analysis mode is changed after measurement.

Description When averaging time-domain waveform values

Waveforms are acquired and averaged within the time domain. After averaging, FFT calculation is performed.

When the trigger mode is [Auto]: Data is acquired when the START key is pressed, even if trigger criteria are not met after a certain interval. So if averaging is applied to an asynchronous signal, the resulting data is meaningless.

Synchronous signals have better SNR (signal-to-noise ratio) and are more suitable for analysis.

When averaging spectrum values

Acquired data is first subject to FFT analysis. After analysis, averaging is performed within the frequency range, and the result is displayed. This differs from time-domain averaging in that averaging can be performed without trigger synchronization. However, if the characteristics of the input waveform allow triggering, using the trigger for synchronization is recommended.

Spectrum peak hold

After performing FFT calculations on the acquired waveform, peak values are retained (held) and displayed within the frequency range.

FFT Analysis Modes and Averaging

•: Settable, x: Unsettable, O: Partially settable

		Averaging				
Analysis Mode	Waveform	n Averaging	Spectrum Averaging			
	Simple	Exponential	Simple	Exponential	Peak Hold	
OFF	×	×	×	×	×	
Storage Waveform	•	•	×	×	×	
Linear Spectrum	•	•	O *2	O *2	O *2	
RMS Spectrum	•	•	O *2	O *2	O *2	
Power Spectrum	•	•	•	•	•	
Power Spectrum Density *1	•	•	•	•	•	
Auto-correlation Function	•	•	•	•	•	
Histogram	•	•	×	×	×	
1/1 Octave Analysis *1	•	•	•	•	•	
1/3 Octave Analysis *1	•	•	•	•	•	
Transfer Function	•	•	O *2	O *2	O *2	
Cross Power Spectrum	•	•	O *2	O *2	O *2	
Cross-correlation Function	•	•	•	•	•	
Impulse Response	•	•	•	•	•	
Coherence Function	×	×	٠	•	×	
Phase Spectrum	•	•	×	×	×	
Power Spectrum Density (LPC) *1	•	•	×	×	×	

*1. Not available for external sampling

*2. Not available when the y axis is real (linear) or imaginary (linear), or for Nyquist plots

Trigger Modes and Averaging

When the trigger mode is [Single]

Measurements continue until the specified number of averaging points is acquired.

reached. If measurement was interrupted by the STOP key, the averaging result up to that point is displayed.

fied count

When the trigger mode is [Repeat]

Measurement continues after the specified averaging count has been acquired. When the specified averaging count is exceeded, averaging is repeated and measurement continues until the STOP key is pressed.

When stopped before the specified count, the average up to that point is displayed.

When the trigger mode is [Auto]

· For time-domain waveforms:

Data is acquired when the START key is pressed, even if trigger criteria are not met after a certain interval. So if averaging is applied to an asynchronous signal, the resulting data is meaningless.

For spectrum values:

When the START key is pressed, measurement starts. Even if the trigger criteria are not met, the specified amount of data is acquired, and after FFT analysis, the results are averaged.

When the specified averaging count is exceeded, averaging is repeated and measurement continues until the STOP key is pressed.

When stopped before the specified count, the average up to that point is displayed.

FFT

3.4.7 Emphasizing Analysis Results (phase spectra only)

By specifying a setting factor (rate) to be applied to the input signal, the display of data exceeding the resulting threshold can be emphasized. This feature is useful for viewing waveforms that may otherwise be obscured by noise.

The reliability of phase spectrum values is poor when discrete Fourier transform values are extremely small. For example, in the case of a pure sine wave, almost all phase values at frequencies other than the input frequency result from calculation errors. By treating the maximum value of the power (or cross-power) spectrum of the input signal, P_{max} , as a reference value, data that exceeds that value multiplied by rate R can be displayed with emphasis.

Setting Phase Spectrum Highlighting

To open the screen: Press the **SET** key \rightarrow Select **Status** with the **SUB MENU** keys \rightarrow Status Settings screen See Screen Layout (p. 40)

Operating Key Procedure

1	Enable the high	nlightin	g function.				
	CURSOR	Move t	ne cursor to the [Highlight (phase)] item.	1		On 💽	
	F1 to F8	Select ing fund	whether to enable or disable the highlight- ction.	2 3		O dB	
		Off	Emphasis display disabled.(default setting)				
		On	Emphasis display enabled.				
2	Set the attenua	tion rat	e or attenuation value.				
	To set an attenuation rate			Attenuation Rate and Value Attenuation value: A [dB]			
	CURSOR	Move t	ne cursor to the [Attenuation ratio] item.	Attenuation rate: R			
	F1 to F8	Enter the attenuation rate.			$-A = 10\log_{10}R$ 1 x 10 ⁻⁶ < $R \le 1$		
	_			$0 \le A \le 60$			
	To set an atten	uation v	/alue [dB]				
	CURSOR	Move t	ne cursor to the [(dB)] item.				
	F1 to F8	Enter th	ne attenuation value.				

3.4.8 Analysis Mode Settings

Select the type of FFT analysis, channel(s), waveform display color and x and y axes.

Anal	ysis Content Se	ttings			FFT	
То оре	en the screen: Pres	is the <code>SET</code> key $ ightarrow$ S	Select Status with the	SUB MENU keys —	Status Settings screen	
			Waveform screen (p. 67)		-	
	Operating Key	Procedure				
1	Open the [Anal	lyze] page.				
	SHEET/PAGE	Select the [Analyz	e] page.			
		1				
		E Anal	yze			
		No.	Analyze Col. Para	ameter Ch1 Ch2	Yaxis Xaxis	
	Analysis Setting C		Storage Waveform 🔨 Linear Spectrum 🔨 Norm	1-1 nal 1-1	Lin-Mag Linear Lin-Mag Linear	
	Analysis No. —					
	Settings can be					
	dialogs, or copie Analysis No. (p. 6	5)	2 3	4 5	6	
	Analysis No. (p. o	Ana	lysis Type Display C	olor Channel for A	nalysis X/Y Axes Dis- play	
					picy	
2	Select the FFI	analysis mode.				
	CURSOR		o the [Analyze] column	of the		
		Analysis No. to se				
	F1 to F8	Select the analysis	s mode.			
	(Switch Display: F8)	OFF	No analysis.	1/1 Octave*	Example (p. 91)	
			(default setting)	1/3 Octave*	Example (p. 91)	
		Storage Waveform	,	Phase Spectrum	Example (p. 95)	
		Linear Spectrum	Example (p. 86)	Transfer Function	Example (p. 96)	
		RMS Spectrum	Example (p. 87)	Cross Power Spec-	Example (p. 97)	
		Power Spectrum	Example (p. 88)	trum		
		Pow.Spectrum Density*	(Power spectrum density) Example (p. 89)	Cross Correlation	Example (p. 98)	
		Auto Correlation	Example (p. 90)	Impulse Response	Example (p. 99)	
		Histogram	Example (p. 90)	Coherence	Example (p. 100)	
			external sampling enabled.	Pow.Spectrum Density (LPC)*	(Power spectrum density LPC) Example (p. 101)	
					, ,	
		See 3.10.2 Analys	is Mode Functions" (p. 102)			
-	Select whether	to display the w	aveform, and its cold)r		
5				/1.		
	CURSOR	Move the cursor to	o the [Col.] column.			
	F1 to F8		e waveform is to be disp	blayed		
		(On) or not, and its	s color if displayed.			

E Ana	lyze									
		Col. Parameter	Ch1 1- 1 1- 1	Ch2	Yaxis Lin-Mag Lin-Mag	Xaxis Linear Linear				
		4	5							
Operating I	Key Procedure					_				
When [P	arameter] setting	g contents	s are dis	splaye	ed					
Set the p	arameter.									
CURSOF	Move the Analysis N	cursor to the lo. to set.	e [Parame	et <mark>er]</mark> co	olumn of th	ie				
F1 to F8	Select the	Select the desired type of analysis or display.								
	Analyze mo	de	Parame	eter	Setting					
		Linear Spectrum, Transfer Function, Cross Power Spectrum			Analysis quency.		esults are displayed as amplitude vs. f			
					Analysis compor		esults are displayed as imaginary vs. s s.			
		1/1 Octave,		Norma	Linabics		e octave filter.			
	1/3 Octave		Filter:				Filter Setting" (p. 64)			
	Phase Spec	Phase Spectrum					he phase of [Channel 1]. the phase difference between [Channel			
			2ch FF	•	and [Ch					
	Pow.Spectr Density (LP		Order:	2 to 64	Larger i nents vi		ical values make finer spectrum com			
Select th	e channel for an	alysis.				A	nalysis channel setting			
CURSOF	Move the	cursor to the	ursor to the [Ch1] item.				For any of the following analysis modes set both channels 1 and 2.			
F1 to F8	Select whi	ect which channel number to use.					Transfer Function, Impulse Response Cross-correlation Function, Cross Powe			
Set the x	and y axes for o	axes for display of analysis results.				S	pectrum, Coherence Function, Pha pectrum (2ch FFT)			
CURSOF	Move the	Move the cursor to the [X axis] or [Y axis] item.				т	To analyze without the influence of			
F1 to F8	on the x a (Selectabl analysis n See "Analy	on the x and y axes. (Selectable display components depend on the analysis mode) See "Analysis Modes and X/Y Axis Display" (p. 64)					liasing distortion he following input modules are reco rended for channels to be subject to F nalysis: Model 8938 FFT Analog Unit Model 8947 Chargh Unit Model 8957 High Resolution Unit			
	Lin-Mag	Analysis results are displayed as ampli- tude values.				li-	Model 8960 Strain Unit			
	Log-Mag	Analysis re ues.	esults are	display	ed as dB va	al-				
	Lin-Real	Lin-Imag The imaginary component of analysis re- sults are displayed. The x ax points.			o analyze using external sampling					
	Lin-Imag				f analysis r	<u>-</u>	The x axis displays the number of da points.			
	X-axis dis				F	For Nyquist display				
	Linear	Frequency			•	V	When the [Nyquist Display] parameter			
	Log	Frequency is displayed logarithmically. This is convenient when the data of inter- est is at the lower end of the frequency range, such as for sound and vibration.				r- Se	settings is selected, x- and y-axis displa settings are not available.			

Octave Filter Setting

Filter characteristics approximate those of an analog filter.

Only those spectral component within the octave band are used for analysis. Spectral components outside of the octave band are totally ignored.

After determining the entire power spectrum, the instrument performs octave analysis on the spectral bands defined by the above filter characteristics. Analog filtering is not used for analysis.

See "Octave Filter Characteristics" (p. 114)

Analysis Modes and X/Y Axis Display _____

•: Settable, x: Unsettable

Analysis Mode	X axis			Nyquist				
	Linear	Log	Lin-Mag	Log-Mag	Lin-Real	Lin-Imag	display	
OFF	×	×	×	×	×	×	×	
Storage Waveform	•	×	•	×	×	×	×	
Linear Spectrum	•	•	•	•	•	•	•	
RMS Spectrum	•	•	•	•	•	•	×	
Power Spectrum	•	•	•	•	×	×	×	
Power Spectrum Density	•	•	•	•	×	×	×	
Auto-correlation Function	•	×	•	×	×	×	×	
Histogram	•	×	•	×	×	×	×	
1/1 Octave	•	•	•	•	×	×	×	
1/3 Octave	•	•	•	•	×	×	×	
Transfer Function	•	•	•	•	•	•	•	
Cross Power Spectrum	•	•	•	•	•	•	•	
Cross-correlation Function	•	×	•	×	×	×	×	
Impulse Response	•	×	•	×	×	×	×	
Coherence Function	•	•	•	×	×	×	×	
Phase Spectrum	•	•	•	×	×	×	×	
Power Spectrum Density (LPC)	•	•	•	•	×	×	×	

The x/y axes cannot be set when Nyquist Display is selected.

To Set from a Dialog _____

	E Analyze	Scale					
	No. Anal		l. Parameter	Ch1 Ch2	Yaxis	Xaxis	
		ge Waveform 🛛 📝		1-1	Lin-Mag	Linear	
		r Spectrum 🛛 📝 Spectrum	_ Normal	1-1 1-1	Lin-Mag Lin-Mag	Linear Linear	
	All Settings	Move the cur and press F1 A dialog box ap are grayed out. Move the curso	[All Setting pears. Items	No.] colum gs]. that cannot b	nn of the	Analysis t	analysis mode
	- Analyze -	אלאב			—)		
These are the same as — the setting contents on the [Analyze] page.	Ch Mode Ich FFT Color On	Ch1 Unit1 Ch1 Octave Normal	Ch2	Y □ Log-Mag Order 2	Linear		- Parameter
These are the same — as the setting contents on the [Scale] page.	[Scale] Auto	Lower	Upper	Units dB		Close	Settings

To copy settings between Calculation Nos.

	Image: Scale Image: Scale No. Analyze Col. Parameter Ch1 Ch2 Yaxis Yaxis
Select the Analysis No. of the copy source. Select the contents to 2 copy.	Copy Settings Vo.1 No.2 No.2 No.10 Copy Contents No.2 No.4 No.12 No.5 No.14 Contents No.7 No.6 No.14 No.7 No.15 No.7 No.16 Comment Copy Cancel 4 Select the Analysis No. of the copy destination. Make the desired settings, and click Copy (or F7 [Copy]).

3.4.9 Setting the Display Range of the Vertical Axis (Scaling)

The display range of the vertical (y) axis can be set to automatically suit analysis results, and can be freely expanded and compressed.

Vertical Axis (Scaling) Setting FFT To open the screen: Press the **SET** key \rightarrow Select **Status** with the **SUB MENU** keys \rightarrow Status Settings screen See Screen Layout (p. 40) **Operating Key** Procedure Open the [Scale] page. 1 SHEET/PAGE Select the [Scale] page. 1 🖉 Analyze E Scale No. Scale Lower Upper Units Comment Analysis Setting Contents Manu 70m 30m FI2 Auto V F₃ Calculation No. Settings can be made from the dialogs, or copied from another Analy-2 3 Δ sis No. (p. 65) About displayed units (y axis) Select automatic or manual scaling of the y-axis display. 2 The selected units for the scaled channel are displayed. When scaling is disabled **CURSOR** Move the cursor to the [Scale] column of the [Off], the measurement range units are Analysis No. to set. displayed. To convert to other units, set the scaling F1 to F8 Select the scaling display type. units on the Channel Settings screen. Scaling of the vertical (y) axis is automatical-See "5.4 Converting Input Values (Scal-Auto ly set according to analysis results. (default ing Function)" in the Instruction setting) Manual Scaling of the vertical (y) axis can be set as Input values can be converted to dB. desired, to suit the purpose of the measure-Manu See "Scaling" (p. 71) ment. (manu-This is useful for magnifying or reducing the al) displayed amplitude, and for shifting the displayed waveform up or down. When [Manu] is selected 3 To display comments on the Waveform screen Set the upper and lower limits to display. Enable the [Comment] setting on the System Settings screen. **CURSOR** Move the cursor to the [Lower] or [Upper] item. F1 to F8 Set the upper and lower limits to display the anal-When comments are entered on both the ysis results. Channel Settings screen and the [Analyze] page, both comments are displayed. Setting range: -9.9999E+29 to +9.9999E+29 When no channel comment has been en-(with exponent from E-29 to E+29) tered, unit (module) and channel number are displayed. To enter a comment for an analysis result Δ **CURSOR** Move the cursor to the [Comment] item. F-1 Power Spectrum **Channel Comment F1** Enter your comment. (when not set) The entry method is the same as for channel [Scale] Page Comcomments.

"5.2.2 Adding Channel Comments";"Comment

Entry Example" in the Instruction Manual

See

ment

-180.00dB

3.4.10 Setting and Changing Analysis Conditions on the Waveform Screen

The following settings can be made on the Waveform screen.

Press the **SUB MENU** keys to switch the displayed measurement items. Changes to the displayed analysis results become effective when the settings are changed.

• [FFT(1/2)]

Available settings are frequency range, number of analysis points, type of window function, trigger mode and pre-triggering

• [FFT(2/2)]

Available settings are analysis number, analysis mode, waveform color, analysis channel and x/y axis display type

[Trigger]

Available settings are trigger number and analog trigger settings

To change the analysis number to be displayed on the current Sheet, press the F5 [Channel Set] key in the FN mode, and make settings in the dialog (p. 68).

This setting is the same as that on the Display page of the Sheet Settings screen.

3.5 Selecting Channels

Channel selection is the same for all functions. The setting examples here describe operation with the Model 8957 High Resolution Unit.

	nnel Settings			MEM REC FFT				
pe	en the screen: Pres	s the <mark>SET</mark> k	$ey \rightarrow \text{ Select } $ with the SUB	MENU keys \rightarrow Channel Settings scre				
S	Screen Layout (p. 4	41)						
	Operating Key	Procedure		Module (Unit) No. Channel No.				
	SHEET/PAGE	Select the	[One Ch] page.					
	Select the mod	lule (Unit)	FFT One Ch & Comment A All Ch					
	CURSOR	Move the (no.)].	cursor to each [Unit (no.)] and [Ch					
	F1 to F8	and chann	module (Unit) number (Unit 1, 2,) el. (The type of the selected module is beside the [Unit].)	channel.				
•	Verify the mod		the [Mode] is set to [Voltage].	Input comment. Imodule3 High Res(16-bit) Zero-Adjust Mode Voltage Probe AAF				
•	Set the measu	rement rar						
	CURSOR	Move the	cursor to the [Range (/div)] item.					
	F1 to F8	Set the ve	rtical axis (voltage axis range).	Measurement Mode ———				
		5 m, 10 m, 1, 2, 5, 10,	20 m, 50 m, 100 m, 200 m, 500 mV/div, 20 V/div	When using an input module that can privide multiple types of measurement, selection the type of measurement to be performed.				
		vertical ax	g can also be made with the RANGE/					
	Select the inp demands).	ut signal	the Input Module Guide					
	CURSOR	Move the	cursor to the [Coupling] item.					
	F1 to F8	Select eith						
		DC DC	Coupling lect this to acquire both DC and AC compo- nts of an input signal.	-				
		AC fro	lect this to eliminate any DC component m an input signal. Use this to measure only a ripple component superimposed on pul- ting current.					
		GND	e input signal is disconnected. Zero posi- n can be confirmed.					

	Operating Key	Procedu	ле 	[Module] High Res(16-bit) - Zero-Adjust Offs			
6	Set low-pass	filtering	(as occasion demands).	Mode Voltage Probe 1:1			
	CURSOR	Move t	he cursor to the [LPF] item.	Range(/div) 20V			
	F1 to F8	Set the	low-pass filter in the input module.	(1LSB = 12.5mV) Coupling DC			
		(For M 50Hz	odel 8957) OFF, 5Hz, 50Hz, 500Hz, 5kHz,	6 LPF Off			
7	Select the pro	be atten	uation.	Input comment. 9 10 Ie] High Res(16-bit) Zero-Adjust Offset Cancel			
-	CURSOR	Move t	he cursor to the [Probe] item.	Voltage 7 Probe 1:1			
	F1 to F8	Select used.	according to the connection cables being	e(/div) 200 8 (AAF On Concernent			
		1:1	Select when measuring using Model L9197, 9197, L9198 or L9217 Connection Cords.	See "3.11.3 Low-Pass Filter (LPF) Set- tings" in the Input Module Guide			
		10:1	Select when measuring using the Model 9665 10:1 Probe.	About probe attenuation			
		100:1	Select when measuring using the Model 9666 100:1 Probe.	Matching the probe attenuation setting to that of the input channel's probe enable: automatic conversion of voltage axis			
		1000:1	Select when measuring using the Model 9322 Differential Probe.	range measurements for direct reading o numerical values.			
			See "3.11.15 Probe Attenuation Selec- tion" in the <i>Input Module Guide</i>				
8	Set the anti-a	liasing fi					
	CURSOR	Move t	he cursor to the [AAF] item.	Anti-Aliasing Filter			
	F1 to F8	Select	either choice.	Enable to prevent aliasing distortion. See "Anti-Aliasing Filters" (p. 107)			
		Off	The anti-aliasing filter is disabled. (default setting)	About zero adjustment			
		On	The anti-aliasing filter is enabled. (When the external sampling is used, the anti-aliasing filter (AAF) is not available.)	Adjusts the zero position of an input mod ule. Warm-up time depends on the type of input module.			
				See "3.11.17 Executing Zero Adjust- ment" in the <i>Input Module Guide</i>			
9	Perform zero	adjustm	ent (after warm-up).				
-	CURSOR	Move t	he cursor to the [Zero-Adjust] button.	About offset canceling Executing Offset Cancel when using a			
	F1	When	[Execute]. executed, all channels are zero adjusted. t in the Model 8958 16-Ch Scanner Unit)	sensor corrects for external signal bias. See "3.11.18 Executing Offset Cancella tion" in the <i>Input Module Guide</i>			
10	Perform Offse	et Cance	l (as occasion demands).				
	CURSOR		he cursor to the [Offset Cancel] button.				
	F1	Select	[Execute]. executed, only the selected channel is cor-				

Scaling

The scaling setting allows values displayed on this instrument to match the actual values read directly on a sound level meter or vibration meter.

Setting example: To display measurement data on this instrument so that it corresponds to that on a sound level meter.

In a case where a sound level meter displays 94 dB and the overall value displayed on the Waveform screen of this instrument is -5.95 dB.

Scaling is performed automatically, and the corresponding values appear in the conversion ratio fields.

3.6 Setting the Screen Layout of the Waveform Screen

Measurement data can be split and displayed on up to 16 sheets on the Waveform screen.

Assigning the Results of FFT Analysis to a Sheet

FFT

To open the screen: Press the **SET** key \rightarrow Select sheet with the **SUB MENU** keys \rightarrow Sheet Settings screen See Screen Layout (p. 42)

	Operating Key	Procedure					
1	Sheet Assignm	ent.		Sheet 1 On			
	CURSOR F1 to F8 CURSOR F1 to F8	Select the num Move the curso	or to the [Sheet 1] item. ber of the Sheet to set. or to the [On] or [Off] item. to display the selected sheet on screen.	Sheet Name2 Display Type3 FFT			
		Off The sele	cted sheet is not displayed.				
		On The sele	cted sheet is displayed.	Gi			
2	Enter a Sheet N	lame (if you w	ant to change it).	G2			
	CURSOR F1 to F8	Enter a name. (When you ente	or to the [Sheet Name] item. (up to 8 characters) or a sheet name other than the de- yed to the right of the waveform.)				
3	Select the Disp	lay Type.					
	CURSOR	Move the curso	r to the [Display Type] item.				
	F1 to F8	21	of data to be displayed. be depends on the input data se- isis.	To use an existing memory waveform for analysis Select [From Mem] as the input data			
		FFT	Displays a plot of FFT analysis re- sults.	source [Reference]. See "3.4.2 Selecting the Data Source for Analysis" (p. 52)			
		Nyquist	(When the analysis mode is Linear Spectrum, Transfer Function or Cross-Power Spectrum) The real-number part is displayed on the x axis, and the imaginary part on the y axis.	To specify the analysis starting point Specify the starting point on the memory waveform. See "3.9.3 Analyzing after Specifying an Analysis Starting Point" (p. 80)			
		FFT+Nyquist	Analysis results and the Nyquist plot are displayed at the same time.				
		Wave+FFT *	A memory waveform and FFT analy- sis results are displayed.				
		Wave+Nyquist *					
			urce [Reference]: selectable only Mem] is selected.				

Select split-screen display (as occasion demands). The number of possible screen partitions depends on the selected

display type. See "Display Types and Split-Screen Settings" (p. 74)

		_		5
	Operating Key	Procedure		<u> </u>
5	Select the data	to display on the Sheet.	Analog 🔀 Wcal 토 Reset Chs Reset Gr	
	SHEET/PAGE	Select the [FFT] page.	No. Analyze Graph	Storag
	CURSOR	Move the cursor to the [Analyze] column.	2	Linear
	F1 to F8	Select the desired calculation number for display. (This becomes the Analysis No. setting on the Status Settings screen.)	3 F-3 G1 4 F-4 G2	RMS S Powe The an is displa
	(When using s	plit-screen display)	+	r
	CURSOR	Move the cursor to the [Graph] column.	177 June Stand - Stand Stand	3 [A/
ł	F1 to F8	Select the Graph number to be displayed.		

Press the DISP key to display the Waveform screen.

The displayed sheet changes each time you press the SHEET/ PAGE keys.

When "Drawing failed"

• NG: Nyquist Display

There is a mismatch between the display type setting on the Sheet Settings screen and a parameter setting on the Status Settings screen. The normal display and Nyquist display cannot be combined. To display both, set the display type to [FFT+Nyquist].

• NG: X-Axis Setting

Increase the number of split screen sections, or change the x-axis display. Linear x-axis and logarithmic displays cannot be combined in the same graph.

• NG: Analysis Mode Error

Octave analysis (1/1 or 1/3) cannot be overlaid with another analysis. Increase the number of split screen sections, or set display on another sheet.

Display Types and Split-Screen Settings

Fourteen display arrangements are available.

	1 Graph	2 Graphs	4 Graphs	4 (Print 8)
FFT	G1	G1 G2	G1 G2 G3 G4	G1 G2 G3 G4
Nyquist	G1	G1 G2	G1 G2 G3 G4	G1 G2 G3 G4
FFT+Nyquist	FFT Nyquist G1	FFT Nyquist G1 G2		
Wave+FFT *	ANALOG FFT G1	ANALOG FFT G1 FFT G2		
Wave+Nyquist*	ANALOG Nyquist G1	ANALOG Nyquist G1 G2		

* Selectable only when the [Reference] setting on the Status Settings screen is [From Mem].

3.7 Saving Analysis Results

The saving procedure is the same as for the Memory and Recorder functions.

See "Chapter 11 Saving/Loading Data & Managing Files" in the Instruction Manual

The size of saved files depends on the file format. See "Appendix 2.2 Waveform File Sizes" in the *Instruction Manual*

When FFT Analysis Results are Saved as Text _____

A file is created for each analysis mode. One of the following text strings is appended to the file name.

Example: When the Name Pattern setting is [Trig (prefix)] and the save name is "TEST"

150000_051201_TEST_LIN.TXT (15:00:00, Dec. 1, 2005, "TEST" Linear Spectrum text data)

Analysis Mode	Save Name	Analysis Mode	Save Name
Storage Waveform	STR	Cross Power Spectrum	CSP
Linear Spectrum	LIN	Cross-correlation Function	CCR
RMS Spectrum	RMS	Impulse Response	IMP
Power Spectrum	PSP	Coherence Function	СОН
Power Spectrum Density	PSD	Phase Spectrum (1ch / 2ch)	PHASE
Auto-correlation Function	ACR	Power Spectrum (LPC)	LPC
Histogram	HIS	1/1 Octave	1_1_OCT
Transfer Function	TRF	1/3 Octave	1_3_0CT

Text Saving Example_

3.8 Printing Analysis Results

The printing procedure is the same as for the Memory and Recorder functions. **See** "Chapter 12 Printing" in the *Instruction Manual*

Example of Waveform Printout _

Example of Numerical Value Printout

Linear Spectrum	w1:1-1		Yaxis:Lin-Mag	Xaxis:Log	(Ove	erall)261.762mV	-							
0Hz 0.553mW 400Hz 5.585mV	58Hz	4.317mV	100Hz	4.851mV	150Hz	5.760mV	200Hz	5.247aV	250Hz	6.366mV	300Hz	5.270mV	350Hz	5.736mV
400Hz 5.585mV	450Hz	6.029mV	500Hz	6.080mW	559Hz	6.698nW	600Hz	7.217#W		8.203mV	700Hz	9.355#W	750Hz	11.066mV
800Hz 13.587mV .20kHz 11.054mV	850Hz	18.098mV		7.135mV	950Hz	57.346eiV		358.934mV		12.153mV	1.10kHz	22.056mV	1.15kHz 1.55kHz	14.742mV 3.821mV
.60kHz 3.470mV	1.25kHz 1.65kHz	8.785mV 3.110mV	1.30kHz	7.251mV	1.35kHz	6.153mV	1.40kHz	5.435mV	1.45kHz	4.764mV 2.365mV	1.50kHz 1.90kHz	4.282mV 2.168mV	1.95kHz	2.855mV
.00kHz 1.948mV	2.05kHz	1.836mV		2.870mV 1.761mV	1.75kHz	2.749mV 1.665mV	1.80kHz	2.442mV		2.365mV 1.545mV	2.30kHz	2.108mV 1.471mV	2.35kHz	1.404mV
.40kHz 1.325mV	2.45kHz	1.030mV 1.292mV	2.50kHz	1.261mV 1.261mV	2 · 15kHz 2 · 55kHz	1.205mV	2.20kHz 2.60kHz	1.632mV 1.131mV	2.25kHz 2.65kHz	1.974mV	2.30kHz	1.4/1m/ 1.206mV	2.35kHz	1.083mV
.80kHz 1.041mV	2.85kHz	1.643mV	2.90kHz	0.967mV	2.95kHz	0.948mV	3.00kHz	0.933mV	3.05kHz	0.984mV	3.10kHz	0.884mV	3.15kHz	0.885mV
.20kHz 0.836mV	3.25kHz	0.825mV	3.30kHz	0.791mV	3.35kHz	0.734mV	3.40kHz	0.740mV	3.45kHz	8.769mV	3.50kHz	0.707mV	3.55kHz	0.702eV
.60kHz 0.678mV	3.65kHz	8.685mV	3.70kHz	0.680mV	3.75kHz	0.647mV	3.80kHz	0.617mV	3.85kHz	0.521mV	3.90kHz	0.586mV	3.95kHz	0.620mV
.00kHz 0.636mV	4.05kHz	0.567mW	4.18kHz	0.557mV	4.15kHz	8.571mV	4.20kHz	0.586mV	4.25kHz	0.552mV	4.30kHz	0.518mV	4.35kHz	0.538mV
.40kHz 0.546mV	4.45kHz	0.538mV	4.58kHz	0.543mV	4 55kHz	0.521mV	4.69kHz	0.486mV	4.65kHz	0.505mV	4.78kHz	8.489mV	4.75kHz	0.461mV
.80kHz 0.460mV	4.85kHz	6.472mV	4.98kHz	0.479mV	4.95kHz	8.447mV	5.00kHz	8.448mV	5.05kHz	0.443mV	5.10kHz	0.439mV	S.15kHz	9.460mV
.20kHz 0.411mV	5.25kHz	0.425mV	5.30kHz	0.437mV	5.35kHz	0.405mV	5.40kHz	0.421mV	5.45kHz	0.403mV	5.50kHz	0.384mV	5.55kHz	0.413mV
.60kHz 0.426mV	5.65kHz	0.382mV	5.70kHz	0.370mV	5.75kHz	8.460mV	5.80kHz	0.384mV	5.85kHz	0.358mV	5.90kHz	0.374mV	5.9SkHz	0.379mV
.86kHz 0.382mV	6.05kHz	0.353mV	6.19kHz	8.349mV	6.15kHz	0.352mV	6.20kHz	0.346mV	6.25kHz	0.320mV	6.39kHz	8.356mV	6.35kHz	6.343mV
.40kHz 0.283mV	6.45kHz	0.362mV	6.S8kHz	0.359mV	6.55kHz	0.285mV	6.60kHz	0.359mV	6.65kHz	0.344mV	6.70kHz	0.267mV	6.75kHz	0.332mV
5.80kHz 0.334mV	6.85kHz	0.311mV	6.90kHz	0.371mV	6.95kHz	0.277stV	7.00kHz	0.313mV	7.05kHz	8.362mV	7.10kHz	0.260mV	7.15kHz	0.310mV
7.20kHz 0.298mV	7.25kHz	0.278mV	7.30kHz	0.352mV	7.35kHz	0.282mV	7.40kHz	8.265mV	7.45kHz	0.319mV	7.50kHz	0.287mV 0.219mV	7.55kHz	0.288mW
.60kHz 0.308mV	7.65kHz	0.281mW	7.70kHz	0.275mV	7.75kHz	0.257mV	7.80kHz	0.330mV	7.85kHz	0.293mW	7.90kHz	0.219mV	7.95kHz	0.274mV
3.09kHz 8.276mV	8.05kHz	6.245mV	8.10kHz	0.244nV	8.15kHz	0.246mV	8.20kHz	0.301mW 0.266mW	8.25kHz	0.281mV	8.30kHz	0.226mV	8.35kHz	0.269mV
3.40kHz 0.254mV 3.80kHz 0.277mV	8.45kHz	0.245mV	8.50kHz	0.253mV	8.55kHz	0.313mV	8.60kHz	0.266mV	8.65kHz	0.282mV	8.76kHz	0.235mV	8.75kHz	9.286mV
20kHz 8.289mV	8.85kHz	0.213mV	8.90kHz	0.264mV	8.95kHz	0.265mV	9.00kHz	0.250mV	9.05kHz	0.228mV	9.10kHz	0.216sN	9.15kHz 9.55kHz	0.294mV 0.269mV
.50kHz 0.136mV	9.25kHz 9.65kHz	0.224mV 0.167mV	9.30kHz	0.226mV	9.35kHz	0.199mV	9.40kHz	0.281mV	9.45kHz	6.270mV	9.50kHz	0.188mV	9.00kHz	0.207mW 0.161mV
3.00kHz 0.210mV	10.05kHz	0.10/mV 0.224mV	9.70kHz 10.10kHz	0.248mV 0.214mV	9.75kHz	8.213mV	9.80kHz 10.20kHz	0.235mV 0.115mV	9.85kHz	0.205mV	9.90kHz 10.30kHz	0.133mV 0.224mV	10.35kHz	0.189mV
3-40kHz 6.211mV	10.45kHz	0.179mV	18.50kHz	0.214#V	10.15kHz 10.55kHz	0.160mV 0.213mV	10.20kHz	0.115mV 0.192mV	10.25kHz 10.65kHz	0.183mV 0.178mV	10.30kHz	0.224mv 0.188mV	10.35kHz	0.184nV
8.80kHz 8.175mV	10.45kHz	0.171mV	10.90kHz	0.189eV	10.35kHz	0.157mV	11.00kHz	0.143mV	11.05kHz	0.186mV	11.10kHz	0.173mV	11.15kHz	0.176mV
1,20kHz 0,179mV	11.25kHz	0.168mV	11.30kHz	8.196mV	11.35kHz	0.226mV	11.40kHz	0.182mV	11.45kHz	0.131aV	11.50kHz	0.196mV	11.55kHz	8.235mV
1.60kHz 0.188mW	11.65kHz	0.219mV	11.70kHz	0.186mV	11.75kHz	0.133mV	11.80kHz	0.204mV	11.45kHz	0.198mV	11.90kHz	0.203mV	11.95kHz	8.178mW
2.00kHz 0.159mV	12.05kHz	0.182mV	12.10kHz	0.154mV	12.15kHz	0.183mV	12.20kHz	0.227mV	12.25kHz	0.222mV	12.30kHz	0.185mV	12.35kHz	0.159mW
2.40kHz 0.196mV	12.45kHz	0.181mV	12.50kHz	0.195mV	12.55kHz	0.210mV	12.60kHz	6.134mV	12.65kHz	0.165mV	12.70kHz	0.186mV	12.75kHz	0.150mV
2.88kHz 0.186mV	12.85kHz	6.190mV	12.90kHz	0.126mV	12.95kHz	0.158mV	13.00kHz	0.196mV	13.95kHz	0.182mV	13.10kHz	0.134mV	13.15kHz	0.164mV
3.29kHz 0.148mV	13.25kHz	0.140mV	13.30kHz	0.197mV	13.35kHz	0.181mW	13.46kHz	0.166#V	13.45kHz	0.147mV	13.50kHz	0.160mV	13.55kHz	0.182mV
3.60kHz 8.209mV	13.65kHz	0.169mV	13.70kHz	0.148mV	13.75kHz	0.162mV	13.80kHz	0.165mV	13.85kHz	0.180mV	13.90kHz	0.176nN	13.95kHz	0.127mV
4.00kHz 0.131mV	14.05kHz	8.179mV	14.10kHz	0.155mV	14.15kHz	9.174mV	14.20kHz	9.143mV	14.25kHz	0.154mV	14.30kHz	0.145mV	14.35kHz	0.149mV
4.48kHz 0.201mV	14.45kHz	0.150mV	14.50kHz	0.110mV	14.55kHz	0.169mV	14.60kHz	0.170mV	14.65kHz	6.155mV	14.70kHz	0.142mV	14.75kHz	0.145mV
4.80kHz 8.169mV	14.85kHz	0.164mV	14.90kHz	0.149mV	14.95kHz	0.130mV	15.00kHz	0.164mV	15.05kHz	0.176mV	15.10kHz	0.161mW	15.15kHz	6.139aV
5.20kHz 0.137mV	15.25kHz	0.186mV	15.30kHz 15.70kHz	8.165mV	15.35kHz	0.114nW	15.40kHz	0.132mV	15.45kHz	0.193mV	15.50kHz	0.139mW	15 . 55kHz	0.152mV
5.60kHz 8.171mV	15.65kHz	0.120mV	15.79kHz	0.159mV	15.75kHz	0.183mV	15.80kHz	0.112mV	15.85kHz	0.141mV	15.90kHz	0.170mV	15.95kHz	0.174mV
6.00kHz 0.178mV	16.05kHz	0.092mV	16.10kHz	0.188mV	16.15kHz	0.200mV	16.20kHz	0.097mV	16.25kHz	0.175mV	16.30kHz	9.177mV	16.35kHz	0.097mV
6.40kHz 0.159mV 6.80kHz 0.146mV	16.45kHz	6.137mV	16.50kHz	6.141mV	16.55kHz	0.163mV	16.60kHz	0.104mV	16.65kHz	9.167mV	16.70kHz	0.175mV	16.75kHz	0.091mW 0.162mV
7.20kHz 0.138mV	16.85kHz 17.25kHz	0.189mV 0.165mV	16.98kHz	0.170mV	16.95kHz	0.135mV	17.00kHz	0.168mV 0.129mV	17.05kHz	0.156mV	17.10kHz	0.138mV 0.150mV	17.15kHz 17.55kHz	0.162mV 0.128mV
7.68kHz 0.152mV	17.65kHz	8.157mV	17.30kHz 17.70kHz	0.183mV 0.128mV	17.35kHz 17.75kHz	0.142mV 0.142mV	17.40kHz 17.80kHz	0.129mV 0.124mV	17.45kHz 17.85kHz	0.174mV	17.50kHz 17.90kHz	0.100mv 0.159mV	17.95kHz	0.120mV 0.094mV
8.00kHz 0.149mV	18.05kHz	0.15/mv 0.156mV	17.70KHZ 18.10kHz	0.128mV 0.120mV	17.75kHz 18.15kHz	0.142mV 0.140mV	17.80kHz 18.20kHz	0.124mV 0.102mV	17.85kHz 18.25kHz	0.159mV 0.163mV	17.90kHz 18.30kHz	0.159mV 0.199mV	17.95KHz 18.35kHz	0.074mv 8.091mV
8.40kHz 0.134mV	18.45kHz	8.189mV	18.50kHz	0.138mV	18.55kHz		18.60kHz		18.65kHz	0.115mV	18.70kHz	0.199miv 0.104miV	18.75kHz	
8.80kHz 8.166mV	18.85kHz	9.103mV	18.96kHz	0.150mV	18.95kHz		19.00kHz	0.133mV	19.05kHz	0.155mV	19.10kHz	6.122mV	19.15kHz	
9.28kHz 8.129mV	19.25kHz	0.133mV	19.30kHz	0.127mV	19.3564-	0.087mV	19.48kHz		19.45kHz	0.140mV	19.50kHz	0.117mV	19.55kHz	8.164m
19.60kHz 0.077mV	19.65kHz	0.138mV	19.70kHz	0.183mV	19.35kHz 19.75kHz	0.128eV	19.80kHz	0.125mV	19.85kHz	0.091mV	19.90kHz	9.131mV	19.95kHz	

3.9 Analysis with the Waveform Screen

3.9.1 Selecting the Display Method

The display of FFT analysis data can be switched between waveform and numerical views.

Press the **DISP** key repeatedly to change the display method. Pressing the **DISP** key opens the Display dialog in which to select a display method. Selections in this dialog are available using the F keys.

Press the **ESC** key or an F key to close the dialog.

NOTE When the display type on the Sheet Settings screen is [Nyquist], [FFT+Nyquist] or [Wave+Nyquist], the display cannot be switched.

3.9.2 Selecting Gauges and Values

Display of upper and lower limits and peak values [maximal/ maximum] can be selected by analysis number. However, selection is not possible when Nyquist display is enabled.

Press the **FUNCTION MODE** key to enable the FN mode, then press **F2** [Gauge & Value]. The Gauge dialog appears.

Select an analysis number as occasion demands to display gauge and measurement values. Press the **ESC** key or the **F8** [Close] key to close the dialog.

GAUGE&VALUE dialog

Using the CURSOR keys, move the cursor into the dialog and select the channels for which to display a gauge.

3.9.3 Analyzing after Specifying an Analysis Starting Point

A starting point for FFT analysis can be specified on an existing memory waveform before analyzing.

The procedure depends on the Trigger Mode setting.

See "Trigger Modes and Averaging" (p. 60)

- When the Trigger Mode is [Single] Analysis is performed once on the specified number of analysis points beginning with the specified starting point, and analysis results are displayed. This is convenient for analyzing only a specific range. However, if averaging is enabled, analysis repeats for the specified averaging count.
- When the Trigger Mode is [Auto] or [Repeat] Analysis is performed repeatedly on the specified number of analysis points beginning with the specified starting point and ending with end of waveform data, and final analysis results are displayed (because analysis is only performed on the specified number of analysis points, final analysis results may be determined and become available before the end of the waveform data).

The starting point can be specified by one of the following methods:

(1) Verifying the analysis starting point while viewing analysis data (p. 81)

The memory waveform and analysis results are displayed at the same time on the Waveform screen (Sheet Settings screen: Display type [Wave+FFT] or [Wave+Nyquist]) and the analysis starting point is specified on the memory waveform.

(2) Performing FFT analysis after specifying a starting point on an existing memory waveform using the A/B cursors (p. 83)

The analysis starting point is specified using the A/B cursors with the Memory function. If the cursors are not displayed, analysis begins at the start of the data. The starting position cannot be verified while the FFT function is enabled.

Procedure 1. Verifying the analysis starting point while viewing analysis data

10.00ms 20.00ms 30.00m

Analysis Starting Point

form (1-1)

F-150

50,0000pW

F.2 Histogram (1-1)

0 -100.0000ml

(

1 2

40.00ms

Overall 30.7776mV 20.00ms

Overall 30.7776mV 100.0000mV

The analysis segr ory waveform for played.	Memory Waveform	Analysis segment for one pass (the number of analysis points) Specify the location of the analysis input data using the jog and shuttle controls. Jog Moves the analysis starting point. Shuttle Scrolls the Memory waveform. State SPEED key to adjust the movement and scrolling ed.
To change the number of analysis points	The range is determined by the lf the analysis range (number shown below, analysis is not p	of points) is larger than the memory waveform as
To analyze only a certain portion	currently displayed analysis se When the trigger mode is othe	een, set the trigger mode to [Single], so that only the egment will be analyzed. For than [Single], analysis continues for the specified to the end of data. To interrupt analysis in progress,
To change analysis condi- tions	Press the SUB MENU keys to tings.	select [FFT (1/2)] or [FFT (2/2)], and change the set-
↓	9 Press the START key t	to begin analyzing.
FFT Freq Startz - SOHe 200eal		 Shows the last analysis segment.

Analysis results are displayed on the lower graphs.

When the trigger mode is [Auto] or [Repeat], the number of analysis points up to the end of the waveform data is analyzed, and the last data is displayed.

Shows the number of times analysis was performed.

Procedure 2. Performing FFT analysis after specifying a starting point on an existing memory waveform using the A/B cursors

6 Press the DISP key to display the Waveform screen.

7 Make other settings as occasion demands, then press the START key to begin analyzing.

3.10 FFT Analysis Modes

3.10.1 Analysis Modes and Display Examples

For the functions of each analysis mode, see "3.10.2 Analysis Mode Functions" (p. 102).

Storage

STR

Displays the time axis waveform of the input signal.

When the window function setting is other than rectangular, the window function is applied to the waveform and displayed.

Axis	Display Type	Description
X axis	Linear	Time-domain display Displays the value of the time-domain waveform corresponding to the set frequency range. See "Relationship Between Frequency Range, Resolution and Number of Analysis Points" (p. 55)
Y axis	Lin-Mag	Displays the input module waveform.

Waveform Example

Linear Spectrum

The linear spectrum plots the input signal frequency. It can be displayed as a Nyquist plot.

Main uses:

- · To inspect the peak frequency contents of a waveform
- To inspect signal amplitudes at each frequency

See About the Functions "3.10.2 Analysis Mode Functions" (p. 102)

Axis	Display Type	Description		
	Linear	Frequency is displayed with equal spacing Display Range: DC to the top of the frequency range		
X axis	Log	Frequency is displayed logarithmically Display Range: 1/400 th to 1/8000 th (depending on the number of analysis points) to the top of the frequency range		
	Nyquist display	The real-number component of analysis values are displayed linearly.		
	Lin-Mag	Analysis values are displayed linearly.		
	Log-Mag	Analysis values are displayed as dB values. (0 dB reference value: 1eu)*		
Y axis	Lin-Real	The real-number component of analysis values are displayed.		
	Lin-Imag	The imaginary component of analysis values are displayed.		
	Nyquist display	The imaginary component of analysis values are displayed.		

* eu: engineering units that are currently set are the standard (e.g., when the unit settings is volts, 0 dB = 1 V)

Waveform Example

Nyquist display

RMS Spectrum

RMS

Amplitudes (RMS values) are calculated along the frequency axis from the input signal waveform. RMS and power spectra displays use the same analysis results displayed logarithmically (amplitude in dB).

Main uses:

- · To inspect the peak frequency contents of a waveform
- To inspect the RMS value at each frequency

See About the Functions "3.10.2 Analysis Mode Functions" (p. 102)

Axis	Display Type	Description			
	Linear	Frequency is displayed with equal spacing Display Range: DC to the top of the frequency range			
X axis	Log	Frequency is displayed logarithmically Display Range: 1/400 th to 1/8000 th (depending on the number of analysis points) to the top of the frequency range			
	Lin-Mag	Analysis values are displayed linearly.			
Y axis	Log-Mag	Analysis values are displayed as dB values. (0 dB reference value: 1eu)*			
	Lin-Real	The real-number component of analysis values are displayed.			
	Lin-Imag	The imaginary component of analysis values are displayed.			

* eu: engineering units that are currently set are the standard (e.g., when the unit settings is volts, 0 dB = 1 V)

Waveform Example

Power Spectrum

Main uses:

- To inspect the peak frequency contents of a waveform
- To inspect the power level at each frequency

See About the Functions "3.10.2 Analysis Mode Functions" (p. 102)

Axis	Display Type	Description
	Linear	Frequency is displayed with equal spacing Display Range: DC to the top of the frequency range
X axis	Log	Frequency is displayed logarithmically Display Range: 1/400 th to 1/8000 th (depending on the number of analysis points) to the top of the frequency range
Y axis	Lin-Mag	Analysis data is displayed linearly as squared values. Indicates the power component.
	Log-Mag (logarithm)	Analysis values are displayed as dB values. (0 dB reference value: 1eu ²)*

* eu: engineering units that are currently set are the standard (e.g., when the unit settings is volts, 0 dB = $1 V^2$)

Waveform Example

Power Spectrum Density

Indicates the power spectrum density of the input signal with only the amplitude component included. This is the power spectrum divided by the frequency resolution.

Not available with external sampling enabled.

Main uses:

To acquire a power spectrum with 1-Hz resolution for highly irregular waveforms such as white noise **See** About the Functions "3.10.2 Analysis Mode Functions" (p. 102)

Axis	Display Type	Description
	Linear	Frequency is displayed with equal spacing Display Range: DC to the top of the frequency range
X axis	Log	Frequency is displayed logarithmically Display Range: 1/400 th to 1/8000 th (depending on the number of analysis points) to the top of the frequency range
Y axis	Lin-Mag	Analysis values are displayed linearly.
	Log-Mag (logarithm)	Analysis values are displayed as dB values. (0 dB reference value: 1eu ² /Hz)*

* eu: engineering units that are currently set are the standard (e.g., when the unit settings is volts, 0 dB = $1 V^2/Hz$)

Waveform Example

F-1 Power Spectrum Density (1-1) 35.000UV*/Hz -15.000uV*/Hz 50Hz 20.00kHz	Maximal 1 2 3 4 5	1.90kHz 2 0Hz 1 5.65kHz 1	25.693uV²/Hz 263.03pV²/Hz 157.12pV²/Hz 19.637pV²/Hz 17.252pV²/Hz	Normal display X axis: Log Y axis: Lin-Mag
F-2Power Spectrum Density (1-1) 20.00dB 	Maximal 1 2 3 4 5	1.00kHz 1.90kHz OHz 5.65kHz 4.55kHz	-45.90dB -95.80dB -98.04dB -107.07dB -107.07dB -107.63dB	Normal display X axis: Log Y axis: Log-Mag

PSD

Auto Correlation Function

Shows the correlation of two points on the input signal at time differential *t*.

Main uses:

- To detect periodicy in irregular signals (improving and detecting SNR)
- To inspect periodic components in a noisy waveform.

See About the Functions "3.10.2 Analysis Mode Functions" (p. 102)

Axis	Display Type	Description
X axis	Linear	Time display The center ($t = 0$) is the reference. To the right is lag time (+ t), and to the left is lead time (- t)
Y axis	Lin-Mag	+1 to -1 (dimensionless units) The closest correlation at time differential t is +1, and the least correlation is 0. -1 indicates completely reversed polarity. Because of the characteristics of the function, $t = 0$ becomes +1.

Waveform Example

This instrument provides a circular auto-correlation function. Analysis results are normalized to the maximum value.

Histogram

Acquires the amplitude distribution of the input signal.

Main uses:

- To inspect deviations in the amplitude range of a waveform
- With analysis point distribution, to ascertain whether a waveform is artificial or natural (natural forms exhibiting regular distribution)

See About the Functions "3.10.2 Analysis Mode Functions" (p. 102)

Axis	Display Type	Description
X axis	Linear	Displays input level of the input signal.
Y axis	Lin-Mag	Displays analysis data distribution.

Waveform Example

ACR

HIS

1/1 and 1/3 Octave Analysis

The sound pressure level of the spectrum of a signal such as noise is displayed through a fixed-width one- or one-third octave band-pass filter.

Not available with external sampling enabled.

Main uses:

To analyze frequency components of noise

See About the Functions "3.10.2 Analysis Mode Functions" (p. 102), "Octave Filter Characteristics" (p. 114)

Axis	Display Type	Description
X axis	Log	Displays the center frequency of each band.
Y axis	Lin-Mag	Octave analysis values are displayed linearly.
	Log-Mag (logarithm)	Octave analysis values are displayed as dB values. (0 dB reference value: $1eu$)*

* eu: engineering units that are currently set are the standard (e.g., when the unit settings is volts, 0 dB = 1 V)

Waveform Example

Octave Analysis

Octave analysis consists of frequency analysis of the signal passed through a constant-width band-pass filter. The power spectrum displays the power level in each subband after dividing the spectrum into fixed-width segments (subbands), while octave analysis scales the spectrum logarithmically and displays each octave (subband) as a bar graph.

The center frequency of the octave bands and filter characteristics are determined according to IEC61260 standards. With this instrument, 1/1- and 1/3octave analyses are calculated using power spectrum Analysis results.

1/1 Octave Analysis: 6 subbands1/3 Octave Analysis: 16 subbands

ОСТ

Measurable Ranges with Octave Analysis

Ê [5	1		10		ा	0	0	ା	0	0						0	0	0	ा		Т	Т		Τ	Т				Τ	Г					Т	1			1	Τ	
3 OC	_		133m		•			•			•	00				•		0	•		00																				-	
(•: 1/1 OCT, U: 1/3 OCT)	071	1.2	333m 333m	24				•			•		•			•			•																_					_		
CT,	100		400m	23							•	00				•			•	0			00																			
1/1 0	00	600m	1. 00 667m	22							•	0			C) () •		0	0 •	0			С			Ŷ																
U S	0ç	200m	2 800m	21								0			C	•		0	0 •	0	00		Э			0	•															
50 2	<u>ی</u>	300m		20								1		С) C		0	0		0	0		00			0	++	0			Ī											
ç	2	100m	2 ₽	19																0	0		Э¢) C	0	1 1	0	00		0	0 •										
v	0	20m	N7 80	18															-		(_	ЭС) c	0		0	00		0		0	- 1	•						+	
¢	7	20m	2 2	17																					С		0	0	00		0	0	0	0	0						+	
-			90 49																			+						0	00	blo	0		0	0				0	0		>	
mOO			007						_													-					•	_		C	0		0	0				0	0		0	
200m 5			200			_			_											-		_	-	-				_		•		•							0			•
100m 20		_	400 2			_																-						_							•	С						•
50m 10			2K 800 4								-	-								_		-	-	-											_		•	-				•
F		-							_		_	_		_							_		-	_				_			-					_	-			•	-	•
			5 7						_	_	_			-						_	_	+	_	_				_								_					-	•
⊢			¥	1		_					_										_			_													-					
5			ž ×									_				_							_		_	<u> </u>										_						
, 	E7	20µ	ž ž	∞							_				_									_											_							
=	E	1001	40k	7																																						
2001	nunc	5 µ	80K	9																																						
20011	7007	2μ 5006	200k	5																																						
1001	100 M	μ.	400k	4																						Ī																
2011	μuc	200u	800k	m																			T			T																
100	70 H	200n	mc WZ	2								1											+													1		+		+	1	
1011			4W 10W	-		┤				+	_			+							+		╈	+		1										+				+		
			WN7			+	+															-	+	+				_												-	-	
F		+	+	er ency	4	5m	6. 3m	8m	10m	12. 5m	16m	20m	Z5m 1.5m	40m	50m	63m	80m	100m	125m	160m	200m	11007	315m	400m	m029	800m	-	1.25	1.6	2 5	3.15	4	5	6.3	80 ç	12 5	16	20	25	31.5	50	63
		(H)	e [Hz]	Lequ Ltequ					_	_	_	+			-	-				-	_	-	_	_		-										_					-	
\$	se	s]	Frequency range [Hz]	1/3 0CT	-24	-23	-22	-21	-20	-19	-18	-1;	-15	-17	-12	-12	F	-10	6-	φ	-	٩ľ	ŗ.	4 n	î	1	0		2		5	9	7	∞	6	2 ₽	12	13	14	19	2	18
12	limebase	Period [s]	il la	1/1 0CT	φ			-1		,	9		Ŷ	,	1	-4		1	Ϋ́			7		5	_	1	0			_	1	2			ŝ		4		Ι.	^		9

(●: 1/1 OCT, ○: 1/3 OCT)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$\begin{array}{c c c c c c c c c c c c c c c c c c c $				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11 1 2m 11 1 1 12 1 1 13 1 1 14 1 1 15 1 1 16 1 1 17 1 1 18 1 1 19 1 1 10 1 1 11 1 1 12 1 1 13 1 1 14 1 1 15 1 1 16 1 1 17 1 1 18 1 1 19 1 1 10	2000	100 100 100 100 100 100 100 100 100 100	200 50 11 12 12 13 13 13 13 13 13 13 13 13 13	200 ² 20 30 40 40 40 40 40 40 40 40 40 40 40 40 40	100m 10 13 10 19	300m 3.33 1.33 20 20	500m 2 21 21 21	600m 1.66 667m 22	7 3 3 400 ⁻¹	24	3333 1333 25
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													0 4 6 1	3.33 20 20 20	2 800m 21	1.66 667m 22			3333
8M 4M 2M 800k 400 Barter 100 1 2 3 4 100 1125 100 1 2 3 4 100 125 315 3 4 3 4 250 250 2 3 4												∞ <u>∞</u>	4 5	1.33 20	21 21	22 22			25 25
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										1	₽	<u>e</u>	20	21	22	3		52
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							00000000	000000											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							00000000												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						000000000000	0000000	0000											
23 200 1 1 24 250 10 1 25 400 1 1 1 26 400 1 1 1 1 28 630 1 1 1 1 1 28 630 1 1 1 1 1 1 33 1 1.6k 1 1 1 1 1 33 1.16k 1 1 1 1 1 1 1 33 1.16k 1						0000000000	000000	0000	O I										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				• • • • • • • •		000000000	00000	000											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					00000000000		00000	00											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								0											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				• • • • •			000												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						00000													
29 800 1 1 23 1 1 23 1 1 23 1 1 23 33 1 23 34 44 33 34 44 34 34 44 34 34 44 34 34 44 34 34 44 34 <td></td>																			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			• • • • • •	• • • •	000000	0000													
31 $1.25k$ 1.6k 1 <t< td=""><td></td><td>00000000</td><td></td><td></td><td>000000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		00000000			000000														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		00000000		• • •	00000														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		00000000	• • •	• • •	0000														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		000000000		• •															
35 $3.15k$ $3.15k$ $3.15k$ 36 $4k$ $3.5k$ 4 37 $6.3k$ $6.3k$ $6.5k$ 38 $6.3k$ $10k$ 7 39 $8k$ 7 7 40 $10k$ 7 7 41 $12.5k$ 7 7 43 $20k$ 7 7 44 $25k$ 7 7 45 $31.5k$ 7 7 46 $40k$ 7 7 47 $50k$ 7 7 48 $80k$ 7 7 49 $80k$ 7 7 50 $100k$ 7 7 51 $125k$ 7 7 55 $315k$ 7 7 56 $400k$ 7 7 57 $500k$ 7 7 58 $500k$ 7 7 57 7 7 7 <td></td> <td>00000000</td> <td>• •</td> <td>• •</td> <td></td>		00000000	• •	• •															
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		000000	• •	• •															
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		00000		•							_								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		0000		•															
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		000	•	•															Ī
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		000							_			_							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$) c										╞		Ι				╞	Т
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						-	-			_									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				2.0				_											
45 31.5k - <td>) () •) ()</td> <td>) C</td> <td></td> <td></td> <td></td> <td>T</td> <td></td> <td>╞</td> <td>╞</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Τ</td>) () •) ()) C				T		╞	╞										Τ
46 40k 40k 0 0 47 50k 40 0 0 0 48 63k 0 0 0 0 0 49 63k 0 0 0 0 0 0 50 100k 0 0 0 0 0 0 0 51 125k 0 0 0 0 0 0 0 0 53 200k 0 <td></td> <td>• > () •</td> <td></td>		• > () •																	
47 50k 63k 0 0 48 63k 63k 0 0 0 49 63k 0 0 0 0 0 50 100k 0 0 0 0 0 0 51 125k 0 0 0 0 0 0 0 52 160k 0 0 0 0 0 0 0 0 53 200k 0<		0	0																
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0																	
49 80k 50 100k 51 125k 52 160k 53 200k 54 250k 55 313k 56 0 57 160k 56 0 56 313k 56 400k 57 500k	0 • 0	0																	
50 100k 51 12k 52 12k 53 200k 54 250k 55 315k 56 000k 57 160k 58 315k 56 400k 57 315k 58 315k 59 400k 50 00k 56 400k		0						_											
51 123k 52 123k 53 160k 53 160k 54 250k 55 315k 56 400k 57 100k 58 315k 59 400k 50 500k	0																		
52 160k 53 200k 54 250k 55 315k 56 0 57 500k 58 315k 59 0 56 0 57 500k 58 300k 58 500k 58 500k	•							-	_										
33 200K 54 200K 54 31560K 55 31550K 56 400K 57 500K 58 31550K 57 500K 58 31550K 57 500K 58 31550K 58 31550K 58 31550K 59 0 500K 0 58 31550K			+			T		+	+	_	_						+	-	
54 250k 55 315k 56 0 57 86 58 400k 59 0 500k 0 51 500k 52 400k								_	_	_								-	
32 31)X 52 400K 53 400K 54 500K 54 500K																			
26 400K ← ○ ← ○ ← ○ ← ○ ← ○ ← ○ ← ○ ← ○ ← ○ ←	0								+	_									
23 200K ● ○ ● ○ ○ ○ ● ○ ○ ○ ○ ● ○	0																		
C C 20k	•							_	_	_								_	
		_	_				_	_	_	_								_	
59 800k O																			
• • •																			
1. 25M O O		+	+				+	+	+	_								+	Τ
								+	+										
		_	_				_	_	_	_									1

20m 5k 200µ 2k 11	50m 500 µ 2k 800 12	50m 100m 500 µ 1m 2k 1k 800 400 12 13	50m 500 µ 21k 800 800	50m 100m 200m 500 µ 1m 2m 2k 1k 500 800 400 200 12 13 14 12 13 14	50m 100m 200m 500m 1 2 500 µ 1m 2m 5m 10m 20m 2k 1k 500 200 100 50 800 400 200 80 40 20 12 13 14 15 16 17 12 13 14 15 16 17	50m 100m 200m 500m 1 500 1m 2m 5m 10m 2k 1k 500 200 100 800 400 200 80 40 12 13 14 15 16 12 13 14 15 16	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50m 100m 200m 500m 1 2 5 10 30 500 µ 1m 2m 5m 10m 20m 300m 300m 2k 1k 500 200 100 50 20 10 3.33 800 400 200 800 40 20 80 4 1.33 12 13 14 15 16 17 18 19 20 12 13 14 15 16 17 18 19 20 12 13 14 15 16 17 18 19 20 12 13 14 15 16 17 18 19 20 12 13 14 15 16 17 18 19 20 13 14 15 16 17 18 19 20 14 15 16	50m 100m 200m 500m 1 2 5 10 30 50 50 $200_{\rm H}$ 1m 2m 5m 10m 20m 500m 500m $2k$ 1k 500 100 50 20 100 3.33 2 $2k$ 1k 500 40 20 80 40 3.33 2 800 400 200 80 40 20 800m 12 13 14 15 16 17 18 19 20 21 12 13 14 15 16 17 18 19 20 21 12 13 14 15 16 17 18 20 20 21 12 13 14 15 16 17 18 20 20 21 12 13 16 16 17 18 19 <th>50m 100m 200m 500m 1 2 5 10 30 50 60 500 µ 1m 2m 5m 10m 30m 500m 600m 2k 1k 500 200 100 50 20 10 333 2 1.66 800 400 200 80 40 20 80 60m 60m 12 13 14 15 16 17 18 19 20 21 22 12 13 14 15 16 17 18 19 20 21 22 12 13 14 15 16 17 18 19 20 21 22 12 13 14 15 16 17 18 20 21 22 14 15 16 17 18 19 20 21 22 14</th> <th>50m 100m 200m 50m 1 2 5 10 30 50 60 100 10 100m 300m 500m 100m <t< th=""><th>50m 100m 200m 50m 1 2 5 10 30 50 60 20L 1m 2m 5m 10m 20m 50m 50m 60m 2k 1k 500 100 50 20 10 333 2 1.66 2k 1k 500 40 20 80 40 3.33 2 1.66 800 400 200 80 40 20 800m 67m 12 13 14 15 16 17 18 19 20 21 22 12 13 14 15 16 17 18 19 20 21 22 12 13 14 15 16 17 18 20 20 20 7 22 112 13 14 15 16 17 18 20 21 22</th></t<></th>	50m 100m 200m 500m 1 2 5 10 30 50 60 500 µ 1m 2m 5m 10m 30m 500m 600m 2k 1k 500 200 100 50 20 10 333 2 1.66 800 400 200 80 40 20 80 60m 60m 12 13 14 15 16 17 18 19 20 21 22 12 13 14 15 16 17 18 19 20 21 22 12 13 14 15 16 17 18 19 20 21 22 12 13 14 15 16 17 18 20 21 22 14 15 16 17 18 19 20 21 22 14	50m 100m 200m 50m 1 2 5 10 30 50 60 100 10 100m 300m 500m 100m 100m <t< th=""><th>50m 100m 200m 50m 1 2 5 10 30 50 60 20L 1m 2m 5m 10m 20m 50m 50m 60m 2k 1k 500 100 50 20 10 333 2 1.66 2k 1k 500 40 20 80 40 3.33 2 1.66 800 400 200 80 40 20 800m 67m 12 13 14 15 16 17 18 19 20 21 22 12 13 14 15 16 17 18 19 20 21 22 12 13 14 15 16 17 18 20 20 20 7 22 112 13 14 15 16 17 18 20 21 22</th></t<>	50m 100m 200m 50m 1 2 5 10 30 50 60 20L 1m 2m 5m 10m 20m 50m 50m 60m 2k 1k 500 100 50 20 10 333 2 1.66 2k 1k 500 40 20 80 40 3.33 2 1.66 800 400 200 80 40 20 800m 67m 12 13 14 15 16 17 18 19 20 21 22 12 13 14 15 16 17 18 19 20 21 22 12 13 14 15 16 17 18 20 20 20 7 22 112 13 14 15 16 17 18 20 21 22
		100m 11k 11k 13	100m 200m 200m 11k 200 11k 500 114 200 114 200 114 114 114 114 114 114 114 114 114 1	100m 200m 500m 1m 2m 5m 1k 500 200 400 200 80 13 14 15	100m 200m 500m 1 2 1 1m 2m 5m 10m 20m 1k 500 200 100 50 400 200 80 40 20 13 14 15 16 17	100m 200m 500m 1 2 1m 2m 5m 10m 20m 1k 500 200 100 50 400 200 80 40 20 13 14 15 16 17	100m 200m 500m 1 2 5 10 1m 2m 5m 10m 20m 50m 100m 1k 500 200 100 50 200 100 400 200 80 40 200 8 4 13 14 15 16 17 18 19 13 14 15 16 17 18 19	100m 200m 500m 1 2 5 10 30 1 1m 2m 5m 10m 20m 300m 300m 1 1k 500 200 100 50 10 3.33 400 200 80 40 20 8 4 1.33 13 14 15 16 17 18 19 20 13 14 15 16 17 18 19 20 14 15 16 17 18 19 20	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	r 100m 200m 500m 1 2 5 10 30 50 60 1 1m 2m 5m 10m 30m 500m 500m 600m 1k 500 200 100 50 20 10 333 2 1.66 400 200 80 40 20 8 4 1.33 800m 60m 13 14 15 16 17 18 19 20 21 22 13 14 15 16 17 18 19 20 21 22 14 15 16 17 18 19 20 21 22 13 14 15 16 17 18 19 20 21 22 16 1 18 19 20 21 22 20 20 20 10 1 19	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Phase Spectrum

Shows the phase characteristics of the input signal.

Main uses:

- To inspect the phase spectrum of channel 1. Displays the phase of a cosine waveform as a reference (0°).
- To inspect the phase difference between channels 1 and 2.

See About the Functions "3.10.2 Analysis Mode Functions" (p. 102)

- 1 Ch FFT: Displays the phase of the signal on channel 1. Displays the phase of a cosine waveform as a reference (0°). Unless the waveform is synchronous, phase values are unstable.
- 2 Ch FFT: Displays the phase difference between channels 1 and 2. Positive values indicate that the phase of channel 2 is leading.

Axis	Display Type	Description
	Linear	Frequency is displayed with equal spacing Display Range: DC to the top of the frequency range
X axis	Log	Frequency is displayed logarithmically Display Range: 1/400 th to 1/8000 th (depending on the number of analysis points) to the top of the frequency range
Y axis	Lin-Mag	Analysis values are displayed linearly.

Waveform Example

Emphasizing only a Specific Portion (Highlighted Display)

A specific portion of a phase spectrum can be emphasized and displayed. See "3.4.7 Emphasizing Analysis Results (phase spectra only)" (p. 61)

PHA

Transfer Function

From the input and output signals, the transfer function (frequency characteristic) of a measurement system can be obtained. It can also be displayed as a Nyquist plot.

Main uses:

- To inspect a filter's frequency characteristic
- To inspect the stability of a feedback control system (using the Nyquist plot)

• To inspect the resonance characteristic of an object using an impulse hammer and pick-up sensor **See** About the Functions "3.10.2 Analysis Mode Functions" (p. 102), "Linear Time-Invariant Systems" (p. 104)

Axis	Display Type	Description
	Linear	Frequency is displayed with equal spacing Display Range: DC to the top of the frequency range
X axis	Log	Frequency is displayed logarithmically Display Range: 1/400 th to 1/8000 th (depending on the number of analysis points) to the top of the frequency range
	Nyquist display	Displays the real-number component of the input-output ratio.
	Lin-Mag	Displays the input-output ratio linearly (dimensionless units).
	Log-Mag (logarithm)	Displays the input-output ratio as dB values.
Y axis	Lin-Real	Displays the real-number component of the input-output ratio (dimensionless units).
	Lin-Imag	Displays the imaginary component of the input-output ratio (dimensionless units).
	Nyquist display	Displays the imaginary component of the input-output ratio.

Waveform Example

1.2000 -500.00m

500.00r

TRF

Cross Power Spectrum

CSP

The product of the spectra of two input signals can be obtained. The common frequency components of two signals can be obtained.

Using the voltage and current waveforms as input signals, active power, reactive power and apparent power can be obtained at each frequency.

Main uses:

To inspect common frequency components of two signals

See About the Functions "3.10.2 Analysis Mode Functions" (p. 102)

Axis	Display Type	Description
	Linear	Frequency is displayed with equal spacing Display Range: DC to the top of the frequency range
X axis	Log	Frequency is displayed logarithmically Display Range: 1/400 th to 1/8000 th (depending on the number of analysis points) to the top of the frequency range
	Nyquist display	Displays the real-number component of the input-output ratio linearly.
	Lin-Mag	Displays the squared value of amplitude contents of analysis data linearly.
	Log-Mag (logarithm)	Displays the amplitude contents of analysis data as dB values. (0 dB reference value: $1eu^2$)*
Y axis	Lin-Real	Displays the squared values of the real component of analysis data linearly.
	Lin-Imag	Displays the squared values of the imaginary component of analysis data linearly.
	Nyquist display	Displays the imaginary component of analysis data linearly.

* eu: engineering units that are currently set are the standard (e.g., when the unit settings is volts, 0 dB = $1 V^2$)

Waveform Example

Nyquist display

Cross-Correlation Function

Using two input signals, shows the correlation of two points on the input signal at time differential t. Output is displayed as a function of differential time t.

Main uses:

- To determine the phase shift of two signals per unit of time
- To determine the speed and distance of time lag between two signals

See About the Functions "3.10.2 Analysis Mode Functions" (p. 102)

Axis	Display Type	Description
X axis	Linear	Time display The center ($t = 0$) is the reference. To the right is lag time (+ t), and to the left is lead time (- t)
Y axis	Lin-Mag	+1 to -1 is displayed in dimensionless units. At time differential <i>t</i> , this value is +1 when the correlation of input and output signals is the closest, and 0 when correlation is the least1 indicates completely reversed polarity.

Waveform Example

This instrument provides a circular cross-correlation function. Analysis results are normalized to the maximum value. CCR

Impulse Response

The transfer characteristic of a system is obtained as a time-domain waveform.

Utilizing both output and input signals of the measurement system, a unit impulse is applied to the system and the corresponding response waveform is obtained.

Main uses:

To inspect circuit time constants

See About the Functions "3.10.2 Analysis Mode Functions" (p. 102), "Linear Time-Invariant Systems" (p. 104)

Axis	Display Type	Description
X axis	Linear	Time display The center ($t = 0$) is the reference. To the right is lag time (+ t), and to the left is lead time (- t)
Y axis	Lin-Mag	This value is the transfer function provided by inverse Fourier transformation.

Waveform Example

IMP

Coherence Function

This function gives a measure of the correlation (coherence) between input and output signals. Values obtained are between 0 and 1.

With a single measurement, the coherence function gives a value of one for all frequencies. Spectrum (frequency-domain) averaging should always be performed before measurement (analysis is not available with time-domain averaging).

Main uses:

- To evaluate transfer functions
- · In a system with multiple inputs, to inspect the effect of each input on the output
- See About the Functions "3.10.2 Analysis Mode Functions" (p. 102)

Axis	Display Type	Description
X axis	Linear	Frequency is displayed with equal spacing Display Range: DC to the top of the frequency range
	Log	Frequency is displayed logarithmically Display Range: 1/400 th to 1/8000 th (depending on the number of analysis points) to the top of the frequency range
Y axis	Lin-Mag	Displays the causal relationship and degree of relationship between two input signals, as a value between 0 and 1 (dimensionless units).

Waveform Example

The coherence function has two general definition formulas. For the definition formulas, see "3.10.2 Analysis Mode Functions" (p. 102)

COH

Power Spectrum Density (Linear Predictive Coding)

When the spectrum shape is complex and hard to comprehend with either linear or power spectra, a rough spectrum structure can be obtained.

Not available with external sampling enabled.

Main uses:

To obtain a spectral envelope using statistical methods

See About the Functions "3.10.2 Analysis Mode Functions" (p. 102)

Axis	Display Type	Description
X axis	Linear	Frequency is displayed with equal spacing Display Range: DC to the top of the frequency range
	Log	Frequency is displayed logarithmically Display Range: 1/400 th to 1/8000 th (depending on the number of analysis points) to the top of the frequency range
Y axis	Lin-Mag	Analysis values are displayed linearly.
	Log-Mag (logarithm)	Analysis values are displayed as dB values. (0 dB reference value: 1eu ² /Hz)*

* eu: engineering units that are currently set are the standard (e.g., when the unit settings is volts, 0 dB = $1 V^2/Hz$)

Waveform Example

NOTE

- Always specify the order (from 2 to 64). Higher orders can expose finer spectral details.
- Amplitude values provided by LPC are not always the same as the power spectrum density.
- If an error occurs during analysis, no waveform is displayed.
- Noise-like phenomena can strongly affect the spectrum shape.

LPC

3.10.2 Analysis Mode Functions

Analysis Mode	Internal analysis formula (linear, real, imag [imaginary], log [logarithm])
No Analysis	No analysis.
Storage Waveform	A waveform obtained by applying the window function to a time-domain waveform.
Linear Spectrum (LIN)	$X(k) = \sum_{n=0}^{N-1} x(n) W^{kn} F(k) = CX(k) \qquad C = \begin{cases} 1/N(DC) \\ 2/N(AC) \end{cases}$ linear = $ F(k) $ real = $\operatorname{Re}\{F(k)\}$ imag = $\operatorname{Im}\{F(k)\}$ log = $20\log F(k) $
RMS Spectrum (RMS)	$F'(k) = C'F(k) \qquad C' = \begin{cases} 1 & (DC) \\ 1/\sqrt{2}(AC) \end{cases}$ $linear = F'(k) real = \operatorname{Re}\{F'(k)\} imag = \operatorname{Im}\{F'(k)\} \log = 20\log F'(k) $
Power Spectrum (PSP)	$P(k) = a F(k) ^{2} \qquad a = \begin{cases} 1 (DC) \\ 1/2(AC) \end{cases}$ linear = P(k) $\log = 10 \log P(k) $
Power Spectrum Density (PSD)	$P'(k) = P(k) / \delta f \delta f: \text{ Frequency resolution}$ linear = P'(k) $\log = 10 \log P'(k) $
Auto-correlation Func- tion (ACR)	$R_{xx}(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) ^2 W^{-kn} \text{(recursive convolution)}$
Histogram (HIS)	Counts amplitude data.
Transfer Function (TRF)	H(k) = Y(k) / X(k) linear $= H(k) $ real = Re{ $H(k)$ } imag = Im{ $H(k)$ } log = 20 log $ H(k) $
Cross Power Spectrum (CSP)	$S_{yx}(k) = X^{*}(k)Y(k) : \text{Cross Spectrum}$ $X_{power}(k) = AS_{yx}(k) \qquad A = \begin{cases} 1/N^{2} \\ 2/N^{2} \end{cases}$ $linear = X_{power}(k) real = \text{Re}\{X_{power}(k)\}$ $mag = \text{Im}\{X_{power}(k)\} \log = 10 \log X_{power}(k) $
Cross-correlation Func- tion (CCR)	$R_{yx}(n) = \frac{1}{N} \sum_{k=0}^{N-1} S_{yx}(k) W^{-kn} \qquad \text{(recursive convolution)}$
Impulse Response (IMP)	$h(n) = \frac{1}{N} \sum_{k=0}^{N-1} \frac{Y(k)}{X(k)} W^{-kn}$
Coherence Function (COH)	$coh(k) = \sqrt{\frac{S_{yx}(k)S_{yx}^{*}(k)}{S_{xx}(k)S_{yy}(k)}}$
Phase Spectrum (1ch / 2ch) (PHA)	$\theta(k) = \frac{180}{\pi \times \tan^{-1}(\text{Im}(F'(k)) / \text{Re}(F'(k)))}$ $\theta(k) = \frac{180}{\pi \times \tan^{-1}(\text{Im}(S_{yx}(k)) / \text{Re}(S_{yx}(k)))}$
Power Spectrum (LPC)	(Abbr.) Spectrum approximation from Linear Predictive Coding. See "Linear Predictive Coding (LPC)" (p. 115)

3.11 FFT Definitions

What is FFT?

FFT is the abbreviation for Fast Fourier Transform, an efficient method to calculate the DFT (Discrete Fourier Transform) from a time-domain waveform. Also, the reverse process of transforming frequency data obtained by the FFT back into its original time-domain waveform is called the IFFT (Inverse FFT). The FFT functions perform various types of analysis using FFT and IFFT.

Time and Frequency Domain Considerations _____

All signals are input to the instrument as a function of the time domain. This function can be considered as a combination of sine waves at various frequencies, such as in the following diagram. The characteristics of a signal that may be difficult to analyze when viewed only as a waveform in the time domain can be easier to understand by transforming it into a spectrum (the frequency domain).

Discrete Fourier Transforms and Inverse FFT _____

For a discrete signal x(n), the DFT is X(k) and the number of Analysis points is N, which relate as follows:

$$X(k) = DFT\{x(n)\} = \sum_{n=0}^{N-1} x(n)W_N^{kn}$$
(1)
$$x(n) = IDFT\{X(k)\} = \frac{1}{N}\sum_{n=0}^{N-1} X(k)W_N^{-kn}$$
(2)
$$W_N = \exp\left(-j\frac{2\pi}{N}\right)$$
(3)

X(k) is typically a complex number, so expression (1) can be transformed again and written as follows:

 $F(k) = |F(k)| \exp\{j\phi(k)\} = |F(k)| \angle \phi(k)$ (4)

$$\phi(k) = \tan^{-1} \frac{\text{Im}\{X(k)\}}{\text{Re}\{X(k)\}}$$
 (5)

|F(k)| : Amplitude spectrum, $\phi(k)$: Phase spectrum

Representing the above relationship on a complex flat surface produces the following figure.

Linear Time-Invariant Systems

Consider a linear time-invariant (LTI) system y(n) that is a response to discrete time-domain signal x(n).

In such an LTI system, the following expression applies to any integer A_i when the response to $x_i(n)$ is $y_i(n) = L[x_i(n)]$.

$$L[A_1x_1(n) + A_2x_2(n)] = A_1y_1(n) + A_2y_2(n) - \dots$$
 (6)

If the system function of an LTI system is h(n), the input/output relationship can be obtained by the next expression.

$$y(n) = \sum_{m=0}^{\infty} h(n)x(n-m) = \sum_{m=-\infty}^{\infty} h(n-m)x(m).$$
 (7)

Therefore, when a unit impulse $\delta(n)$ (which is 1 when n = 0, and 0 when $n \neq 0$) is applied to x(n), the input/output relationship is:

y(n) = h(n) (8)

This means that when the input signal is given as a unit impulse, the output is the LTI system characteristic itself.

The response waveform of a system to a unit impulse is called the **impulse** response.

On the other hand, when the discrete Fourier transforms of x(n), y(n) and h(n) are X(k), Y(k) and H(k), respectively, expression (7) gives the following:

Y(k) = X(k)H(k) (9)

H(k) is also called the transfer function, calculated from X(k) and Y(k). Also, the inverse discrete Fourier transform function of H(k) is the unit impulse response h(n) of the LTI system. The impulse response and transfer function of this instrument are calculated using the relationships of expression (9).

Number of Analysis Points

The FFT functions of this instrument can perform frequency analysis of timedomain waveforms consisting of 1000, 2000, 5000, 10,000 or 20,000 points. However, when the following conditions are satisfied, previously analyzed data can be reanalyzed with a different number of analysis points.

- A. When measurements are made with the averaging function disabled (Off)
- B. When measurements are made with the averaging function enabled for timedomain averaging (simple or exponential).

When the number of analysis points at measurement time is N_I and the number of analysis points is changed to N_2 after measurement, the instrument performs as follows.

(1) When $N_1 < N_2$

- Because not enough data has been collected, zero is inserted for time after the end of the measured waveform.
- The window function applies only to the N_1 segment.
- Frequency resolution is increased. For example, if $N_1 = 1000$ and $N_2 = 2000$, frequency resolution is doubled.
- The average energy of the time-domain waveform is reduced, so the amplitude of the linear spectrum is also reduced.

(2) When $N_1 > N_2$

- The specified (N_2) segment is extracted from the head of the (N_1) data.
- The window function applies only to the N_2 segment.
- Frequency resolution is decreased. For example, if $N_1 = 2000$ and $N_2 = 1000$, frequency resolution is halved.
- The average energy of the time-domain waveform is unchanged, so the amplitude of the linear spectrum is not significantly affected.

Aliasing

When the frequency of a signal to be measured is higher than the sampling rate, the observed frequency is lower than that of the actual signal, with certain frequency limitations. This phenomena occurs when sampling occurs at a lower frequency than that defined by the Nyquist-Shannon sampling theorem, and is called **aliasing**.

If the highest frequency component of the input signal is f_{max} and the sampling frequency is f_s , the following expression must be satisfied:

 $f_s = 2f_{\text{max}}$ (10)

Therefore, if the input includes a frequency component higher than $f_s/2$, it is observed as a lower frequency (alias) that does not really exist.

The following diagrams show the results of spectrum analysis of composite waveforms having components of 1 kHz and 3 kHz, and of 1 kHz and 7 kHz. If sampling frequency f_s is 10 kHz, the spectral component of an input frequency above 5 kHz (in this case, 7 kHz) is observed as an alias at 5 kHz or below. In this example the difference between the 3 and 7 kHz components is indiscernible.

Anti-Aliasing Filters

When the maximum frequency component of the input signal is higher than onehalf of the sampling frequency, aliasing distortion occurs. To eliminate aliasing distortion, a low-pass filter can be used that cuts frequencies higher than onehalf of the sampling frequency. Such a low-pass filter is called an anti-aliasing filter.

The following figures show the effect of application of an anti-aliasing filter on a square wave input waveform.

Imaging

When the instrument is set to a measurement frequency range that requires a higher sampling rate than the maximum capability of the input module, intermediate data points are interpolated between successive data samples. In this case, the time-domain waveform exhibits a stair-step shape. When FFT analysis is performed in this situation, non-existent high frequency spectral components appear. This phenomena is called zero-order hold characteristic **imaging**.

The following figures show the time-domain waveform and spectrum of a sine wave applied to the Model 8959 DC/RMS Unit.

To avoid imaging phenomena when analyzing waveforms with the FFT function, verify the maximum sampling frequency of the input module before measuring.

Averaging

With the FFT function, averaging is performed according to the following analytical expressions. Averaging in the time domain produces meaningless data if performed with inconsistent trigger criteria.

1. Simple Averaging (Time and Frequency Domains)

Sequences of acquired data are summed and divided by the number of acquisitions.

 $A_{n} = \frac{(n-1)A_{n-1} + Z_{n}}{n}.$ (11)

n: count of measurements to average

 A_n : averaging results of *n* counts

 Z_n : measurement data of *n* counts

2. Exponential Averaging (Time and Frequency Domains)

Before averaging, newer data is given exponentially greater significance than older data.

$$A_{n} = \frac{(N-1)A_{n-1} + Z_{n}}{N}$$
(12)

N: Specified number of counts to average *n*: count of measurements to average

 A_n : averaging results of *n* counts

 Z_n : measurement data of *n* counts

Overall Value

The overall value is the sum of the power spectrum at each frequency. This value is equal to the positive sum of the squares of the (RMS) input signals, except when frequency averaging is performed. The FFT function of this instrument calculates and displays the RMS values for stored waveforms and the overall value from the sum of the power spectrum for the frequency domain.

$$(Over all) = \sum_{i=0}^{n} P_i$$
 (13)

 P_i : power spectrum of value *i*

Window Function

The Fourier transform of a continuous system is defined by the integral Calculus in expression (14) for the time range from minus infinity to plus infinity.

$$X(f) = \int_{-\infty}^{\infty} x(t) \mathcal{E}^{-2\pi f t} dt$$
(14)

However, because expression (14) cannot be calculated with actual measurements, the Analysis is performed on a segment between finite limits. Processing the waveform segment within these limits is called window processing. For FFT analysis, the waveform segment within these limits is assumed to repeat periodically (as shown below).

Original Time-Domain Waveform

When the number of points for FFT analysis is an integer multiple of the input signal frequency, a single-line spectrum is obtained. However, if it is not an integer multiple of the frequency (when the waveform assumed with FFT includes discontinuous points), the spectrum is scattered, and a line spectrum cannot be obtained. This phenomena is called leakage error (as shown below).

The window function was created to suppress such leakage errors. The window function smoothly connects each end of the time-domain waveform where it is cut off.

The following figure presents an example of spectral analysis by applying a window function to a time-domain waveform.

Using the window function, discontinuous points on the time-domain waveform are eliminated, so the wave shape approaches a line spectrum.

When a Blackman-Harris window function is applied to a time-domain waveform (p. 110) in which the number of analysis points is not an integer multiple of the input frequency

The following figure shows the time-domain waveform of the window function and its spectrum.

Each spectrum shows a large peak at a low frequency, and many smaller peaks at higher frequencies. The largest peak is called the **main lobe**, and the smaller peaks are the **side lobes**.

The most accurate results of the FFT function are obtained when the width of the main lobe and the amplitude of the side lobes are minimized, although both conditions cannot be satisfied at the same time.

Therefore, a window function having a wide main lobe is used when amplitude values are important, while a window function having a small main lobe is used to observe fine spectral details, and a window function having small side lobe amplitudes is used to exclude the effects of the surrounding spectrum.

However, because the main lobe width is proportional to the width (1/W) of the window, increasing the number of analysis points increases the frequency resolution.

Exponential window

The following example shows input sine waves of 1050 and 1150 Hz analyzed with different window functions. Because the frequencies in this example are close to one another, a rectangular window with a narrow main lobe is able to separate and display both frequencies, but a Hann window with a wide main lobe displays the two as a single spectral component.

Analysis Using a Rectangular Window

Analysis Using a Hann Window

Octave Filter Characteristics

Octave filter characteristics are determined according to IEC61260 standards. The figures below show these standards and the filter characteristics of this instrument.

1/1 Octave Filter Characteristic

1/3 Octave Filter Characteristic

Linear Predictive Coding (LPC)

In the following figure, linear predictive coding is implemented by passing a sample of the input signal through the prediction filter while altering the filter so as to minimize errors in the original signal.

Given a time-discrete signal $\{x_t\}$ (*t* is an integer) where the input signal is sampled at interval ΔT , LPC analysis presumes the following relationship between current sample value x_t and the value of previous sample *p*.

 $x_t + \alpha_1 x_{t-1} + \alpha_2 x_{t-2} + \dots + \alpha_p x_{t-p} = \varepsilon_t$ (15)

However, $\{\mathcal{E}_t\}$ is an uncorrelated random variable with average value 0 and the dispersion σ^2 .

Expression (15) shows how current sample value x_t can be "linearly predicted" from previous sample values. If the predicted value of x_t is actually $\stackrel{\wedge}{\chi_t}$, expression (15) can be transformed as follows.

$$x_{t} = \stackrel{\wedge}{x_{t}} + \mathcal{E}_{t} = -\sum_{i=1}^{p} \alpha_{i} x_{t-i} + \mathcal{E}_{t}$$
(16)

Here, α_i is called the **linear predictor coefficient**.

For LPC analysis, this coefficient is calculated using the Levinson-Durbin algorithm, and a spectrum is obtained. In this instrument, the order of the coefficient can be set from 2 to 64. Larger orders reveal fine spectral components, while small orders reveal the overall spectrum shape. This instrument is equipped with an Ethernet 100BASE-TX interface for LAN communications. You can control the instrument from PCs and other devices by connecting it to a network with 10BASE-T or 100BASE-TX cable (maximum length 100 m).

4.1 **Connection Configurations**

Connect the LAN cable to the 100BASE-TX connector on the right panel of the instrument.

Connecting the Instrument to a Network

(Connecting the Instrument to a Hub)

You can monitor and control the instrument from a PC by connecting the instrument to a hub with LAN cable (100BASE-TX cable).

Connecting several instruments to one PC

Connection cable: Use one of the following.

100BASE-TX straight-through cable (maximum length 100 m, commercially available)

(10BASE-T cable may also be used for 10BASE communications)

9642 LAN Cable (option)

Making 1:1 Connections Between the Instrument and a PC

(Connecting the Instrument to a PC)

You can monitor and control the instrument from a PC by connecting the instrument to the PC with LAN cable (100BASE-TX cable)

Connection cable: Use one of the following.

- 100BASE-TX crossover cable (maximum length 100 m)
- 100BASE-TX straight-through cable with crossover adapter (maximum length 100 m)
- 9642 LAN Cable (option, supplied with crossover adapter)

4.2 Controlling the Instrument over the LAN Interface

4.2.1 Settings and Connection Procedure

- **NOTE** Always make LAN settings before connecting to the network. If you change settings while connected to the network, IP addresses may overlap or invalid address data may flow over the network.
 - Make settings on the instrument. Make LAN settings in the Communications (Comm) Settings screen. Move the cursor to the [Apply] button and select F1 [Apply]. (The settings are not reflected to the currently active LAN if the button's function is not executed.)
 Connect the instrument to the network.

Connect the LAN cable. (p. 118)

3 Connect the PC.

See "4.3 Using FTP to Access Instrument Files (FTP Server)" (p. 127),
"4.4 Performing Remote Operations on the Instrument from an Internet Browser (Web Server)" (p. 132)

4.2.2 Making Settings on the Instrument

Things to Check Before Making Settings

When Connecting to an Existing Network

The following items must be assigned in advance by your network administrator. Be sure that there is no conflict with other devices.

Whether to use DHCP: Yes/No
The host name and address of the instrument Host name (up to 15 characters) : IP address:
DNS settings Whether to use DNS:
 WINS settings Whether to use WINS: Yes/No IP address (when used):
 Gateway Whether to use a gateway:
 The TCP/IP port number to use:X (default 880x) (Specify the most significant 3 digits of the 4-digit number. The least significant digit (0 to 9) is reserved for use by the instrument. Specify when the default 8800 to 8809 cannot be used.)

When Configuring a New Network with a PC and This Instrument

(Using as Local Network Without External Connections) If there is not administrator for your network, or if you have been entrusted with settings, the following addresses are recommended.

(Settings example)
IP address
PC: 192.168.0.1
First recorder: 192.168.0.2
Second recorder: 192.168.0.3
Third recorder: 192.168.0.4 and so on, in sequence.
\downarrow \downarrow
Host name Any name (However, must be unique)
Subnet mask 255.255.255.0
Gateway Off
DNS Off
DHCP Off
WINS Off
Port number 880X

4.2 Controlling the Instrument over the LAN Interface

Setting Items

DHCP (Dynamic Host Configu- ration Protocol)	DHCP is a protocol that allows devices to automatically obtain and set their own IP ad- dresses. If you enable DHCP and there is a DHCP server operating in the same network, the in- strument's IP address, subnet mask, and gateway can be obtained and set automatically. If there is no DHCP server operating, a default IP address is assigned.
Host Name	This is a name that identifies the instrument on the network. Assign a host name that is different from the names of all other devices. This instrument does not support dynamic DNS, the name that you set is not registered with a DNS server. PCs on the same network can refer to the instrument by its host name by using the NetBIOS over TCP/IP protocol.
IP Address	This is an address that identifies an individual device on a network. Assign an address that is different from the addresses of all other devices. If DHCP is en- abled, the address is assigned automatically by the DHCP server.
Subnet Mask	This is a setting used to divide an IP address shown to the network into a network address and a host address. Use the same subnet mask for all devices in the same network. If DHCP is enabled, the subnet mask is assigned automatically by the DHCP server.
DNS (Domain Name System)	DNS allows network devices to be specified by their names instead of by their IP address- es. (An IP address is simply a string of numbers, which it is hard to remember. Device ad- dresses are easier to understand if they can be specified with names instead of IP addresses.)
WINS (Windows Internet Naming Service)	DNS allows network devices to be specified by their names instead of by their IP address- es. If there is a WINS server in the network, a name can be obtained by querying that serv- er.
Gateway IP address	 For network connections: When your PC (or the communicating device) is on another network than this instrument, set this to [On] and specify the gateway device. When the PC is on the same network, this is usually set to the same address as the default gateway in the PC communications settings. For 1:1 connections between the instrument and a PC: This setting is not required when the instrument and the PC are connected to the same hub. Set it to [Off]. If DHCP is enabled, the gateway address is obtained from the DHCP server.
Command Port (Port number)	 The instrument uses the TCP/IP protocol for communications. TCP/IP allows communicating devices to establish multiple connections, which are distinguished by port numbers. By default the instrument uses port numbers 8800 to 8809. 8800 to 8801 reserved 8802 (instrument is server): For communications command control 8803 to 8809 reserved Normally these ports do not need to be changed. You can change them if certain ports cannot be used for security reasons, or if certain ports are not available on the communicating PC. Set only the most significant three digits. The least significant digit (0 to 9) is used by the instrument, or reserved for use by the instrument.
Header (On/Off)	Use for control of communications commands. The Header item specifies whether to prefix headers to command response messages. For more information about commands, refer to the Communications operation manual on the supplied CD.
Delimiter	The Delimiter item specifies LF, CR, or CR/LF as the newline delimiter in command re- sponse messages. The instrument understands all three settings: LF, CR, and CR/LF.

Authorization User Name and Password

These are used when you login to the instrument by FTP, or use a PC browser (with the authorization setting set to on).

When authorization is enabled, login is not possible unless a correct user name and password are entered. This setting is recommended if you wish to restrict the users who can access the instrument.

The "Password" item is displayed as "**********".

Valid characters: Alphabetic characters and symbols (however, ":" (colon) cannot be used)

If you want to allow anyone to access, or you wish to login as "anonymous" with a FTP client, leave the user name and password fields blank.

Making Communications Settings on the Instrument

Make communications settings in the [Basic Settings] and [Interface] section of the [Communication] page of the Communications (Comm) Settings screen.

4.2 Controlling the Instrument over the LAN Interface

Interface Communication Settings: Network Connections [MEM] REC RECOMMENT (REALTIME To open the screen: Press the DISP key→ Press the F7 [System] key→ Select Comm with the SUB MENU keys \rightarrow Comm Settings screen \rightarrow Select the [Communication] page with the SHEET/PAGE key **Operating Key** Procedure Set the host name, authorization user name, and pass-🚇 Communication 🏢 File 🌘 Web 🕅 Mail 🚛 C 1 word. [Basic Settinge]-Host Name h8861-50 1 Move the cursor to the various [Basic Settings] **CURSOR** User Name fields. F1 to F8 Password Enter the host name, authorization user name, Interracei and authorization password. LAN -[Built-In LAN]-See About Host Names DHCP Off 2 "Authorization User Name and Password" IP Address 192.168.0.2 (p. 123) Subnet Mask Set 255.255.255.0 Use Gateway 3 Off To obtain the IP address automatically 2 IP Address 0.0.0.0 DNS1 Enable DHCP. Off 4 **IP** Address 0.0.0.0 Move the cursor to the [DHCP] item. **CURSOR** DNS2 Off Select [On]. **F2** IP Address 0.0.0.0 WINS1 Off To set the IP address to any address IP Address 0.0.0.0 Set the IP address and subnet mask. Move the cursor to the [DHCP] item. **CURSOR** Select [Off]. (default setting) **F1** About subnet masks Although the subnet mask can be set au-Move the cursor to the [IP Address] or [Subnet **CURSOR** tomatically, you should still check to be Mask] item. sure that it is set correctly. It should match Enter the IP address and subnet mask of the in-F1 to F8 the subnet mask of the network to which strument. you are connecting. If you want to set the subnet mask automatically: Press the [Set] button. **Using gateways** To use a gateway 3 If you will be using a PC on a different network from the instrument, set [Use Gate-Enable the gateway and set the IP address. way] to [On], and specify the address of Move the cursor to the [Use Gateway] item. the device that serves as the gateway for CURSOR Select [On]. that network. **F2** Move the cursor to the [IP Address] item. **CURSOR** Enter the IP address. F1 to F8 To use DNS Δ Enable DNS and set the IP address. Move the cursor to the [DNS1] item. **CURSOR Explanations of terms** Select [On]. "Setting Items" (p. 122) **F2** If you wish to use 2 DNS servers, also set [DNS2]. • To make FTP connections (p. 127) · To connect with an Internet browser (p. 132) (When [On] is selected for DNS1 and DNS2) To perform command communica-Move the cursor to the [IP Address] item. tions(p. 142) **CURSOR** Enter the IP address. F1 to F8

	Operating Key	Procedure	
5	To use WINS		
	Enable WINS a	nd set the IP address.	DNS2 Off
	CURSOR F2	Move the cursor to the [WINS1] item. Select [On]. If you wish to use 2 WNS servers, also set [WINS2].	IP Address 0.0.0.0 WINS1 5 Off IP Address 0.0.0.0 WINS2 Off
	(When [On] is selected for WINS1 and WINS2)		IP Address 0.0.0.0
	CURSOR F1 to F8	Move the cursor to the [IP Address] item. Enter the IP address.	Apply
6	To apply comm	unications settings	Select this button after you have fin- ished making settings.
	CURSOR	Move the cursor to the [Apply] button.	
	F1	Select [Apply]. A dialog appears.	After applying the settings, connect the LAN cable.
	F2	Select [Execute].	

NOTE About Host Names

Valid characters:

Alphabetic characters (uppercase and lowercase), numbers, symbols (only hyphen (-) and underscore (_))

Characters other than those listed above cannot be used.

Host names cannot begin with a number or symbol, and cannot end with a symbol.

Contact your network administrator for more information about IP addresses and the other settings required by your network.

4.2 Controlling the Instrument over the LAN Interface

Interface Communication Settings: 1:1 Connections MEM REC REC&MEM FFT REALTIME To open the screen: Press the DISP key→ Press the F7 [System] key→ Select Comm with the SUB MENU keys → Comm Settings screen→Select the [Communication] page with the SHEET/PAGE key **Operating Key** Procedure 🔁 Communication 🏢 File 🕜 Web 📉 Mail 📰 Co Set the host name, authorization user name, and pass-1 [Basic Settings] word. Host Name Move the cursor to the various [Basic Settings] **CURSOR** User Name fields. F1 to F8 Password Enter the host name, authorization user name, [Interface] LAN and authorization password. -[Built-In LAN]-See "Authorization User Name and Password" DHCP 2 Off • (p. 123) IP Address 192.168.0.2 Subnet Mask Set 255.255.255.0 Use Gateway Disable DHCP, and set the IP address and subnet mask. 3 Off 2 Ŧ IP Address 0.0.0.0 Move the cursor to the [DHCP] item. **CURSOR** DNS1 4 Off -Select [Off]. (default setting) **F1** IP Address 0.0.0.0 Move the cursor to the [IP Address] and [Subnet DNS2 **CURSOR** Off Ŧ Mask] fields. IP Address 0.0.0.0 WINS1 Enter the IP address and subnet mask of the in-Off F1 to F8 Ŧ 5 strument. IP Address 0.0.0.0 If you want to set the subnet mask automatically: WINS2 Off ÷ Press the [Set] button. **IP** Address 0.0.0.0 Apply.. 3 Disable the gateway. Move the cursor to the [Use Gateway] item. 6 **CURSOR** Select [Off]. (default setting) Select this button after you have fin-**F1** ished making settings. **Disable DNS. Using gateways** Δ When connecting the instrument and a PC Move the cursor to the [DNS1] or [DNS2] item. **CURSOR** with a 1:1 connection, set [Use Gateway] Select [Off]. (default setting) to[Off] if both are connected to the same **F1** hub. **Disable WINS.** 5 **Explanations of terms** Move the cursor to the [WINS] item. **CURSOR** "Setting Items" (p. 122) **F1** Select [Off]. (default setting) Apply the settings. 6 Move the cursor to the [Apply] button. **CURSOR** Select [Apply]. **F1** A dialog appears. Select [Execute]. **F2**

4.3 Using FTP to Access Instrument Files (FTP Server)

This instrument is equipped with an FTP (File-Transfer-Protocol, RFC959 compliant) server.

By using a PC FTP client, you can transfer files from the instrument's media to the PC and perform other file operations.

You can use IE (Internet Explorer) or other popular FTP clients.

For more information about LAN connections and settings: See "4.2 Controlling the Instrument over the LAN Interface" (p. 120)

NOTE Be careful when moving files by FTP, as some FTP client/browser programs may delete all selected files or folders from the source if you cancel a transfer before completion. Rather than moving files in one step, we recommend copying (downloading) and then manually deleting from the source.

Make settings on the instrument.

• Make LAN settings in the Communications (Comm) Settings screen. (p. 121)

(Set the host name, authorization user name, and authorization password in the [Basic Settings] section of the [Communication] page of the Comm Settings screen.)

• Make FTP settings in the [FTP Server] section of the [File] page of the Comm Settings screen. (p. 127)

2 Operate on the PC.

Connect to the instrument from the PC, and carry out file operations. (p. 129)

4.3.1 Making Settings on the Instrument

Make FTP settings in the [FTP Server] section of the [File] page of the Comm Settings screen.

NOTE

LAN settings are required to use FTP. See "Interface Communication Settings: Network Connections" (p. 124) "Interface Communication Settings: 1:1 Connections" (p. 126)

FTP Settings MEM REC REC&MEM FFT REALTIME To open the screen: Press the DISP key→ Press the F7 [System] key→ Select Comm with the SUB MENU keys \rightarrow Comm Settings screen \rightarrow Select the [File] page with the SHEET/PAGE keys **Operating Key** Procedure 🍓 Communication 📄 File 🎯 Web 📉 Mail 📰 Set the FTP server to On. 1 [From PC using FTP] **CURSOR** Move the cursor to the [FTP Server] item. [FTP Server]--Select [On]. **F1** 2 Access Restrictions Read/Write ٠ Time Difference • 0 h Set the access restrictions. 2 Character Code 4 Local • **CURSOR** Move the cursor to the [Access Restrictions] item. Apply. F1 to F8 Select either choice. 5 Writing to the media of the instrument (up-Read/ loading), and file deletion and renaming Select this button after you have fin-Write are permitted. ished making settings. File reading only is permitted. This pre-Read vents files from being deleted or changed only from outside the instrument. Set the file time difference. About the file time difference setting 3 When some versions of IE * are used, the **CURSOR** Move the cursor to the [Time Difference] item. file time on the PC side may not match the F1 to F8 Normally leave this set to [0 h]. file time on the recorder side. In this case, set the file time difference. (Example) -9h Specify the character encoding. Δ * Internet Explorer (The encoding used to exchange file name information with the PC) Move the cursor to the [Character Code] item. **CURSOR** F1 to F8 Set this according to the requirements of the FTP Check the documentation of your FTP software on your PC. software for the character encoding to use. Use ASCII if the instrument display lan-Local guage is set to English. File names containing characters not belonging to the display languages of the in-UTF-8 Use UTF-8. strument may not be handled correctly. 5 Apply the settings. **CURSOR** Move the cursor to the [Apply] button. Select [Apply]. **F1** A dialog appears. **F2** Select [Execute].

4.3.2 Operate on the PC

Connecting _

The following example shows how to use the IE (Internet Explorer) browser on Windows XP.

Launch IE on the PC and enter "ftp://" plus the IP address of the instrument in the address bar.

😰 ftp://192.168.0.2/ - Microsoft Internet Explorer
Eile Edit View Favorites Tools Help
📙 😓 Back 👻 🤿 😴 👘 🖓 Search 🖓 Folders 🖓 History
Address ftp://192.168.0.2
No authorization setting
Login screen Connect Login by entering a user name and password.
The storage media of the instrument appear.
tp://192.168.0.2/ - Microsoft Internet Explorer
Elle Edit Yiew Favorites Iools Help ↓ Back • → ✓ ★ (2) Search (2) Folders (3) History (2) (2) (2) Address (2) (2) (2) (2) (2) (2) (2)
(HDD) PC-Card1
lard disk USB disk

If the IP address of the instrument is "192.168.0.2":

Click to display the file stored on the media.

*: An authorization user name and password have been set in the [Communication] page of the instrument's Communications (Comm) Settings screen.

You can also enter the user name and password, delimited by ':' and '@', in front of the normal IP address.

[ftp:// Username:Password@ instrument IP address]

Example: When the user name is "hioki" and the password is "1234": Enter [ftp://hioki:1234@192.168.0.2].

If the connection fails

Check the communications settings of the instrument. See "4.2 Controlling the Instrument over the LAN Interface" (p. 120)

Operations

Downloading Files

Select the file to download from the folder list and drag and drop* it on the download destination (the desktop or a folder outside the IE window).

*: Click the file and hold the button down. Move the mouse pointer to the target destination, and then release the button

Drag & Drop

Minutes and seconds may not be reflected on the file stamp (date) of the file.

Uploading Files

Select a file on the PC desktop or in folder, and drag and drop it on a folder in the FTP folder list. This updates the FTP folder.

The file's time stamp becomes the time when you uploaded the file.

Deleting and Renaming Files

Right click a file in the FTP folder list, and select [Delete] or [Rename] from the pull-down menu.

Files cannot be moved.

Relationship Between Storage Media and Directories

Each of the various types of storage media appears as a directory on the FTP server. /PC-Card1 PC Card

/PC-Card2	PC Card
/HDD	Hard disk
/USB-Disk	USB memory

In general, only one FTP user (1 connection) is allowed to log on to the FTP server at one time. For this reason, avoid the use of high-speed download

NOTE

tools which open multiple connections.
Because FTP does not define a specific format for exchanging information about files, file information may not display correctly on some FTP clients. The server supports only generally used FTP commands. You may not be able to use FTP clients which rely on other commands.

4.4 Performing Remote Operations on the Instrument from an Internet Browser (Web Server)

You can perform remote operations on the instrument from a PC by using an Internet browser.

Microsoft Internet Explorer Version 5 or later is recommended as the browser. The Web server uses JavaScript, so enable Active Script in the Security tab of the Internet Options dialog of IE.

For more information about LAN connections and settings: See "4.2 Controlling the Instrument over the LAN Interface" (p. 120)

Make settings on the instrument.

Make the following web server authorization setting in the [Web] page of the Communications (Comm) Settings screen. (p. 133)

If you want to restrict access to the instrument:

Set the Web server [Use] to F3 [Authorization].

(You can restrict access by setting an authorization user name and password in the [Basic Settings] section of the [Communication] page of the Comm Settings screen.)

2 Operate on the PC.

1

Connect to the instrument from the PC, and carry out remote operations. (p. 134)

4.4.1 Making Settings on the Instrument

Make Web settings in the [Web Server] section of the [Web] page of the Comm Settings screen.

4.4 Performing Remote Operations on the Instrument from an Internet Browser (Web Server)

Web	Server Setting	S		MEM REC RECAMEM FFT REALTIME
			\rightarrow Press the F7 [System] key \rightarrow S e [Web] page with the SHEET/PA	
	Operating Key	Procedure		
1	Make authoriza	tion settings.		Communication 📗 File 🞯 Web 🕥 Mail 📖 C
	CURSOR F1 to F8	Move the curso Select either ch	or to the [Use] item. noice.	[Web Server] Use 1 On
	Off		Do not use the Web server. (default setting)	Apply
		On	Use the Web server without authori- zation.	2 Select this button after you have fin-
		Authorization	Use the Web server with authoriza- tion.	ished making settings.
			When [Authorization] is selected: (You can restrict access by setting an au- thorization user name and password in the	
2	Apply the setting	ng.	[Basic Settings] section of the [Communi-	
	CURSOR F1	Move the curso Select [Apply]. A dialog appea		cation] page) Use alphabetic characters, numbers, and symbols in user names and passwords. (However, ":" cannot be used.)
	F2	Select [Execut	e].	

4.4 Performing Remote Operations on the Instrument from an Internet Browser (Web Server)

4.4.2 Operate on the PC

Connecting

The following example shows how to use the IE (Internet Explorer) browser on Windows XP.

Launch IE on the PC and enter "http://" plus the IP address of the instrument in the address bar.

If the IP address of the instrument is "192.168.0.2":

* An authorization user name and password have been set in the [Communication] page of the instrument's Communications (Comm) Settings screen.

As shown below, you can also enter the user name and password as part of the address.

[http:// Username:Password@ instrument IP address]

(The user name and password delimited by ':' and '@', are entered in front of the normal IP address.)

Operations _____

About the remote operation window

The remote operation window is divided into 3 sections: the instrument display screen, the operation panel, and the text transmission panel.

Instrument display s Text transmission		E UT 2013 10 10 10 10 10 10 10 10 10 10 10 10 10	■ MARIA 1000 Media 1 Media 1 Media 1 Media 2 Media 2	08	anda wik du "CATUR" ke I menak R RUTU/MC2000AT 0 Seeial Pa Isaas Tydok <u>Fal</u> Normal Star	1972			-	peration nel
ſ			Allows		and string	to the in		hoves of	the in	strument,
				-	ings from		-			strument,
	Send Text						Send	d Recv		
					Screen	-Update: Fast	Norma	I Slow	Scree	n-copy
	Set the interinstrument					the				
					lows you Irrent disp				he ins	strument's

The screen is sent from the instrument periodically, so that it is always up to date. You can specify the display refresh interval. See "Changing the Display Interval" (p. 137)

The instrument enters remote mode when you operate in the remote operation window.

(Remote display)

All of the operation keys on the instrument are disabled, with the exception of the **SET** key.

When you want to operate on the instrument Press the SET key to exit remote mode.

Basic Operations

To use the operation panel:

Click one of the buttons on the operation panel. The buttons can be used in the same way as the operation keys on the instrument. However, it is not possible to press two buttons at the same time.

If you are performing a key check in the initialization settings screen of the System menu and want to exit the key check screen, right click on the screen and select [Exit] from the pull-down menu. This exits from the key check screen.

To operate with the mouse on the display screen:

Click the display screen. Mouse operations on the display screen work in the same way as mouse operations on the instrument. However, dragging is not possible.

To operate with the keyboard on the display screen:

Press a key. Keyboard input for the display screen works in the same way as keyboard input for the instrument. However, the Alt key and function keys may be assigned to browser operations.

(Keyboard input is possible with IE Version 5 and later. Depending on the browser used, some entered characters may display differently from those on the pressed keys. This also occurs when the instrument's display language setting is different from the language of the keyboard.)

Sending and Receiving Text

You can send text to the input boxes of the instrument, and receive text from the input boxes.

Example: Changing the comment set for a channel on the instrument from "TEST1" to "TEST2"

Saving Screens

Screens received from the instrument can be saved. The data is saved in PNG format.

137

Changing the Display Interval

Click [Fast], [Normal], or [Slow] in the text transmission panel to change the screen transmission interval.

The [Slow] setting is recommended for use with slow networks.

The [Fast] setting puts a greater burden on the instrument, so operations may become slower. (The operations are performed correctly, but calculations take longer.)

Quitting Remote Operation

Click the \boxtimes (Close) button in the upper right corner of the browser. The browser closes.

4.5 E-Mail Notifications

When a particular event occurs while measuring, the instrument can send e-mail notifications over a network SMTP mail server to remote computers or portable telephones that support e-mail.

Events that can be notified by e-mail are:

- Starting trigger occurrence
- Measurement stop
- When the result of a numerical calculation is NG
- Upon recovery from a power outage (when measurement restarts upon recovery from an outage, but only if the Start Backup function is enabled)
- Error occurrence (when an error [other than a communication error] occurs while measuring)

Up to three recipient addresses can be registered (e-mail can be sent to three addresses at once).

NOTE The instrument cannot receive e-mail.

LAN Settings and Connection Procedure :

See "4.2 Controlling the Instrument over the LAN Interface" (p. 120)

Make settings on the instrument.

 Make LAN settings in the Communications (Comm) Settings screen. (p. 121)

(Set the host name, authorization user name, and authorization password in the [Basic Settings] section of the [Communication] page of the Comm Settings screen.)

• Make Mail settings of the [Mail] page of the Comm Settings screen. (p. 138)

2 To receive e-mail on a computer or portable telephone

Use any common e-mail client software to receive e-mail sent from the instrument.

Make Mail settings of the [Mail] page of the Mail Settings screen.

System	Communication	
Env	[Send Mail]	06/
		06/
Comm	Send To 2 :	2
CX 1er	Send To 3 :	
Setting		
	Sender Address	
	Sender Name	
2-11	Mal Server	
Corfe		
Construction of the local division of the lo		
	Tining	
	Start Trigger Start Badup Total:	
	V Stop Store V Enor Occur Done : 0 Heidy : 0	
	W Judge NG	
	*Acchy	

MEM REC REC&MEM FFT REALTIME

enable mail authentication (POP).

Mail Sending Settings

To open the screen: Press the **DISP** key \rightarrow Press the **F7** [System] key \rightarrow Select **Comm** with the **SUB MENU** keys \rightarrow Comm Settings screen \rightarrow Select the [File] page with the **SHEET/PAGE** keys

	Operating Key	Procedure				
1	Select ON as tl	ne Send Mail setting.	Communication File Web Mail C			
-	CURSOR F1	Move the cursor to the [Send Mail] item. Select [On].	Settings			
2	Specify the rec	ipient(s).	Send To 2 : Send To 3 :			
	CURSOR	Move the cursor to the [Send To] item.				
	F1 to F8	Enter the addresses of the recipients (up to three can be entered).	Sender Addres Sender Name 4			
3	Specify the ser	nder address.	Mail Server 5			
	CURSOR	Move the cursor to the [Sender Address] item.				
	F1 to F8	Enter the e-mail address of the instrument.				
4	Enter the name	e of the sender.	The instrument cannot receive e-mail. The address of the instrument must be			
	CURSOR	Move the cursor to the [Sender Name] item.	specified in order for the SMTP mail serv-			
	F1 to F8	Enter the name that will be used to identify the in- strument as the sender when the e-mail is re-	er to send e-mail notifications.			
		ceived.	About Mail Servers Enter the mail server name specified by			
5	Specify the ma	il server.	your network administrator or internet ser-			
	CURSOR	Move the cursor to the [Mail Server] item.	vice provider.			
	F1 to F8	Enter the name of the outgoing mail server.				
6		on is required when sending mail) authentification:	6 Advanced Test Mail			
	CURSOR F1 CURSOR F1 to F8	 Move the cursor to the [Advanced] button. Select [Advanced]. A dialog appears. Set [Authentication] to [On]. [POP3 Server] Enter the name of the incoming mail server. [User ID] Enter the user ID registered with the incoming mail server. [Password] Enter the user password registered with the incoming mail server. [Port Number of SMTP Server], [Port Number of POP3 Server] If necessary, enter the port numbers specified by the network administrator or internet service provider (the default setting is normally correct). 	Advanced Settings Advanced Settings Authentication POP3 Server User ID Password Detail Settings Port Number of SMTP Server Port Number of POP3 Server 110 About E-Mail Authentication E-mail is sent by accessing an SMTP server, but the SMTP server itself does not perform authentication. To avoid abuse, internet service providers may of- fer the "POP before SMTP" security fea- ture that only allows mail to be sent through the SMTP server after the sender has been authenticated by the incoming mail (POP) server. If your ISP requires it,			

_	Operating Key	Procedure		
	Set notification	on criteria.		Timing 7
	CURSOR	Move the c	ursor to the [Timing] item.	Start Trigger Start Backup
	F1 to F8 Select whether and when the instrument should send e-mail notifications. Multiple sending criteria can be selected.		Z Judge NG Apply	
		Start Trigger	Sends an e-mail notification when re- cording is started by a trigger event.	8
		Stop Store	Sends an e-mail notification when mea- surement is finished.	
		Judge NG	Sends an e-mail notification when a nu- merical calculation result becomes NG.	
		Start Back- up	Sends an e-mail notification when mea- surement restarts after recovering from a power outage (only when the Start Backup function is enabled).	
		Error Occur	Sends an e-mail notification when an er- ror occurs while measuring (excepting communication-related errors).	

Apply your settings.

CURSOR F1	Move the cursor to the [Apply] button. Select [Apply]. A dialog appears.
F2	Select F2 [Execute].
	A test e-mail is sent.

9 Confirm e-mail sending.

Selecting the [Apply] button sends a test e-mail. If the test e-mail is not received at a specified recipient's address, check the validity of your LAN settings and Mail Sending settings.

To check e-mail sending and receiving status

Use the [Status] items to check e-mail sending and receiving status.

- [Total] Shows the number of events that generated e-mail notifications.
- [Done] Shows the number of e-mails sent.
- [Failure] Shows the number of attempts to send e-mail that failed. E-mails that could not be sent are deleted.
- [Ready] Shows the number of e-mails that have not been sent. Unsent e-mails can be sent by selecting the Send button.

Certain sending criteria (such as trigger events when the continuous trigger mode is selected) can cause a flood of e-mail notifications. When more than 500 e-mails are queued for sending, no additional e-mails can be sent, so a sending fault occurs and the e-mail failure count is incremented.

Status			
Total :	0	Failure :	0
Done :	0	Ready :	0
			Send
Using an Interface Card 4.6

The instrument can be controlled using an interface card (GP-IB card). To prepare for communications, insert the interface card and configure the interface settings on the Communications Settings screen.

See "4.7 Controlling the Instrument with Command Communications" (p. 142)

Refer to the Instruction Manual for the interface card for details.

Observe the following precautions to avoid damage or disruption to the connections of the interface card and the instrument's card slot.

- Do not insert or remove the interface card by holding the connection cable, and avoid pulling the cable forcefully.
- Do not attempt to force the card into the slot when it is upside down or not facing in the proper insertion direction.
- Do not move the instrument while the cable is connected to the interface card.

Eject Button

Interface Card Insertion & Removal

Right Side of Instrument

toward the front and pointing in the insertion direction (arrow), insert it into the PC CARD slot as far as it will go.

Removing an Interface Card

Press the Eject button. When the button pops out, press it again to eject the Interface Card.

After the interface card is automatically recognized, the settings can be made.

GP-IB

Mode	Addressable / Disable
Address	0 to 30

Configure the communications settings on the [Command] page before establishing communications.

See "4.7.1 Making Settings on the Instrument" (p. 142)

You can control the instrument remotely over the communications interface.

For more information about LAN connections and settings: See "4.2 Controlling the Instrument over the LAN Interface" (p. 120)

Interface card connections

See "4.6 Using an Interface Card" (p. 141)

1

Make settings on the instrument.

Set communications commands on the [Command] page of the Communications (Comm) Settings screen.

2 Operate on the PC.

Connect the PC to the instrument (p. 145), launch a communications program, and issue commands to control the instrument. For details, refer to the Communications operation manual on the supplied CD.

4.7.1 Making Settings on the Instrument

Set the items in the [Command Processing] section of the [Command] page of the Comm Settings screen.

Command Settings MEM REC REC&MEM FFT REALTIME To open the screen: Press the DISP key→ Press the F7 [System] key→ Select Comm with the SUB MENU keys \rightarrow Comm Settings screen \rightarrow Select the [Command] page with the SHEET/PAGE keys **Operating Key** Procedure 🙈 Communication 📗 File 🎯 Web 📉 Mail 📠 🖸 Select the remote control interface for the instrument. 1 [Command Processing] LAN CURSOR Move the cursor to the [Command Processing] F1 to F8 item. Delimiter 2 CR+LF -Select either choice. Header 3 Off Off The instrument is not remotely controlled. [LAN] LAN Remotely control the instrument via LAN. Error Response Off Command Port 880x 8 Remotely control the instrument via GP-**GPIB** IB. Set the delimiter. **About headers** The response to a :FUNCTION? query Move the cursor to the [Delimiter] item. **CURSOR** command from the PC differs according to the header setting. F1 to F8 Select the character code to send as a data de-On :FUNCTION MEM limiter (newline code). Off :MEM Send character code 0x0d. CR LF Send character code 0x0a. CR+LF Send character codes 0x0d and 0x0a. Make header settings. Move the cursor to the [Header] item. **CURSOR** F1 to F8 Select either choice. Off Do not add a header to response data. On Add a header to response data. [LAN] Error Response 4 Off When controlling via LAN (Command Processing: [LAN]) . Command Port 5 880x Make the [Error Response] setting. Δ About error responses Move the cursor to the [Error Response] item. **CURSOR** The following error codes are returned F1 to F8 Select either choice. when an error occurs during command control of the instrument. Off Do not append error response. ?E : Execution error On Append error response. ?C: Command error ?Q : Query error The instrument's output buffer is 2048 Set the communications command port. 5 bytes. It may not be possible to return an Move the cursor to the [Command Port] item. error response if the buffer limit is ex-**CURSOR** ceeded. Enter the port number. F1 to F8 About port numbers Specify only the most significant 3 digits of the 4-digit port number. If you specify "880x", port number 8802 is used. "Command Port" (p. 122)

	Operating Key	Procedure		
When	n controlling via	GP-IB (Comma	and Processing: [GPIB])	[GP-18]
6	Select the mode		Addressable Addressable	
	CURSOR	Move the cursor	to the [Mode] item.	
	F1 to F8	F1 to F8 Select either choice.		
		Addressable	Enable PC controllability	
		Disabled	Disable PC controllability	
7	Assign an addr CURSOR F1 to F8		to the [Address] item. 30.	About the Address GP-IB requires that each device connect- ed to the GP-IB have a unique address.

4.7.2 Operate on the PC

The following example shows how to make a connection using the telnet software (HyperTerminal) supplied with Windows XP.

Index

Numerics

100BASE-TX

A

A/B cursor Acquisition interval	
ACR	90
Aliasing	106
Analysis modes	59, 62, 64, 102
Analysis starting point	80
Analyze page	62
Anti-aliasing filter	37, 107
Area	7, 20
Auto correlation function	90
Average value	6, 19
Averaging	58, 109

В

Blackman	.56, 112
Blackman Harris	.56, 112

C

Calculation dialog	31
Calculation No.	62
CCR	
Channel settings	
Channel settings screen	41
One Ch page	
СОН	100
Coherence Function	
Color	62
Command	142
Comment	66
Communications	
Access	128
Command communications	142
Communications (Comm) command port	143
Delimiter	143
Error response	143
Header	143
Connection	118
Deleting and renaming files	130
Delimiter	
DHCP122, 124	ł, 126
DNS122, 124	ł, 126

Download 130 FTP settings 128 Gateway 122, 124, 126 Header 122 Host name 122 IP address 122, 124, 125 Network 121 Port number 122 Subnet mask 122, 124 Uploading Files 130 Web server 132
WINS 122, 125, 126
Connecting the Instrument to a PC 119 Cross Power Spectrum
Cross-correlation function
CSP

D

dB input Display color	71
Calculation waveforms	30
DISPLAY dialog	
Display Method	
Display sheet settings	49
Display type	
Display types and split-screen settings	74
Downloading files	130
Duty	7, 21

Е

E-Mail	
Exponential	
Exponential averaging	
External sampling	

F

Fall Time	7, 20
Flat-Top	56, 113
Four arithmetic Operations (4 Operations)	21
Fourier transforms	103
Frequency range	53, 54, 67
Frequency resolution	55
FTP	127
Function selection	46

Index 2

Index

G

Gauge)
GAUGE&VALUE dialog)
GP-IB	

Н

Hamming Hanning	
Highlight	
Attenuation ratio	61
dB	61
HIS	
Histogram	

Imaging IMP	
Impulse response	
Input channel settings	
Input coupling	69
Interface	124, 126
Internet browser	132

L

LAN	120
LIN	86
Linear predictive coding	115
Linear spectrum	86
Linear time-invariant systems	104
Low-pass filter	70
LPC	101, 115
LPF (low-pass filter)	
LTI system	104
-	

Μ

Maximum value	19
Measurable ranges with octave analysis	
Measurement	
End of measurement	50
Start of measurement	50
Measurement configuration settings	47
Measurement range	48
Memory waveform	80
Minimum value	19
Mode (measurement mode)	69

Ν

NG	
Analysis Mode Error7	3
Nyquist Display7	3
X-Axis Setting	3

Number of analysis points	. 53, 54, 67, 105
Numerical calculations	3
Calculation expressions	
Calculation results	9
Calculation type	6
Copying settings	
Judging	
Settings	6
Nyquist	

0

ОСТ	
Octave analysis	
Octave filter	
Offset Cancel	
Opening screen	
Överall	

Ρ

Parameter	63
Peak value display	57
Peak-to-peak value (P-P value)	6, 19
Period and Frequency	
PHA	95
Phase spectrum	
Power spectrum	88
Power spectrum density	89, 101
Pre-trigger	48, 67
Print settings screen	
Printing	76
Printing settings	50
Probe attenuation	
PSD	89
PSP	88
Pulse count	
Pulse width	21

R

Range	
Measurement range	69
Rectangular	56, 111
Reference	
Rise Time	7, 20
RMS	
RMS (Root-Mean-Square) value	6, 19

S

Sampling clock	54
Save	
Example of saving numerical calculation	
results	16
Numerical calculation results(Auto Save)	14

Numerical calculation results(Manual Save	e)15
Save Settings Screen	43
Saving	75
Saving settings	49
Scale page	66
Sheet settings screen	49
Simple averaging	109
Standard deviation (Std. Deviation)	7, 20
Status settings screen	40
Storage	85
STR	85

т

Time to Level	21
Time value	
Time to maximum value (Time to Max)	19
Time to minimum value (Time to Min)	19
TIME/DIV key	53
Timebase	55
Transfer Function	96
TRF	96
Trigger	45, 48
Trigger criteria	48
Trigger mode	60, 67
Trigger settings	
Trigger Settings Screen	

W

Waveform calculation	
Operators	34
Settings	26
Waveform Calculations	
Waveform color	68
Waveform screen	
Setting items	39
Web server	
Saving screens	137
Sending and receiving text	136
Window	
Coefficient	56
Window function	
Multiplication	56
WINS	122

X

X axis	63
X-Y area	20

Y

Y	axis	63	3

Ζ

Zero adjustment	0
-----------------	---

- Please visit our website at www.hioki.com for the following:
 - Regional contact information
 - The latest revisions of instruction manuals and manuals in other languages.
 - Declarations of Conformity for instruments that comply with CE mark requirements.
- All reasonable care has been taken in the production of this manual, but if you find any points which are unclear or in error, please contact your supplier or the International Sales and Marketing Department at Hioki headquarters.
- In the interests of product development, the contents of this manual are subject to revision without prior notice.
- The content of this manual is protected by copyright. No reproduction, duplication or modification of the content is permitted without the authorization of Hioki E.E. Corporation.

HIOKI

HEADQUARTERS

81 Koizumi, Ueda, Nagano 386-1192, Japan TEL +81-268-28-0562 FAX +81-268-28-0568 os-com@hioki.co.jp (International Sales Department)

www.hioki.com

HIOKI USA CORPORATION

hioki@hiokiusa.com www.hiokiusa.com

HIOKI (Shanghai) Sales & Trading Co.,Ltd. info@hioki.com.cn www.hioki.cn

HIOKI SINGAPORE PTE. LTD. info-sg@hioki.com.sg www.hioki.com

HIOKI KOREA CO., LTD. info-kr@hioki.co.jp www.hiokikorea.com

1604EN

Edited and published by Hioki E.E. Corporation

Printed in Japan